Loading [MathJax]/jax/output/SVG/jax.js

晚更新世冰期旋回成因的南大洋机制及其对北极冰盖形成的启示

马悦, 田军, 李杨

马悦,田军,李杨. 晚更新世冰期旋回成因的南大洋机制及其对北极冰盖形成的启示[J]. 海洋地质与第四纪地质,2024,44(4): 1-15. DOI: 10.16562/j.cnki.0256-1492.2024011702
引用本文: 马悦,田军,李杨. 晚更新世冰期旋回成因的南大洋机制及其对北极冰盖形成的启示[J]. 海洋地质与第四纪地质,2024,44(4): 1-15. DOI: 10.16562/j.cnki.0256-1492.2024011702
MA Yue,TIAN Jun,LI Yang. The Southern Ocean mechanism of the Late Pleistocene glacial cycling and its implications for the formation of the northern hemisphere ice sheet[J]. Marine Geology & Quaternary Geology,2024,44(4):1-15. DOI: 10.16562/j.cnki.0256-1492.2024011702
Citation: MA Yue,TIAN Jun,LI Yang. The Southern Ocean mechanism of the Late Pleistocene glacial cycling and its implications for the formation of the northern hemisphere ice sheet[J]. Marine Geology & Quaternary Geology,2024,44(4):1-15. DOI: 10.16562/j.cnki.0256-1492.2024011702

晚更新世冰期旋回成因的南大洋机制及其对北极冰盖形成的启示

基金项目: 国家重点研发计划项目“新近纪晚期印太暖池区海道闭合与高纬冰盖演变的耦合机制研究”(2023YFF0803900);国家自然科学基金重点项目“探索晚新生代太平洋中深层经向翻转流与气候演变冰期旋回的关系”(42030403)
详细信息
    作者简介:

    马悦(1999—),女,硕士研究生,从事古海洋学与古环境变化研究,E-mail:2131631@tongji.edu.cn

    通讯作者:

    田军(1974—),男,教授,主要从事古海洋学与古环境变化研究,E-mail:tianjun@tongji.edu.cn

  • 中图分类号: P736

The Southern Ocean mechanism of the Late Pleistocene glacial cycling and its implications for the formation of the northern hemisphere ice sheet

  • 摘要:

    目前,学术界普遍认为南大洋对调节晚更新世冰期/间冰期大气二氧化碳分压(pCO2)变化发挥了重要作用。在晚更新世,冰期大气pCO2比间冰期大气pCO2下降约90×10−6。而在约2.7 Ma,随着北极冰盖快速扩张( intensification of Northern Hemisphere Glaciation,iNHG),冰期旋回振幅增大,大气pCO2也骤降。探究晚更新世冰期及iNHG时期大气pCO2下降的原因,对构建完整的冰期旋回理论意义重大。本文综合晚更新世冰期南大洋北部的亚南极区(Subantarctic Antarctic Zone,SAZ)和南部的南极区(Antarctic Zone,AZ)的洋流、海冰、生产力等记录,分析了两个区域在晚更新世冰期可能的储碳机制,并结合iNHG时期各项地质记录,讨论南大洋洋流、碳储库在iNHG期间所发生的变化。结果认为,SAZ和AZ使冰期大气pCO2下降的机制不完全相同,铁肥输入增强导致SAZ生物泵效率增强,增加了海洋固碳,而在AZ,深水通风减弱、海冰扩张、深海分层增强是加强深海碳封存的关键机制。同时,iNHG时期洋流、碳储库等记录表明,南源水向北大西洋、北太平洋深部显著扩张,南大洋海冰扩张,铁肥输入增强,太平洋碳储库增大,暗示iNHG时期南大洋机制可能是大气pCO2下降的原因,直接造成了晚上新世北极冰盖的最终形成。

    Abstract:

    It has been generally believed that the Southern Ocean has played an important role in modulating glacial/interglacial changes of the atmospheric partial pressure of carbon dioxide (pCO2) during the Late Pleistocene. In the late Pleistocene, the atmospheric pCO2 during the glacial periods was about 90×10−6 lower than that during the interglacial periods. Furthermore, in around 2.7 Ma, with the intensification of the Northern Hemisphere Glaciation (iNHG), the amplitude of glacial cycles increased, while the atmospheric pCO2 greatly decreased. Exploring the reasons for the decline in atmospheric pCO2 during the Late Pleistocene glaciation and the iNHG period is of great significance for constructing a complete theory of the Ice Ages. We combined the records of ocean currents, sea ice, and productivity in the Subantarctic Antarctic Zone (SAZ) in the northern part of the Southern Ocean and the Antarctic Zone (AZ) in the southern part of the Southern Ocean during the Late Pleistocene glaciation, investigated the possible carbon storage mechanisms in these two regions during this period, and discussed the changes in the Southern Ocean currents and carbon reservoirs during the iNHG period by integrating geological records. We proposed that SAZ and AZ had different carbon storage mechanisms during ice ages. The enhancement of iron fertilization increased the biological pump efficiency in the SAZ, thus increasing ocean carbon sequestration. Meanwhile, in the AZ, weakened deep-water ventilation, sea ice expansion, and enhanced deep-sea stratification were the key mechanisms for enhancing deep-sea carbon sequestration. Additionally, records of ocean currents and carbon reservoirs during the iNHG period indicate that southern ocean sourced waters expanded significantly towards the deep North Atlantic and North Pacific, with an expansion of sea ice in the Southern Ocean, enhancement in iron fertilization, and the increase in the Pacific carbon reservoir. We infer that the Southern Ocean mechanisms of the Late Pleistocene ice glacial cycling had probably contributed greatly to the decrease in the atmospheric pCO2 during the period of the iNHG, which triggered the final formation of the northern hemisphere glaciation.

  • 生物硅(BSi),又称生物蛋白石,主要由上层水体中的硅质浮游生物(如硅藻、放射虫、硅鞭藻等)死亡后的骨骼或细胞壁堆积而成[-],是海洋沉积物中重要的生源物质组成部分[],其含量与表层水体中的生物量密切相关[]。在上述硅质生物种群中,硅藻遍布于各类水体,为海洋提供了40%左右的初级生产力[-],是海洋BSi中最主要的组成部分[-]。因此,沉积物BSi的时空分布常作为古海洋初级生产力的变化指标[]。由于生产力的波动与表层海水营养物质的供应量关系密切,因此可以将BSi沉积记录与可能导致海水营养盐供给变化的大尺度气候和海洋过程(如季风、洋流等)联系起来,作为重建过去海洋环境变化的重要工具[-]

    南海是西太平洋最大的边缘海,地理位置独特,其环境受东亚季风的强烈影响,是追溯冰期-间冰期旋回中东亚季风演变历史的热点区域之一[-]。泰国湾(Gulf of Thailand),旧称暹罗湾,是南海重要的组成部分,位于南海西南部的巽他陆架之上,处于太平洋及其附属海的最西端,是南海最大的海湾之一,为典型的半封闭型陆架海,其面积约35 000 km2。泰国湾属于热带季风气候,其风向和海流与亚洲季风关系密切[-]。在西南季风影响的5—10月,该海域沿岸流呈顺时针运动,而在受东北季风影响的11月至次年2月沿岸流则呈逆时针运动[]。近年来有关研究表明,南海古生产力的变化与亚洲季风的周期性变化具有密切联系[, , -],然而这些研究主要集中在南海海盆和北部沿岸地区,有关南海西部和西南部,尤其是泰国湾的古生产力研究则少有涉及。因此本研究选取位于泰国湾北部沿岸海域的两根沉积物柱状样LCS05和WLE08,通过对柱样中BSi含量的分析,探讨近9 ka以来泰国湾古生产力的状况。

    本研究所用的LSC05和WLE08沉积柱样,系由自然资源部第三海洋研究所和泰国自然资源与环境部矿产资源局合作于2017年5月12日在泰国湾尖竹汶海岸通过重力及回旋取样结合的方法取得。其中,LSC05柱样(12°21′29″N、101°58′36″E)长1.58 m,水深18 m;WLE08柱样(12°17′28″N、102°10′18″E)长1.98 m,水深13 m[],具体采样位置见图1。在自然资源部第三海洋研究所海洋与海岸地质实验室以2 cm连续间隔对两根柱样进行分样。LSC05柱样共挑选27个样品进行BSi(Si)和有机碳(TOC)测试分析;WLE08柱样共挑选33个样品进行BSi(Si)和有机碳(TOC)测试分析。有机碳(TOC)分析在自然资源部第三海洋研究所完成;BSi分析工作在中国海洋大学海洋地球科学学院地球化学实验室完成。

    图 1 LSC05、WLE08柱样调查站位的地理位置以及表层流分布情况
    图  1  LSC05、WLE08柱样调查站位的地理位置以及表层流分布情况
    A: 南海及主要洋流[],B: 研究区及主要洋流。
    Figure  1.  The location of Cores LSC05 and WLE08 and the surface currents in the Gulf of Thailand
    A: South China Sea and main currents[]; B: Study area and main currents.

    BSi测试采用钼酸铵分光光度法测定萃取物中溶解的二氧化硅[]。对沉积物样品研磨烘干(65℃烘48 h,106℃下烘2 h),称取130~140 mg干样于50 mL塑料离心管中,加5 mL10% 的H2O2溶液,混匀后静置30 min。加5 mL 1∶9的HCL混匀,静置30 min。加20 mL去离子水,离心20 min,之后对样品进行干燥。干燥后的样品加40 mL 浓度为2 mol/L的 Na2CO3提取液,放置在85 ℃水浴中加热提取。之后每隔1 h取出离心,取125 µL上清液用于测定Si浓度,连续提取8 h。利用分光光度法测定提取液中的硅[-]。测得的提取液中的Si含量数据和对应的提取时间点作图,曲线直线部分的反向延长线与Y轴的交点为样品的BSi含量[-]。全过程标准偏差控制在5%以内。

    根据粒度测试结果选取LSC05柱样的4个层位和WLE08柱样的3个层位中的贝壳或植物碎屑样品进行AMS14C测试。样品送美国BETA实验室完成,BETA实验室已对原始测年数据进行了日历年龄校正,海洋碳库效应校正由于附近没有已知点故选取全球海洋修正,具体测试结果见表1。本文年代采用日历年。

    表  1  LSC05和WLE08柱样[]AMS14C测年结果
    Table  1.  AMS14C dating of Cores LSC05 and WLE08[]
    柱样名称 样品深度/cm BETA实验室编号 测年材料 AMS14C测量年代/(aBP±1σ) 日历年龄/cal. aBP
    LSC05 8 Beta-509448 贝壳 3090±30 2857
    18 Beta-509449 贝壳 3210±30 3024
    100~102 Beta-509450 植物碎屑 6880±30 7726
    152~154 Beta-509451 植物碎屑 8480±30 9499
    WLE08 12~14 Beta-509452 贝壳 350±30
    96~98 Beta-509453 贝壳 1550±30 1109
    184~186 Beta-509454 贝壳 1S820±30 1373
    下载: 导出CSV 
    | 显示表格

    有机碳(TOC)分析采用Vario Isotope cube-IsoPrime 100型(Elementar)元素分析-稳定同位素比值质谱联用仪(EA-IRMS)完成。前处理取一定量的沉积物样品,加入4 mol/dm3 的HCl至过量,反应24 h。用去离子水洗酸至中性,将样品置于烘箱内60 ℃烘干,恒重后称量,研磨成粉末,过60目的筛子,密封备用。用天平准确称取适量固体样品,放入锡箔杯中并紧密包裹成小球状,依次放进96孔板内测定。

    LSC05、WLE08柱样的AMS14C测年数据如表1,两根柱样的年龄与深度模型见图23。在沉积物样品测年基础上,通过线性插值,获得各样品所代表的年龄,进而建立柱状样的年代框架。沉积速率的计算是通过两个测年点的线性关系得到,通常不考虑沉积物的固结压实和沉降作用。对于柱样第一个测年点之上的沉积速率,选择通过前两个测年点间的沉积速率外推至上部样品。LSC05柱样的沉积物年龄为2.7~9.6 cal.kaBP,18 cm以上的平均沉积速率约为59.9 cm/ka,18~100 cm的平均速率为17.4 cm/ka,100~158 cm的平均速率为29.3 cm/ka。WLE08柱样的年代框架已建立,建立方法与LSC05柱样相同。其沉积物年龄为1.1~1.4 cal.kaBP,整根柱子的沉积速率均为333.3 cm/ka []。LSC05孔提供了9 ka以来平均分辨率达约2.3 ka的沉积记录,WLE08孔提供了1.3 ka以来平均分辨率达约0.3 ka的高分辨率的沉积记录。

    图 2 LSC05年龄-深度模型
    图  2  LSC05年龄-深度模型
    Figure  2.  Age-depth model for Core LSC05
    图 3 WLE08年龄-深度模型
    图  3  WLE08年龄-深度模型
    Figure  3.  Age-depth model for Core WLE08

    LSC05与WLE08柱样均从表层(0 cm)开始向下取样,但两根柱样均出现了顶部近代沉积物缺失的情况。根据WLE08柱样的210Pb测试结果显,示其活度随深度增加并没有呈现指数衰减趋势[],说明 WLE08 孔的210Pb 活度值为本底值,缺少现代沉积物留存。有研究表明汇入该区域内的尖竹汶河与Welu河流量较小,入海泥沙量也相对较小[],而其所在海域底层流流速均大于泥沙颗粒启动流速[],在此沉积动力环境下,该区域很难大量接收现代河流沉积,并导致现代沉积物缺失。

    除了BSi以外,直观反映了海表有机质丰度来体现海表初级生产力的有机碳含量(TOC)被视为衡量海表生产力的替代指标[-]。LSC05和WLE08柱样TOC含量变化范围分别为0.03%~1.60%和1.83%~4.10%,平均值分别为0.90%和2.68%(图4B)。TOC含量在9~6.5 cal.kaBP期间逐渐增加,在6.5~3 cal.kaBP期间含量整体较低,变化较小,较为稳定,在1.4~0.84 cal.kaBP期间含量较高。

    图 4 LSC05、WLE08柱样BSi含量、TOC含量、C/N比值与其他气候、环境变化序列对比
    图  4  LSC05、WLE08柱样BSi含量、TOC含量、C/N比值与其他气候、环境变化序列对比
    粉红色条带代表BSi含量高值带,粉蓝色条带代表BSi含量低值带。
    Figure  4.  Comparison among biogenic silica content, TOC content, C/N in LSC05, and WLE08 with other climate and environmental variation sequences
    Redish bands represent the high value band of BSi content and the bluish bands represent the low value band of BSi content.

    在全球变暖的背景下,泰国湾的有机碳的输送、扩散和埋藏与热带季风气候控制的降水等条件密切相关[]。研究区的TOC自6.5 cal.kaBP以来的变化趋势与王承涛等[]研究得到的泰国湾中晚全新世以来沉积物的敏感粒级变化趋势吻合度较高,指示了研究区的西南夏季风在6.5~3 cal.kaBP处于较弱的稳定期,在1.4 cal.kaBP以来有所增强。在6.5 cal.kaBP以前的时期,本研究TOC含量较低,与中晚全新世以来沉积物的敏感粒级的研究结果差异较大,可能是由于王承涛等[]研究的WLE12柱样位于河口内,但LSC05柱样距河口位置明显更远,因此LSC05接收到的来自河流携带的有机物汇入较少。

    LSC05和WLE08柱状沉积物中BSi含量如图4A所示。LSC05和WLE08柱样BSi含量变化范围分别为0.41%~1.56%和0.60%~1.52%,平均值分别为0.88%和1.11%。结合研究区周边与南海部分海域的BSi研究成果(表2)可以发现,研究区属于南海中的低值海区,与南海南部(巽他陆架东部)和南海北部陆坡(珠江口外)水深小于200 m的陆架浅水区沉积物BSi含量[, ]较为接近。

    表  2  南海部分海域BSi含量对比
    Table  2.  Comparison of BSi content in the South China Sea
    研究海域 沉积物性质 水深/m BSi含量占比/% 参考文献
    范围 平均值
    南海西部泰国湾(本文) LSC05柱样 15~20 0.41~1.56 0.88
    WLE08柱样 10 0.60~1.52 1.11
    南海北部陆坡 ODP1144钻孔 2 037 1.50(1050~900 ka) [-]
    3.80(900 ka后)
    南海北部 表层沉积物 <200 1.59 []
    >200 2.06
    南海中部 ODP1143钻孔 2 722 1.31~3.38 - [, ]
    南海南部 表层沉积物 <200 0.37~1.86 []
    >1 000 3.39~9.00
    东印度洋爪哇岛以南 CJ01-185柱样 1 538 1.41 []
    下载: 导出CSV 
    | 显示表格

    沉积物中BSi含量的最主要的影响因素是硅质骨骼或细胞壁的供给量和溶解作用[],两者的动态平衡关系主导了BSi的总体分布[],再加上不同沉积物物质来源以及物质稀释的影响,共同决定了BSi最终的分布格局。LSC05和WLE08柱样采样站位水文环境条件与其他南海相关研究有所不同,季风的盛行导致南海存在较多的上升流区[-]。上涌的下层水体将营养物质携带至海表,为海表硅藻等硅质生物勃发提供了良好的生境,因此上升流区BSi含量明显较高。除本研究区以外,表2中涉及的其他站位均靠近南海上升流区[-],但有研究表明泰国湾区域无上升流发育[],这就导致了泰国湾硅质骨骼与壳体供给量低于其他有上升流的南海海域,因此BSi含量偏低。

    碳氮比值(C/N)是古生产力研究中重要的参考性指标 ,可以用来反映沉积物的来源[]。海洋自身有机物的C/N一般为5~8[, ],陆源有机物的C/N则大于12[]。研究区9 ka以来,LSC05和WLE08柱样的C/N比值偏高,平均值为14.81,较多时期的C/N比值高于12(图4C, 8.6~8.8 cal.kaBP和9.0~9.4 cal.kaBP数据缺失),说明研究区中陆源有机质输入量较高。LSC05与WLE08两根柱样的采样位置均位于近岸区域,水深为10~20 m,其沉积物物源受到海洋与陆地的双重影响。末次冰消期以来,泰国湾的沉积物均来自于中南半岛[] ,较多陆源沉积物的输入稀释了BSi含量。

    由此可见,泰国湾低BSi含量这一特征与BSi的来源、堆积过程及其保存环境密切相关,低硅质骨骼与壳体供给量和陆源物质的稀释共同作用形成了该BSi低含量海域。

    沉积物中的BSi与有机质关系密切[],虽然只有约 3%的BSi能长期存在于海底沉积物中,但是相对于生源有机碳,BSi的埋藏效率明显更高,更能保存上层水体的生产力及环境信息[]。因此BSi常作为指示生产力的有效替代性指标,可以用来指示表层水体生产力的演变。

    研究区BSi含量最高值出现于7.5 cal.kaBP,最低值出现于2.8 cal.kaBP,最高值为最低值的3.8倍。柱样中的BSi含量共有4个高值带,分别是8.1~7.5、4.8、3.4和1.0 cal.kaBP左右。同时有3个低值带,分别是8.2、7和3 cal.kaBP左右。

    海洋初级生产力是各种物理、化学和生物因素的综合效应的表现[]。东亚冬季风对于南海的生产力起着重要的作用[,,,,-]。亚洲季风的变化引起泰国湾降水、水体营养浓度、叶绿素含量、浮游植物丰度等环境变化[, - ]。若亚洲夏季风势力强盛,带来大量的降雨,使地表河流径流量增加,从而携带更多营养物质汇入海洋[],BSi含量则随之增加,这就反映了海表初级生产力提高。

    1.4~0.8 cal.kaBP期间,BSi含量为0.60%~1.52%(平均含量1.11%),属于本研究中偏高的一段时期。此时正处于东亚夏季风偏强的中世纪暖期时期,这说明该时期内的海表初级生产力较高可能是由于夏季风势力较强所致。8.5~8.2、7.1~6.9 cal. ka BP两段时间内,BSi含量较低,这可能是由于此时南亚夏季风势力较弱导致的。8.2 cal.kaBP时,BSi含量快速下降并近乎到达最低值。此时夏季风也处于该时期内最低值,表明夏季风存在一次较大的衰弱期,响应了8.2 cal.kaBP全球范围的气候突变事件[,],指示了此段时间内由于夏季风的衰减致使研究区海表初级生产力降低。

    对比研究区柱样BSi含量曲线和南海区域温度异常值曲线[]图4A、D)可以发现,温度变化与BSi含量变化也有相近的变化趋势,但BSi含量的变化略滞后于南海区域温度异常的变化。这反映出BSi作为古生产力的替代指标与古气候在一定程度上具有对应性[]。但我们发现8.2 cal.kaBP时期冷事件之前的曲线呈现相反的变化趋势,南海温度异常增加,BSi含量反而降低,这反映了由于夏季风过度强盛而引起的异常暖事件反而可能会抑制硅质生物的生长,导致海表初级生产力降低[]

    将BSi含量与格陵兰冰芯[]、华南董歌洞石笋[]以及阿曼Qunf岩洞石笋记录[]图4F、G、H)对比,可以发现泰国湾9 ka以来有部分时期能够吻合。3~2.7 cal.kaBP时期,BSi含量出现明显低值带,此时期董歌洞石笋与阿曼Qunf岩洞石笋记录均出现了对应的低值区,可能指示了一次冷事件的出现,这与4~2 cal.kaBP时期出现的热带海域“斜氏普林虫低值事件”对应[-]。8.2 cal.kaBP变冷事件时期[],格陵兰冰芯、董歌洞石笋以及阿曼Qunf岩洞石笋记录同样能找到相应的低值记录,格陵兰冰芯甚至达到最低值。以上对应事件说明研究区古生产力的变化趋势与全球尺度的环境变化具有相关性,指示了泰国湾古环境变化对全球环境变化有一定程度的响应。

    (1) LSC05和WLE08柱样中BSi含量分别为0.41%~1.56%和0.60%~1.52%,为低值海域,最高值和最低值分别出现于7.5、2.8 cal.kaBP时期。区域内无上升流导致的低硅质骨骼和低壳体供给量以及陆源物质输入的稀释是BSi含量低的主要原因。

    (2)本研究柱样中共出现了4个BSi含量高值带与3个BSi含量低值带。TOC含量自9 cal.kaBP以来呈现逐渐增加-平稳较低-继续增加的趋势。将 9 ka以来研究区生物硅含量曲线与南海气候曲线进行对比发现,生物硅含量与南海气温异常曲线和南海夏季风替代指标值期有一定的对应性,但BSi曲线略滞后于南海气温异常曲线,且1.4~0.84 cal.kaBP这一海表生产力高值期正处于东亚夏季风偏强的中世纪暖期时期,指示了高生物硅含量对应的海表高初级生产力时期可能是由于夏季风阶段性势力较强导致。但8.2 cal.kaBP冷事件之前的南海异常高温却对应了生物硅含量低值区,这可能反映了夏季风过强引起的过度高温反而不利于海表初级生产力的提高。

    (3)研究区生物硅含量与格陵兰冰芯、董歌洞石笋以及阿曼Qunf岩洞石笋记录有较好的对应性,BSi含量低值带与热带海域“斜氏普林虫低值事件”和8.2 cal.kaBP冷事件对应,表明研究区古生产力的变化趋势与全球尺度的环境变化具有明显的相关性,这指示了泰国湾古环境变化对全球环境变化的响应。

    致谢:感谢所有在航次调查期间帮助采样和采集数据的中泰合作项目组成员。

  • 图  1   80万年来气候变化记录

    a:65°N夏季太阳辐射量[22],b:地球轨道参数斜率[22],c:全球底栖有孔虫δ18O综合曲线LR04[2],d:根据南极Vostok冰芯重建的大气δ18O[9],e:根据南极冰芯重建的pCO2[9, 23],f:晚更新世底栖有孔虫δ18O(LR04)[2]频谱分析(采用origin软件),g:晚更新世65°N夏季太阳辐射量频谱分析[22](采用origin软件)。

    Figure  1.   Records of climate change over the last 800 thousand years

    a: Insolation of 65°N[22], b: obliquity[22], c: a compilation of benthic foraminiferal δ18O records(LR04)[2], d: δ18Oatm as reconstructed from Vostok ice core[9], e:pCO2 as reconstructed from Antarctic ice cores[9,23], f: spectrum analysis of benthic foraminiferal δ18O[2] over the Late Pleistocene, g: spectrum analysis of insolation of 65°N over the Late Pleistocene[22].

    图  2   南大洋洋流机制图 [10]

    a:现代海洋,b: LGM时期可能的机制。NADW:北大西洋深水,GNAIW:冰期北大西洋中层水,AABW:南极底层水,AAIW:南极中层水,SAMW:亚南极模态水,ITF:印尼贯穿流,AE:阿古拉斯涡旋,ITF和AE将表层水从太平洋运输至大西洋,圆圈点表示从页面中流出,十字表示流入,SAZ:亚南极区,ACC:绕南极流,PAZ:极地南极区。内部气流的线条颜色表示其通风源区域,蓝色表示NADW 或 GNAIW,黄色表示AABW,绿色表示NADW、AABW混合,线条的粗细变化表示流速变化。红色实线:碳酸盐溶跃面深度,红色虚线:碳酸盐溶跃面深度变浅,海底CaCO3减少,增加海洋碱度。深紫色阴影表示再生型营养物质浓度较高,即再生型CO2含量高,黄色点表示亚南极区Fe肥输入。

    Figure  2.   Summary cartoon of Southern Ocean mechanisms of Late Pleistocene glacial cycling [10].

    a:The global ocean today, b: possible mechanisms during LGM. NADW: North Atlantic Deep Water; GNAIW: Glacial North Atlantic Intermediate Water; AABW: Antarctic Bottom Water; AAIW: Antarctic Intermediate Water; SAMW: Subantarctic Mode Water; ITF: Indonesian Through-Flow; AE: Agulhas Eddies (ITF and AE return surface water from the Pacific to the Atlantic. The circled dots showing transport out of the page and circled crosses showing transport into the page); SAZ: Subantarctic Zone; ACC: Antarctic Circumpolar Current; PAZ: Polar Antarctic Zone, line colors of interior flows indicate their ventilation source region. Blue: NADW or GNAIW; yellow: AABW; green: mixed NADW and AABW. Line thickness changes among panels denote changes in flow rate. Solid red line: steady-state lysocline; dashed red line: transient shoaling of the lysocline, causing a transient decrease in seafloor CaCO3 burial that increases ocean alkalinity. Dark purple shading in the interior indicates a higher concentration of regenerated nutrient and thus regenerated CO2. Yellow dots: Subantarctic iron fertilization.

    图  3   晚上新世—早更新世气候变化记录

    a:全球底栖有孔虫δ18O(LR04)[2],b:大气pCO2.红色三角数据来自参考文献[83],蓝色圆点数据来自参考文献[84]),c:ODP 882站的蛋白石堆积速率[74],d:ODP 907站的冰筏碎屑沉积IRD[6]

    Figure  3.   Records of climate change during the Late Pliocene-Early Pleistocene

    a: Global benthic foraminifera δ18O(LR04) [2]; b: atmosphere pCO2(red triangle references from [83], blue dots references from [84]); c: Biogenic opal mass accumulation rates (MAR) at ODP Site 882[74]; d: Ice-rafted debris (IRD) of ODP Site 907[6].

    图  4   北极冰盖快速扩张期间多地化指标记录

    a:全球底栖有孔虫δ18O记录(LR04)[2],b:U1489站的碳酸根离子浓度[103],c:U1489站的εΝd[103],d:U1308站的δ13C[106],e:U1313站的εΝd [102],f:ODP 1091站的蛋白石积累速率[105],g:ODP1090站的铁积累速率[96]

    Figure  4.   Records of Multi-geochemical proxies during the iNHG (intensification of Northern Hemisphere Glaciation)

    a: Global benthic foraminifera δ18O(LR04) [2]; b: Δ[CO23] from Site U1489[103]; c: εΝd from Site U1489[103]; d: δ13C from Site U1308[106]; e: εΝd from Site U1313 [102]; f: MAR of opal at Site ODP 1091[105]; g: MAR of iron at Site ODP 1090[96].

  • [1]

    Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517):686-693. doi: 10.1126/science.1059412

    [2]

    Lisiecki L E, Raymo M E. A pliocene-pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography and Paleoclimatology, 2005, 20(1):PA1003. doi: 10.1029/2004PA001071

    [3]

    Tian J, Wang P X, Cheng X R. Development of the East Asian monsoon and Northern Hemisphere glaciation: oxygen isotope records from the South China Sea[J]. Quaternary Science Reviews, 2004, 23(18-19):2007-2016. doi: 10.1016/j.quascirev.2004.02.013

    [4]

    Tian J, Wang P X, Cheng X R, et al. Astronomically tuned Plio–Pleistocene benthic δ18O record from South China Sea and Atlantic–Pacific comparison[J]. Earth and Planetary Science Letters, 2002, 203(3-4):1015-1029. doi: 10.1016/S0012-821X(02)00923-8

    [5]

    Shackleton N J, Backman J, Zimmerman H, et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region[J]. Nature, 1984, 307(5952):620-623. doi: 10.1038/307620a0

    [6]

    Kleiven H F, Jansen E, Fronval T, et al. Intensification of Northern Hemisphere glaciations in the circum Atlantic region (3.5-2.4 Ma)–ice-rafted detritus evidence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 184(3-4):213-223. doi: 10.1016/S0031-0182(01)00407-2

    [7]

    Milankovitch M M. Canon of insolation and the iceage problem[M]. Koniglich Serbische Akademice Beograd Special Publication, 1941: 132.

    [8] 鹿化煜, 王珧. 触发和驱动第四纪冰期的机制是什么?[J]. 科学通报, 2016, 61(11):1164-1172 doi: 10.1360/N972015-01294

    LU Huayu, WANG Yao. What causes the ice ages in the Late Pliocene and Pleistocene?[J]. Chinese Science Bulletin, 2016, 61(11):1164-1172.] doi: 10.1360/N972015-01294

    [9]

    Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399(6735):429-436. doi: 10.1038/20859

    [10]

    Sigman D M, Hain M P, Haug G H. The polar ocean and glacial cycles in atmospheric CO2 concentration[J]. Nature, 2010, 466(7302):47-55. doi: 10.1038/nature09149

    [11]

    Sowers T, Bender M. Climate records covering the last deglaciation[J]. Science, 1995, 269(5221):210-214. doi: 10.1126/science.269.5221.210

    [12]

    Shackleton N J. The 100, 000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity[J]. Science, 2000, 289(5486):1897-1902. doi: 10.1126/science.289.5486.1897

    [13]

    Broecker W S. Glacial to interglacial changes in ocean chemistry[J]. Progress in Oceanography, 1982, 11(2):151-197. doi: 10.1016/0079-6611(82)90007-6

    [14]

    Sarmiento J L, Toggweiler J. A new model for the role of the oceans in determining atmospheric P CO2[J]. Nature, 1984, 308(5960):621-624. doi: 10.1038/308621a0

    [15]

    Siegenthaler U, Wenk T. Rapid atmospheric CO2 variations and ocean circulation[J]. Nature, 1984, 308(5960):624-626. doi: 10.1038/308624a0

    [16]

    Knox F, McElroy M B. Changes in atmospheric CO2: influence of the marine biota at high latitude[J]. Journal of Geophysical Research: Atmospheres, 1984, 89(D3):4629-4637. doi: 10.1029/JD089iD03p04629

    [17] 马浩, 王召民, 史久新. 南大洋物理过程在全球气候系统中的作用[J]. 地球科学进展, 2012, 27(4):398-412

    MA Hao, WANG Zhaomin, SHI Jiuxin. The role of the southern ocean physical processes in global climate system[J]. Advances in Earth Science, 2012, 27(4):398-412.]

    [18]

    Talley L D, Pickard G L, Emery W J, et al. Descriptive physical oceanography[M]. 6th ed. Boston: Academic Press, 2011: 1-511.

    [19]

    Robinson R S, Sigman D M, DiFiore P J, et al. Diatom‐bound 15N/14N: new support for enhanced nutrient consumption in the ice age subantarctic[J]. Paleoceanography and Paleoclimatology, 2005, 20(3):PA3003.

    [20]

    Cooke D W, Hays J D. Estimates of Antarctic Ocean seasonal sea-ice cover during glacial intervals[M]//Craddock C. Antarctic Geoscience. Madison: University of Wisconsin Press, 1982: 1017-1025.

    [21]

    Galbraith E D, Skinner L C. The biological pump during the last glacial maximum[J]. Annual Review of Marine Science, 2020, 12:559-586. doi: 10.1146/annurev-marine-010419-010906

    [22]

    Berger A, Loutre M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4):297-317. doi: 10.1016/0277-3791(91)90033-Q

    [23]

    Lüthi D, Le Floch M, Bereiter B, et al. High-resolution carbon dioxide concentration record 650, 000-800, 000 years before present[J]. Nature, 2008, 453(7193):379-382. doi: 10.1038/nature06949

    [24]

    Adams J M, Faure H, Faure-Denard L, et al. Increases in terrestrial carbon storage from the Last Glacial Maximum to the present[J]. Nature, 1990, 348(6303):711-714. doi: 10.1038/348711a0

    [25]

    Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide[J]. Nature, 2000, 407(6806):859-869. doi: 10.1038/35038000

    [26]

    Marinov I, Gnanadesikan A, Sarmiento J L, et al. Impact of oceanic circulation on biological carbon storage in the ocean and atmospheric pCO2[J]. Global Biogeochemical Cycles, 2008, 22(3):GB3007.

    [27]

    Xie Y H, Tamsitt V, Bach L T. Localizing the southern ocean biogeochemical divide[J]. Geophysical Research Letters, 2022, 49(8):e2022GL098260. doi: 10.1029/2022GL098260

    [28]

    Sigman D M, Fripiat F, Studer A S, et al. The Southern Ocean during the ice ages: a review of the Antarctic surface isolation hypothesis, with comparison to the North Pacific[J]. Quaternary Science Reviews, 2021, 254:106732. doi: 10.1016/j.quascirev.2020.106732

    [29]

    Meredith M, Garabato A N. Ocean mixing[M]. Amsterdam: Elsevier, 2022: 1-369.

    [30]

    DeVries T, Primeau F. Dynamically and observationally constrained estimates of water-mass distributions and ages in the global ocean[J]. Journal of Physical Oceanography, 2011, 41(12):2381-2401. doi: 10.1175/JPO-D-10-05011.1

    [31]

    Talley L D. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports[J]. Oceanography, 2013, 26(1):80-97. doi: 10.5670/oceanog.2013.07

    [32]

    Sverdrup H U. Hydrology, section 2, discussion[J]. BANZ Antarctic Research Expedition, 1921, 31: 88-126.

    [33]

    Speer K, Rintoul S R, Sloyan B. The diabatic deacon cell[J]. Journal of Physical Oceanography, 2000, 30(12):3212-3222. doi: 10.1175/1520-0485(2000)030<3212:TDDC>2.0.CO;2

    [34]

    Marshall J, Speer K. Closure of the meridional overturning circulation through Southern Ocean upwelling[J]. Nature Geoscience, 2012, 5(3):171-180. doi: 10.1038/ngeo1391

    [35]

    Toggweiler J R, Russell J L, Carson S R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages[J]. Paleoceanography and Paleoclimatology, 2006, 21(2):PA2005.

    [36]

    Ito T, Follows M J. Preformed phosphate, soft tissue pump and atmospheric CO2[J]. Journal of Marine Research, 2005, 63(4):813-839. doi: 10.1357/0022240054663231

    [37]

    Marinov I, Gnanadesikan A, Toggweiler J R, et al. The southern ocean biogeochemical divide[J]. Nature, 2006, 441(7096):964-967. doi: 10.1038/nature04883

    [38]

    Rae J W B, Zhang Y G, Liu X Q, et al. Atmospheric CO2 over the Past 66 million years from marine archives[J]. Annual Review of Earth and Planetary Sciences, 2021, 49:609-641. doi: 10.1146/annurev-earth-082420-063026

    [39]

    Toggweiler J R, Murnane R, Carson S, et al. Representation of the carbon cycle in box models and GCMs 2. Organic pump[J]. Global Biogeochemical Cycles, 2003, 17(1):1027.

    [40]

    Hain M P, Sigman D M, Haug G H. Carbon dioxide effects of Antarctic stratification, North Atlantic Intermediate Water formation, and subantarctic nutrient drawdown during the last ice age: diagnosis and synthesis in a geochemical box model[J]. Global Biogeochemical Cycles, 2010, 24(4):GB4023.

    [41]

    Martin J H. Glacial‐interglacial CO2 change: the iron hypothesis[J]. Paleoceanography, 1990, 5(1):1-13. doi: 10.1029/PA005i001p00001

    [42]

    Martínez‐Garcia A, Rosell‐Melé A, Geibert W, et al. Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma[J]. Paleoceanography and Paleoclimatology, 2009, 24(1):PA1207.

    [43]

    Kumar N, Anderson R, Mortlock R, et al. Increased biological productivity and export production in the glacial Southern Ocean[J]. Nature, 1995, 378(6558):675-680. doi: 10.1038/378675a0

    [44]

    Mortlock R A, Charles C D, Froelich P N, et al. Evidence for lower productivity in the Antarctic Ocean during the last glaciation[J]. Nature, 1991, 351(6323):220-223. doi: 10.1038/351220a0

    [45]

    Venz K A, Hodell D A. New evidence for changes in Plio–Pleistocene deep water circulation from Southern Ocean ODP Leg 177 Site 1090[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 182(3-4):197-220. doi: 10.1016/S0031-0182(01)00496-5

    [46]

    François R, Altabet M A, Yu E F, et al. Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period[J]. Nature, 1997, 389(6654):929-935. doi: 10.1038/40073

    [47]

    Robinson R S, Sigman D M. Nitrogen isotopic evidence for a poleward decrease in surface nitrate within the ice age Antarctic[J]. Quaternary Science Reviews, 2008, 27(9-10):1076-1090. doi: 10.1016/j.quascirev.2008.02.005

    [48]

    Zeebe R E, Wolf-Gladrow D. CO2 in seawater: equilibrium, kinetics, isotopes[M]. Amsterdam: Elsevier, 2001: 1-346.

    [49]

    Bouttes N, Paillard D, Roche D M. Impact of brine-induced stratification on the glacial carbon cycle[J]. Climate of the Past, 2010, 6(5):575-589. doi: 10.5194/cp-6-575-2010

    [50]

    Massom R A, Harris P T, Michael K J, et al. The distribution and formative processes of latent-heat polynyas in East Antarctica[J]. Annals of Glaciology, 1998, 27:420-426. doi: 10.3189/1998AoG27-1-420-426

    [51]

    Stephens B B, Keeling R F. The influence of Antarctic sea ice on glacial–interglacial CO2 variations[J]. Nature, 2000, 404(6774):171-174. doi: 10.1038/35004556

    [52]

    Von Deimling T S, Ganopolski A, Held H, et al. How cold was the last glacial maximum?[J]. Geophysical Research Letters, 2006, 33(14):L14709.

    [53]

    MARGO Project Members. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum[J]. Nature Geoscience, 2009, 2(2):127-132. doi: 10.1038/ngeo411

    [54]

    Crosta X, Pichon J J, Burckle L H. Reappraisal of Antarctic seasonal sea‐ice at the Last Glacial Maximum[J]. Geophysical Research Letters, 1998, 25(14):2703-2706. doi: 10.1029/98GL02012

    [55]

    Ferrari R, Jansen M F, Adkins J F, et al. Antarctic sea ice control on ocean circulation in present and glacial climates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(24):8753-8758.

    [56]

    Streeter S S, Shackleton N J. Paleocirculation of the deep North Atlantic: 150, 000-year record of benthic foraminifera and oxygen-18[J]. Science, 1979, 203(4376):168-171. doi: 10.1126/science.203.4376.168

    [57]

    Schmittner A, Gruber N, Mix A C, et al. Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean[J]. Biogeosciences, 2013, 10(9):5793-5816. doi: 10.5194/bg-10-5793-2013

    [58]

    Ravelo A C, Hillaire-Marcel C. Chapter eighteen the use of oxygen and carbon isotopes of foraminifera in paleoceanography[J]. Developments in Marine Geology, 2007, 1:735-764.

    [59]

    Boyle E A, Keigwin L D. Comparison of Atlantic and Pacific paleochemical records for the last 215, 000 years: changes in deep ocean circulation and chemical inventories[J]. Earth and Planetary Science Letters, 1985, 76(1-2):135-150. doi: 10.1016/0012-821X(85)90154-2

    [60]

    Curry W B, Oppo D W. Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean[J]. Paleoceanography and Paleoclimatology, 2005, 20(1):PA1017.

    [61]

    Buchanan P J, Matear R J, Lenton A, et al. The simulated climate of the Last Glacial Maximum and insights into the global marine carbon cycle[J]. Climate of the Past, 2016, 12(12):2271-2295. doi: 10.5194/cp-12-2271-2016

    [62]

    Jansen M F. Glacial ocean circulation and stratification explained by reduced atmospheric temperature[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(1):45-50.

    [63]

    Shin S I, Liu Z Y, Otto‐Bliesner B L, et al. Southern Ocean sea‐ice control of the glacial North Atlantic thermohaline circulation[J]. Geophysical Research Letters, 2003, 30(2):1096.

    [64]

    Adkins J F, McIntyre K, Schrag D P. The salinity, temperature, and δ18O of the glacial deep ocean[J]. Science, 2002, 298(5599):1769-1773. doi: 10.1126/science.1076252

    [65]

    Skinner L C, Primeau F, Freeman E, et al. Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2[J]. Nature Communications, 2017, 8(1):16010. doi: 10.1038/ncomms16010

    [66]

    Sigman D M, Jaccard S L, Haug G H. Polar ocean stratification in a cold climate[J]. Nature, 2004, 428(6978):59-63. doi: 10.1038/nature02357

    [67]

    Watson A J, Vallis G K, Nikurashin M. Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2[J]. Nature Geoscience, 2015, 8(11):861-864. doi: 10.1038/ngeo2538

    [68]

    Hurrell J W, Van Loon H. A modulation of the atmospheric annual cycle in the Southern Hemisphere[J]. Tellus A: Dynamic Meteorology and Oceanography, 1994, 46(3):325-338. doi: 10.3402/tellusa.v46i3.15482

    [69]

    Moreno P I, Lowell T V, Jacobson G L Jr, et al. Abrupt vegetation and climate changes during the last glacial maximumand last termination in the chilean lake district: a case study from canal de la puntilla (41 s)[J]. Geografiska Annaler, Series A: Physical Geography, 1999, 81(2):285-311. doi: 10.1111/j.0435-3676.1999.00059.x

    [70]

    Tschumi T, Joos F, Parekh P. How important are Southern Hemisphere wind changes for low glacial carbon dioxide? A model study[J]. Paleoceanography and Paleoclimatology, 2008, 23(4):PA4208.

    [71]

    Ai X E, Studer A S, Sigman D M, et al. Southern ocean upwelling, Earth’s obliquity, and glacial-interglacial atmospheric CO2 change[J]. Science, 2020, 370(6522):1348-1352. doi: 10.1126/science.abd2115

    [72]

    Billups K, Channell J E T, Zachos J. Late Oligocene to early Miocene geochronology and paleoceanography from the subantarctic South Atlantic[J]. Paleoceanography and Paleoclimatology, 2002, 17(1):1004.

    [73]

    Mudelsee M, Raymo M E. Slow dynamics of the Northern Hemisphere glaciation[J]. Paleoceanography and Paleoclimatology, 2005, 20(4):PA4022.

    [74]

    Haug G H, Ganopolski A, Sigman D M, et al. North Pacific seasonality and the glaciation of North America 2.7 million years ago[J]. Nature, 2005, 433(7028):821-825. doi: 10.1038/nature03332

    [75]

    Zhang Y G, Pagani M, Liu Z H. A 12-million-year temperature history of the tropical Pacific Ocean[J]. Science, 2014, 344(6179):84-87.

    [76]

    Zhang W F, Chen J, Ji J F, et al. Evolving flux of Asian dust in the North Pacific Ocean since the late Oligocene[J]. Aeolian Research, 2016, 23:11-20. doi: 10.1016/j.aeolia.2016.09.004

    [77]

    Zhou B, Shen C D, Sun W D, et al. Late Pliocene–Pleistocene expansion of C4 vegetation in semiarid East Asia linked to increased burning[J]. Geology, 2014, 42(12):1067-1070. doi: 10.1130/G36110.1

    [78]

    Wu F L, Fang X M, Ma Y Z, et al. Plio–Quaternary stepwise drying of Asia: evidence from a 3-Ma pollen record from the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2007, 257(1-2):160-169. doi: 10.1016/j.jpgl.2007.02.029

    [79]

    Raymo M E. The initiation of Northern Hemisphere glaciation[J]. Annual Review of Earth and Planetary Sciences, 1994, 22:353-383. doi: 10.1146/annurev.ea.22.050194.002033

    [80]

    Abelmann A, Gersonde R, Spiess V. Pliocene—pleistocene paleoceanography in the Weddell Sea—siliceous microfossil evidence[M]//Bleil U, Thiede J. Geological History of the Polar Oceans: Arctic Versus Antarctic. Dordrecht: Springer, 1990: 729-759.

    [81]

    Hodell D A, Ciesielski P F. Southern Ocean response to the intensification of Northern Hemisphere glaciation at 2.4 Ma[M]//Bleil U, Thiede J. Geological History of the Polar Oceans: Arctic Versus Antarctic. Dordrecht: Springer, 1990: 707-728.

    [82]

    Hodell D A, Ciesielski P F. Stable isotopic and carbonate stratigraphy of the late Pliocene and Pleistocene of Hole 704A: eastern subantarctic South Atlantic[C]//Proceedings of the Ocean Drilling Program Scientific Results. 1991, 114: 409-435

    [83]

    Bartoli G, Hönisch B, Zeebe R E. Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations[J]. Paleoceanography, 2011, 26(4):PA4213.

    [84]

    Seki O, Foster G L, Schmidt D N, et al. Alkenone and boron-based Pliocene pCO2 records[J]. Earth and Planetary Science Letters, 2010, 292(1-2):201-211. doi: 10.1016/j.jpgl.2010.01.037

    [85]

    Haug G H, Tiedemann R J N. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation[J]. Nature, 1998, 393(6686):673-676. doi: 10.1038/31447

    [86]

    Haug G H, Sigman D M, Tiedemann R, et al. Onset of permanent stratification in the subarctic Pacific Ocean[J]. Nature, 1999, 401(6755):779-782. doi: 10.1038/44550

    [87]

    Haug G H, Tiedemann R, Zahn R, et al. Role of Panama uplift on oceanic freshwater balance[J]. Geology, 2001, 29(3):207-210. doi: 10.1130/0091-7613(2001)029<0207:ROPUOO>2.0.CO;2

    [88]

    Lunt D J, Valdes P J, Haywood A, et al. Closure of the Panama Seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation[J]. Climate Dynamics, 2008, 30(1):1-18.

    [89]

    Klocker A, Prange M, Schulz M. Testing the influence of the Central American Seaway on orbitally forced Northern Hemisphere glaciation[J]. Geophysical Research Letters, 2005, 32(3):L03703.

    [90]

    Schneider B, Schmittner A. Simulating the impact of the Panamanian seaway closure on ocean circulation, marine productivity and nutrient cycling[J]. Earth and Planetary Science Letters, 2006, 246(3-4):367-380. doi: 10.1016/j.jpgl.2006.04.028

    [91]

    Westerhold T, Marwan N, Drury A J, et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6509):1383-1387. doi: 10.1126/science.aba6853

    [92]

    DeConto R M, Pollard D, Wilson P A, et al. Thresholds for Cenozoic bipolar glaciation[J]. Nature, 2008, 455(7213):652-656. doi: 10.1038/nature07337

    [93]

    Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate[J]. Nature, 1992, 359(6391):117-122. doi: 10.1038/359117a0

    [94]

    Berner R A, Caldeira K. The need for mass balance and feedback in the geochemical carbon cycle[J]. Geology, 1997, 25(10):955-956. doi: 10.1130/0091-7613(1997)025<0955:TNFMBA>2.3.CO;2

    [95]

    Fang X M, Galy A, Yang Y B, et al. Paleogene global cooling–induced temperature feedback on chemical weathering, as recorded in the northern Tibetan Plateau[J]. Geology, 2019, 47(10):992-996. doi: 10.1130/G46422.1

    [96]

    Martínez-Garcia A, Rosell-Melé A, Jaccard S L, et al. Southern Ocean dust–climate coupling over the past four million years[J]. Nature, 2011, 476(7360):312-315. doi: 10.1038/nature10310

    [97]

    Andersson C, Warnke D A, Channell J E T, et al. The mid-Pliocene (4.3-2.6 Ma) benthic stable isotope record of the Southern Ocean: ODP Sites 1092 and 704, Meteor Rise[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 182(3-4):165-181. doi: 10.1016/S0031-0182(01)00494-1

    [98]

    Hodell D A, Venz‐Curtis K A. Late Neogene history of deepwater ventilation in the Southern Ocean[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(9):Q09001.

    [99]

    Whitehead J M, Wotherspoon S, Bohaty S M. Minimal Antarctic sea ice during the Pliocene[J]. Geology, 2005, 33(2):137-140. doi: 10.1130/G21013.1

    [100]

    Frank M, Whiteley N, Kasten S, et al. North Atlantic Deep Water export to the Southern Ocean over the past 14 Myr: evidence from Nd and Pb isotopes in ferromanganese crusts[J]. Palaeogeography and Palaeoclimatology, 2002, 17(2):1022.

    [101]

    Hodell D A, Channell J E T. Mode transitions in Northern Hemisphere glaciation: co-evolution of millennial and orbital variability in Quaternary climate[J]. Climate of the Past, 2016, 12(9):1805-1828. doi: 10.5194/cp-12-1805-2016

    [102]

    Lang D C, Bailey I, Wilson P A, et al. Incursions of southern-sourced water into the deep North Atlantic during late Pliocene glacial intensification[J]. Nature Geoscience, 2016, 9(5):375-379. doi: 10.1038/ngeo2688

    [103]

    Jian Z M, Dang H W, Yu J M, et al. Changes in deep Pacific circulation and carbon storage during the Pliocene-Pleistocene transition[J]. Earth and Planetary Science Letters, 2023, 605:118020. doi: 10.1016/j.jpgl.2023.118020

    [104]

    Qin B B, Li T G, Xiong Z F, et al. Influences of Atlantic Ocean thermohaline circulation and Antarctic ice-sheet expansion on Pliocene deep Pacific carbonate chemistry[J]. Earth and Planetary Science Letters, 2022, 599:117868. doi: 10.1016/j.jpgl.2022.117868

    [105]

    Cortese G, Gersonde R, Hillenbrand C D, et al. Opal sedimentation shifts in the World Ocean over the last 15 Myr[J]. Earth and Planetary Science Letters, 2004, 224(3-4):509-527. doi: 10.1016/j.jpgl.2004.05.035

    [106]

    Hillenbrand C D, Ehrmann W. Late neogene to quaternary environmental changes in the Antarctic Peninsula region: evidence from drift sediments[J]. Global and Planetary Change, 2005, 45(1-3):165-191. doi: 10.1016/j.gloplacha.2004.09.006

    [107]

    Hillenbrand C D, Cortese G. Polar stratification: a critical view from the Southern Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 242(3-4):240-252. doi: 10.1016/j.palaeo.2006.06.001

    [108]

    Woodard S C, Rosenthal Y, Miller K G, et al. Antarctic role in Northern Hemisphere glaciation[J]. Science, 2014, 346(6211):847-851. doi: 10.1126/science.1255586

图(4)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  39
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-16
  • 修回日期:  2024-05-06
  • 录用日期:  2024-05-06
  • 刊出日期:  2024-08-25

目录

LI Yang

  1. On this Site
  2. On Google Scholar
  3. On PubMed

/

返回文章
返回