Millennium-scale coastline changes and sedimentary environment evolution in the incised valley of the Yangtze River Delta since the Holocene
-
摘要:
长江三角洲地区具有低海拔、沉积速率大、人口密度高、人地关系矛盾突出等特点,也是受全球气候变暖、海平面上升影响最大的区域之一。恢复长江三角洲全新世以来的区域海岸线变迁,有助于理解该地区对未来海平面上升的响应。本研究以长江三角洲下切河谷顶端YZSW4孔为研究对象,建立全新世以来高分辨率的地层序列,并结合已发表的钻孔,建立高程-年龄-沉积相等基本属性的数据集,恢复长江三角洲古地形地貌,并探讨三角洲的演变过程和影响因素。结果表明:红桥亚三角洲和黄桥亚三角洲在11.0~9.0 kaBP、9.0~7.0 kaBP、7.0~4.0 kaBP、4.0~0 kaBP4个阶段的沉积环境分别为潮汐河道、河口湾、三角洲前缘、三角洲平原,沉积速率呈现高-低-高-低的特征,红桥、黄桥沙坝并不是按照形成的先后相互衔接的,而是具有同期性,形成时间为7.6~4.0 ka。全新世以来,长江三角洲的堆积作用受控于古河口的位置、轮廓形状及海平面变化,11.0~9.0 ka,海平面快速上升,大量沉积物在古河口附近堆积下来;9.0~7.0 ka,为强潮型的河口湾,沉积物在远离湾顶的区域堆积;7.0 ka以来,海平面趋于稳定,在古河口附近堆积。
Abstract:The Yangtze River Delta region is characterized by low altitude, rapid sedimentation rate, high population density, and high demographic conflict, making it one of the regions most affected by global warming and sea level rise in China. The reconversion of regional coastline changes since the Holocene is helping to understand the region's response to future sea-level rise. In this study, the lithology, radiocarbon ages, sediment grain size of the YZSW4 core, located in the incised-valley fills beneath the westernmost part of the Yangtze River Delta, were analyzed. By integrating this data with the previously published ones of drilling cores, a dataset on elevation-age-sediment facies was established, allowing us for the reconstruction of the millennium-scale coastline and sedimentary environment. Results indicate that the sedimentary environments of the Hongqiao subdelta and Huangqiao subdelta in the four stages of 11.0~9.0 ka, 9.0~7.0 ka, 7.0~4.0 ka, and 4.0~0 ka were characterized by tidal channels, estuaries, delta fronts, and delta plains, respectively. The sedimentation rates exhibited a pattern of high-low-high-low on average of 4.21 mm/a, 1.98 mm/a, 4.04 mm/a, 1.80 mm/a, respectively. The Hongqiao and Huangqiao sand bars were found to have formed simultaneously rather than in sequence, with both being tidal sands mainly formed between 7.6~4.0 ka. Since the Holocene, the accumulation of the Yangtze River Delta was controlled by the sea-level change, as well as the position and shape of the paleo-estuary. From 11.0 to 9.0 ka, there was a rapid sea level rise, leading to significant sediment deposition near the paleo-estuary. Between 9.0–7.0 ka, a strong tidal estuary developed, resulting in sediment accumulation further away from estuary area. After 7.0 ka, the sea level stabilized, and sediment began accumulating near the paleo-estuary.
-
Keywords:
- incised valley /
- coastline changes /
- Holocene /
- sedimentary environment /
- Yangtze River Delta
-
-
图 1 长江三角洲下切河谷钻孔位置及联合剖面(N-S)
a: 长江三角洲下切河谷地形图, b: 钻孔分布图, c: 北南向(N-S)联合剖面图,图中数据为年龄,单位为cal.aBP。
Figure 1. The location of cores in the incised valley of the Yangtze River delta
a:Topographic map of the incised valley zone of the Yangtze River Delta, b: the locations of the cores distributed in the incised valley of the Yangtze River Delta, c: the north-south (N-S) inter-well joint section along the incised-valley axis, the data in the figure represents age, the uint of age is cal.aBP.
图 2 钻孔YZSW4典型沉积相照片
a: 灰黑色黏土与粉砂互层,发育潮汐层理,呈“千层饼”构造;b: 灰色黏土与粉砂互层,发育潮汐层理,呈“千层饼”构造;c: 灰色黏土与粉砂互层,发育潮汐层理,呈“千层饼”构造;d: 灰色细砂;e: 灰色细砂,含大量贝壳;f: 灰色细砂;g: 灰色中粗砂;h: 灰色粗砂;i: 灰色砂砾层;j: 灰色砂砾层;k: 灰色砂砾层;l: 紫色中细粒砂岩。
Figure 2. Photographs of representative sedimentary facies of core YZSW4
a: grayish-black silt and clay interbedded, characterized by parallel bedding, bedding together with clay-silt couplets; b: gray silt and clay interbedded, characterized by parallel bedding, bedding together with clay-silt couplets; c: gray silt and clay, characterized by parallel bedding, bedding together with clay-silt couplets; d: gray fine-grained sand; e: gray fine-grained sand, consisting of a large number of shells; f: gray fine-grained sand; g: gray medium-coarse–grained sand; h: gray coarse-grained sand; i: gray sandy gravel; j: gray sandy gravel; k: gray sandy gravel; l: purple medium fine-grained sandstone.
图 7 全新世以来长江三角洲不同区域的平均沉积速率和岸线变迁
a, b, c, d, e分别显示11.0~9.0 ka,9.0~7.0 ka,7.0~4.0 ka,4.0~2.0 ka,和2.0~0 ka的沉积速率及岸线。
Figure 7. Average sedimentation rate and shoreline changes in different regions of the Yangtze River Delta
a, b, c, d, e show sedimentation rate and shoreline of 11.0~9.0 ka, 9.0~7.0 ka, 7.0~4.0 ka, 4.0~2.0 ka, and 2.0~0 ka, respectively.
表 1 YZSW4孔AMS 14C 年龄
Table 1 The AMS 14C ages dated from core YZSW4
样品编号 深度/m 高程/m 测年材料 AMS14C (1σ)/a BP 日历校正年龄/cal.aBP 2σ 范围 中间值 YZSW4-1 7.04 −0.35 植物碎片 2835 ±303008 ~2858 2933 YZSW4-2 14.32 −7.63 植物碎片 3085 ±303372 ~3216 3294 YZSW4-3 24.85 −18.16 植物碎片 2900 ±303160 ~2955 3058 YZSW4-4 25.45 −18.76 贝壳 5250 ±305767 ~5011 5389 YZSW4-5 27.05 −20.36 贝壳 4555 ±354956 ~4143 4550 YZSW4-6 27.25 −20.56 贝壳 4360 ±354731 ~3889 4310 YZSW4-7 28.83 −22.14 贝壳 4915 ±355420 ~4630 5025 YZSW4-8 35.34 −28.65 植物碎片 8670 ±509771 ~9537 9654 YZSW4-9 37 −30.31 植物碎片 8050 ±509033 ~8722 8878 YZSW4-10 46.2 −39.51 植物碎片 9420 ±5010774 ~10506 10640 表 2 长江三角洲下切河谷钻孔基本信息
Table 2 The basic information of cores in the incised valley of the Yangtze River delta
钻孔号 位置 高程/m 资料来源 钻孔号 位置 高程/m 资料来源 YZSW4 32.2575°N、119.3752°E 6.691 本研究 CJK09 30.91°N、122.25°E −11 [14] YZQK2 32.6089°N、119.6606°E 3.32 [5] CJK11 31.33°N、122.45°E −21 YZQK3 32.3717°N、119.5511°E 4.58 CJK10 30.61°N、122.6°E −25.3 YZSW2 32.4047°N、119.8214°E 9.91 H5 31.6567°N、122.15°E −6.11 [16] TZK6 32.45°N、120.1333°E 5.531 [21] ECS0702 31°N、122.67°E −22 [13] TZK2 32.3167°N、120.0833°E 4.63 CSJA6 32°N、120.3°E 5 [37] TZK1 32.0667°N、120.1833°E 3.349 HZK2 31.6236°N、122.007°E −5 [38] SPM1 32.7275°N、120.2197°E 5.535 [6] HZK8 31.1728°N、122.348°E −5 [22] PM4 32.5667°N、119.9333°E 1.758 [32] HZK11 30.6667°N、122.095°E −11 TZK3 32.3833°N、120.0833°E 5.687 [33] EGQD14 31.8932°N、121.617°E 3 [19] XJ03 32.3097°N、119.29556°E 4.8 [34] NT 32.0657°N、120.8567°E 3.99 [39] HQ98 32.25°N、120.2333°E 5.91 [11] HZK1 31.6906°N、121.7134°E −5 CM97 31.6167°N、121.3833°E 2.48 HM 31.957°N、121.0928°E 3.36 [17] JS98 32.0833°N、121.0833°E 4.2 CD 31.4044°N、120.844°E 2 [40] ZK01 31.8406°N、121.5567°E 2.05 [15] CXS 31.3789°N、120.792°E 2 ZK02 31.8797°N、121.1583°E 2.33 SQ 31.1972°N、121.107°E 2 [41] SD 32.3383°N、120.7792°E 4.87 [18] GFL 31.0644°N、121.192°E 1.4 [42] CJK07. 31.15°N、122.4°E −45.4 [14] TL 30.8867°N、121.312°E 2 [41] CJK08 30.97°N、122.92°E −41 [35] YZ–1 31.13361°N、121.1839°E 0.717 [43] ZK9 30.8°N、122.4°E −12.5 [36] T8 32.5833°N、120.817°E 6.5 [44] 表 3 黄桥亚三角洲、红桥亚三角洲全新世以来的沉积环境和沉积速率
Table 3 Sedimentary environment and sedimentation rate of Huangqiao body and Hongqiao body since the Holocene
mm/a 位置 钻孔号 11.0~9.0 ka 9~7 ka 7~4 ka 4~0 ka 沉积速率 沉积环境 沉积速率 沉积环境 沉积速率 沉积环境 沉积速率 沉积环境 红桥亚三角洲北侧 YZQK2 0.50 陆相 5.10 盐沼 0.30 陆相 0.30 陆相 红桥亚三角洲 YZSW4 5.20 河床相 2.30 河口湾 3.60 三角洲前缘 5.60 三角洲平原 YZQK3 3.30 盐沼 1.70 河口湾 7.30 三角洲前缘 1.70 三角洲平原 YZSW2 13.20 潮汐河道 3.00 河口湾 6.40 三角洲前缘 1.20 三角洲平原 XJ03 4.00 河漫滩、潮汐河道 1.90 河口湾 3.70 三角洲前缘 1.80 三角洲平原 黄桥亚三角洲北侧 SPM1 1.20 陆相 1.20 湖相 0.60 湖相、盐沼、潮上带 0.60 泻湖、湖相. PM4 0.30 陆相 0.30 湖相 0.40 盐沼、湖相 0.20 潮上带、河漫滩、湖相 黄桥亚三角洲主体 TZK6 0.30 河漫滩 0.30 河漫滩 2.40 三角洲前缘 1.00 三角洲平原 TZK2 8.20 河漫滩、潮汐河道 2.50 河口湾 6.00 三角洲前缘 0.70 三角洲平原 HQ98 7.50 河漫滩、潮汐河道 2.00 河口湾 7.50 三角洲前缘 1.05 三角洲平原 TZK3 4.10 河床相、潮汐河道 1.60 河口湾 9.00 三角洲前缘 0.70 三角洲平原 沿江 TZK1 2.70 河床、潮汐河道 1.90 河口湾 1.30 河口湾 6.80 潮汐河道 亚三角洲主体及
沿江平均值4.21 1.98 4.04 1.80 表 4 长江三角洲不同区域的平均沉积速率
Table 4 Average sedimentation rate in different regions of the Yangtze River Delta
mm/a 位置 年代/ka 11.0~9.0 9.0~7.0 7.0~4.0 4.0~2.0 2.0~0 红桥亚三角洲 6.4 2.2 5.2 3.4 1.8 黄桥亚三角洲 4.6 1.7 5.2 2.3 1.8 金沙亚三角洲 2.8 7.0 1.0 5.0 7.3 海门亚三角洲 3.3 4.3 2.0 6.5 6.6 崇明亚三角洲 6.7 2.2 1.6 1.1 7.9 启东 2.2 2.3 3.5 5.6 7.5 长江口外 3.9 3.1 1.9 1.5 4.0 太湖东侧 0.0 0.6 0.3 0.4 0.3 -
[1] Fox-Kemper B, Hewitt H T, Xiao C D, et al. Ocean, cryosphere and sea level change[R]. Cambridge: Cambridge University Press, 2023: 1211-1362.
[2] Stanley D J, Warne A G. Nile delta in its destruction phase[J]. Journal of Coastal Research, 1998, 14(3):794-825.
[3] Coleman J M, Roberts H H, Stone G W. Mississippi river delta: an overview[J]. Journal of Coastal Research, 1998, 14(3):698-716.
[4] Chu Z X, Sun X G, Zhai S K, et al. Changing pattern of accretion/erosion of the modern Yellow River (Huanghe) subaerial delta, China: based on remote sensing images[J]. Marine Geology, 2006, 227(1-2):13-30. doi: 10.1016/j.margeo.2005.11.013
[5] Cheng Y, Xu S Y, Luo D, et al. Early–mid Holocene relative sea-level rise in the Yangtze River Delta, China[J]. Marine Geology, 2023, 465:107170. doi: 10.1016/j.margeo.2023.107170
[6] Cheng Y, Shu J W, Hao S F, et al. Mid– to late Holocene vegetation response to relative sea–level fluctuations recorded by multi–proxy evidence in the Subei Plain, eastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 610:111327. doi: 10.1016/j.palaeo.2022.111327
[7] 朱诚, 程鹏, 卢春成, 等. 长江三角洲及苏北沿海地区7000年以来海岸线演变规律分析[J]. 地理科学, 1996, 16(3):207-213 ZHU Cheng, CHENG Peng, LU Chuncheng, et al. Analysis on the evolution of coastline in the Yangtze River Delta and northern Jiangsu plain since 7000 years[J]. Scientia Geographica Sinica, 1996, 16(3):207-213.]
[8] 同济大学海洋地质系三角洲科研组. 全新世长江三角洲的形成和发育[J]. 科学通报, 1978, 23(5):310-313 doi: 10.1360/csb1978-23-5-310 Delta Research Group, Department of Marine Geology, Tongji University. Holocene formation and development of the Yangtze Delta[J]. Chinese Science Bulletin, 1978, 23(5):310-313.] doi: 10.1360/csb1978-23-5-310
[9] 张忍顺. 苏北黄河三角洲及滨海平原的成陆过程[J]. 地理学报, 1984, 39(2):173-184 doi: 10.3321/j.issn:0375-5444.1984.02.005 ZHANG Renshun. Land-forming history of the Huanghe river delta and coastal plain of north Jiangsu[J]. Acta Geographica Sinica, 1984, 39(2):173-184.] doi: 10.3321/j.issn:0375-5444.1984.02.005
[10] 杨怀仁, 陈西庆. 中国东部第四纪海面升降、海侵海退与岸线变迁[J]. 海洋地质与第四纪地质, 1985, 5(4):59-79 YANG Huairen, CHEN Xiqing. Quaternary transgressions, eustatic changes and shifting of shoreline in East China[J]. Marine Geology & Quaternary Geology, 1985, 5(4):59-79.]
[11] Hori K, Saito Y, Zhao Q H, et al. Sedimentary facies and Holocene progradation rates of the Changjiang (Yangtze) delta, China[J]. Geomorphology, 2001, 41:233-248. doi: 10.1016/S0169-555X(01)00119-2
[12] Liu J, Qiu J D, Saito Y, et al. Formation of the Yangtze Shoal in response to the post-glacial transgression of the paleo-Yangtze (Changjiang) estuary, China[J]. Marine Geology, 2020, 423:166080.
[13] Liu J, Saito Y, Kong X H, et al. Sedimentary record of environmental evolution off the Yangtze River estuary, East China Sea, during the last~13, 000 years, with special reference to the influence of the Yellow River on the Yangtze River delta during the last 600 years[J]. Quaternary Science Reviews, 2010, 29(17-18):2424-2438. doi: 10.1016/j.quascirev.2010.06.016
[14] Xu T Y, Wang G Q, Shi X F, et al. Sequence stratigraphy of the subaqueous Changjiang (Yangtze River) delta since the Last Glacial Maximum[J]. Sedimentary Geology, 2016, 331:132-147. doi: 10.1016/j.sedgeo.2015.10.014
[15] Zhang X, Dalrymple R W, Lin C M. Facies and stratigraphic architecture of the late Pleistocene to early Holocene tide–dominated paleo–Changjiang (Yangtze River) delta[J]. GSA Bulletin, 2018, 130(3-4):455-483. doi: 10.1130/B31663.1
[16] Zhao B C, Yan X X, Wang Z H, et al. Sedimentary evolution of the Yangtze River mouth (East China Sea) over the past 19 000 years, with emphasis on the Holocene variations in coastal currents[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 490:431-449. doi: 10.1016/j.palaeo.2017.11.023
[17] Jiang F, Wang Y N, Zhao X S, et al. Reconstruction of the Holocene sedimentary–ecological complex in the incised valley of the Yangtze Delta, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 571:110387. doi: 10.1016/j.palaeo.2021.110387
[18] Nian X M, Zhang W G, Wang Z H, et al. Optical dating of Holocene sediments from the Yangtze River (Changjiang) Delta, China[J]. Quaternary International, 2018, 467:251-263. doi: 10.1016/j.quaint.2018.01.011
[19] Gao L, Long H, Zhang P, et al. The sedimentary evolution of Yangtze River delta since MIS3: a new chronology evidence revealed by OSL dating[J]. Quaternary Geochronology, 2019, 49:153-158. doi: 10.1016/j.quageo.2018.03.010
[20] Su J F, Fan D D, Liu J P, et al. Anatomy of the transgressive depositional system in a sediment–rich tide–dominated estuary: the paleo–Yangtze estuary, China[J]. Marine and Petroleum Geology, 2020, 121:104588. doi: 10.1016/j.marpetgeo.2020.104588
[21] Cheng Y, Zou X Q, Li X Q, et al. Sedimentary characteristics and evolution process of the Huangqiao sand body in the Yangtze River Delta, China[J]. Estuarine, Coastal and Shelf Science, 2021, 254:107330. doi: 10.1016/j.ecss.2021.107330
[22] Wang Z H, Saito Y, Zhan Q, et al. Three–dimensional evolution of the Yangtze River mouth, China during the Holocene: impacts of sea level, climate and human activity[J]. Earth-Science Reviews, 2018, 185:938-955. doi: 10.1016/j.earscirev.2018.08.012
[23] 江苏省地质矿产局. 江苏省及上海市区域地质志[M]. 北京: 地质出版社, 1984 Jiangsu Geology & Mineral Exploration Bureau. Jiangsu Province and Shanghai Regional Geology[M]. Beijing: Geological Press, 1984.]
[24] 朱永其, 李承伊, 曾成开, 等. 关于东海大陆架晚更新世最低海面[J]. 科学通报, 1979, 24(7):317-320 doi: 10.1360/csb1979-24-7-317 ZHU Yongqi, LI Chengyi, ZENG Chengkai, et al. On the lowest sea-level in the East China Sea during the Late Pleistocene[J]. Chinese Science Bulletin, 1979, 24(7):317-320.] doi: 10.1360/csb1979-24-7-317
[25] 李从先, 陈庆强, 范代读, 等. 末次盛冰期以来长江三角洲地区的沉积相和古地理[J]. 古地理学报, 1999, 1(4):12-25 LI Congxian, CHEN Qingqiang, FAN Daidu, et al. Palaeogeography and palaeoenvironment in Changjiang delta since last glaciation[J]. Journal of Paleogeography, 1999, 1(4):12-25.]
[26] 李保华, 王强, 李从先. 长江三角洲亚三角洲地层结构对比[J]. 古地理学报, 2010, 12(6):685-698 LI Baohua, WANG Qiang, LI Congxian. Correlation of stratigraphic architecture of sub-deltas of Changjiang River delta[J]. Journal of Palaeogeography, 2010, 12(6):685-698.]
[27] Reimer P J, Austin W E N, Bard E, et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0-55 cal kBP)[J]. Radiocarbon, 2020, 62(4):725-757. doi: 10.1017/RDC.2020.41
[28] Southon J, Kashgarian M, Fontugne M, et al. Marine reservoir corrections for the Indian Ocean and Southeast Asia[J]. Radiocarbon, 2002, 44(1):167-180. doi: 10.1017/S0033822200064778
[29] Yoneda M, Uno H, Shibata Y, et al. Radiocarbon marine reservoir ages in the western Pacific estimated by pre–bomb molluscan shells[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 259(1):432-437. doi: 10.1016/j.nimb.2007.01.184
[30] 陈艇. 中晚全新世太湖平原南部水文环境变化及其对新石器文明发展的影响[D]. 华东师范大学博士学位论文, 2017 CHEN Ting. Mid- to late Holocene hydrology changes in the South Taihu area of the Yangtze delta plain, China, and its relationship to the development of Neolithic cultures[D]. Doctor Dissertation of East Normal University, 2017.]
[31] Shu Q, Zhao Y F, Hu Z, et al. Multi-proxy reconstruction of the Holocene transition from a transgressive to regressive coastal evolution in the northern Jiangsu Plain, East China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 572:110405. doi: 10.1016/j.palaeo.2021.110405
[32] 程瑜, 李向前, 乔彦松, 等. 苏北平原沉积孢粉组合记录的全新世气候突变[J]. 第四纪研究, 2019, 39(3):655-664 CHENG Yu, LI Xiangqian, QIAO Yansong, et al. Aburpt climate changes recorded by palynological evidence in Subei Plain during the Holocene[J]. Quaternary Sciences, 2019, 39(3):655-664.]
[33] 程瑜, 李向前, 舒军武, 等. 末次冰期以来长江三角洲的沉积特征和环境演化[J]. 第四纪研究, 2018, 38(3):746-755 CHENG Yu, LI Xiangqian, SHU Junwu, et al. The formation and evolution of the Changjiang River delta since last Glacial[J]. Quaternary Science, 2018, 38(3):746-755.]
[34] Song B, Li Z, Saito Y, et al. Initiation of the Changjiang (Yangtze) delta and its response to the mid-Holocene sea level change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 388:81-97. doi: 10.1016/j.palaeo.2013.07.026
[35] Wang Z H, Li M T, Zhang R H, et al. Impacts of human activity on the late-Holocene development of the subaqueous Yangtze delta, China, as shown by magnetic properties and sediment accumulation rates[J]. The Holocene, 2011, 21(3):393-407. doi: 10.1177/0959683610378885
[36] Wang Z H, Xu H, Zhan Q, et al. Lithological and palynological evidence of late Quaternary depositional environments in the subaqueous Yangtze delta, China[J]. Quaternary Research, 2010, 73(3):550-562. doi: 10.1016/j.yqres.2009.11.001
[37] 于俊杰, 胡飞, 杨祝良, 等. 江苏南通市四甲镇全新世以来有孔虫动物群的发现及其地质意义[J]. 地质通报, 2014, 33(10):1609-1620 YU Junjie, HU Fei, YANG Zhuliang, et al. Identification of Holocene foraminifera assemblages in Sijia Town of Nantong City, Jiangsu Province, and its geological significance[J]. Geological Bulletin of China, 2014, 33(10):1609-1620.]
[38] 战庆, 王张华, 赵宝成, 等. 末次冰消期以来长江口沉积环境演化及沿岸流变化[J]. 地球科学, 2020, 45(7):2697-2708 ZHAN Qing, WANG Zhanghua, ZHAO Baocheng, et al. Sedimentary evolution and coastal currents variations of the Yangtze River mouth (East China Sea) since last Deglaciation[J]. Earth Science, 2020, 45(7):2697-2708.]
[39] 潘大东. 全新世长江口沉积记录中的陆海相互作用界面–河口锋的位置迁移及机制分析[D]. 华东师范大学博士学位论文, 2017 PAN Dadong. Migration of land-ocean interaction interface-estuarine front in Holocene sedimentary record of the Yangtze River mouth and its mechanism[D]. Doctor Dissertation of East Normal University, 2017.]
[40] Zong Y Q, Wang Z H, Innes J B, et al. Holocene environmental change and Neolithic rice agriculture in the lower Yangtze region of China: a review[J]. The Holocene, 2012, 22(6):623-635. doi: 10.1177/0959683611409775
[41] Zong Y Q, Innes J B, Wang Z H, et al. Mid-Holocene coastal hydrology and salinity changes in the East Taihu area of the lower Yangtze wetlands, China[J]. Quaternary Research, 2011, 76(1):69-82. doi: 10.1016/j.yqres.2011.03.005
[42] Atahan P, Itzstein-Davey F, Taylor D, et al. Holocene-aged sedimentary records of environmental changes and early agriculture in the lower Yangtze, China[J]. Quaternary Science Reviews, 2008, 27(5-6):556-570. doi: 10.1016/j.quascirev.2007.11.003
[43] Stanley D J, Warne A G. Sea level and initiation of Predynastic culture in the Nile delta[J]. Nature, 1993, 363(6428):435-438. doi: 10.1038/363435a0
[44] 李从先, 汪品先. 长江晚第四纪河口地层学研究[M]. 北京: 科学出版社, 1998: 29-66 LI Congxian, WANG Pinxian. Late Quaternary Stratigraphy of Changjiang Delta[M]. Beijing: Science Press, 1998: 29-66.]
[45] 潘存鸿, 郑君, 曾剑, 等. 杭州湾年最大潮差分析[J]. 水动力学研究与进展, 2021, 36(2):201-209 PAN Cunhong, ZHENG Jun, ZENG Jian, et al. Analysis of annual maximum tidal range in Hangzhou Bay[J]. Chinese Journal of Hydrodynamics, 2021, 36(2):201-209.]
[46] 陈美榕, 吕忻, 肖文军. 上海沿海潮汐特征响应海平面上升关系研究[J]. 海洋预报, 2014, 31(1):42-48 CHEN Meirong, LV Xin, XIAO Wenjun. Study on the response of tidal characteristics to MSL Rise in Shanghai coastal area[J]. Marine Forecasts, 2014, 31(1):42-48.]
[47] 邓成文. 末次盛冰期以来长江下切河谷充填物沉积特征和环境演化[D]. 南京大学硕士学位论文, 2017 DENG Chengwen. Characteristics of fill and environment evolution since the Last Glacial Maximum in the Yangtze River incised valley area[D]. Master Dissertation of Nanjing University, 2017.]
[48] 苏建锋, 范代读, 冷伟, 等. 冰后期以来长江水下三角洲层序地层特征及沉积环境演化[J]. 古地理学报, 2017, 19(3):541-556 SU Jianfeng, FAN Daidu, LENG Feng, et al. Postglacial sequence stratigraphy and sedimentary environment evolution of the Yangtze River subaqueous delta[J]. Journal of Palaeogeography, 2017, 19(3):541-556.]