海洋天然气水合物储层特性及其资源量评价方法

刘昌岭, 孙运宝

刘昌岭, 孙运宝. 海洋天然气水合物储层特性及其资源量评价方法[J]. 海洋地质与第四纪地质, 2021, 41(5): 44-57. DOI: 10.16562/j.cnki.0256-1492.2021082401
引用本文: 刘昌岭, 孙运宝. 海洋天然气水合物储层特性及其资源量评价方法[J]. 海洋地质与第四纪地质, 2021, 41(5): 44-57. DOI: 10.16562/j.cnki.0256-1492.2021082401
LIU Changling, SUN Yunbao. Characteristics of marine gas hydrate reservoir and its resource evaluation methods[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 44-57. DOI: 10.16562/j.cnki.0256-1492.2021082401
Citation: LIU Changling, SUN Yunbao. Characteristics of marine gas hydrate reservoir and its resource evaluation methods[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 44-57. DOI: 10.16562/j.cnki.0256-1492.2021082401

海洋天然气水合物储层特性及其资源量评价方法

基金项目: 国家自然科学基金“南海沉积物中水合物降压分解动力学行为及控制机理研究”(41876051);山东省泰山学者特聘专家计划(ts201712079);国家重点研发计划政府间国际科技创新合作重点专项“天然气水合物开采过程中井周储层动态响应行为与控制”(2018YFE0126400);国家重点研发计划“冷泉系统发育的地质条件及控制作用”(2018YFC0310001);中国地质调查局海洋地质调查专项项目(DD20190819)
详细信息
    作者简介:

    刘昌岭(1966—),男,研究员,从事天然气水合物研究工作,E-mail:qdliuchangling@163.com

    通讯作者:

    孙运宝(1983—),男,副研究员,从事天然气水合物资源评价研究,E-mail:yunbaos@sina.com

  • 中图分类号: P744

Characteristics of marine gas hydrate reservoir and its resource evaluation methods

  • 摘要: 天然气水合物资源开发的前提条件是准确评价其资源量,而正确理解天然气水合物储层特性是准确评价其资源量的基础。天然气水合物的含量及其赋存形态是影响储层特性的主要因素,赋存形态主要受海洋沉积物的储集的性质与大小控制。储层特征参数直接影响海洋天然气水合物资源评价的准确性。现有天然气水合物资源量评价方法的原理、评价参数及适用性各不相同,且均未考虑水合物的赋存类型。本文在前期工作的基础上,针对天然气水合物有利区块和矿体评价,分别提出了海洋天然气水合物“资源详评”与“资源精评”的新方法。基于小面元的资源详评方法,适用于钻井稀少、地球物理测网较为密集的有利区块孔隙填充型水合物控制地质储量评价;基于“水合物地层丰度”概念的资源精评方法,适用于井网密集的井场小范围矿体探明地质储量精准评价,可有效提高对块状、脉状和结核状等裂隙型填充型水合物资源评价的准确度。
    Abstract: To accurately make resource evaluation is the prerequisite for development of natural gas hydrate resources, and the correct understanding of the characteristics of gas hydrate reservoir is the basis for such evaluation. The content and occurrence of gas hydrate are closely related to and affected by reservoir properties. The occurrence forms of gas hydrate, which includes pore-filling and fracture-filling, mainly depends on the nature and size of pores, fractures and other accumulation spaces in the marine sediments. Different types of hydrate reservoirs have different physical property response characteristics, which directly affects the accuracy of marine gas hydrate resource evaluation. The principles, evaluation parameters and applicability of the existing natural gas hydrate resource evaluation methods are different, and the occurrence type of hydrate is not considered. Based on the previous work, this paper puts forward a new method of "Detail Resource Evaluation" and "Precise Resource Evaluation" for marine natural gas hydrates. The "Detail Resource Evaluation" method based on small panel is suitable for the evaluation of pore-filled hydrate reservoir with rare drilling and dense geophysical survey network in favorable block; The "Precise Resource Evaluation" method based on the concept of "hydrate abundance in reservoir" is applicable to the accurate evaluation of small-scale hydrate orebody with dense well pattern in the well field, and can effectively improve the accuracy of the evaluation of fracture- filled types (e.g. massive, vein and nodule) hydrate resources.
  • 悬浮体是指以悬浮状态存在于水体中的一切颗粒物质,可分为可燃组分(生物颗粒、各种絮凝体)和非可燃组分(沙泥颗粒、岩石矿物碎屑)两大类[1]。陆源的悬浮体是河口和陆架上广泛分布的泥质沉积体的主要来源[2]。作为陆源有机碳的有效载体,河口和陆架上的细颗粒沉积区也是有机碳的重要储库,其变化对全球碳循环和气候变化有重要影响[3]。同时,悬浮体还吸附大量的营养盐,通过促进浮游植物大量繁殖间接影响海洋初级生产力,其循环过程一定程度控制了营养盐的输运,从而影响海洋生态系统[2]。因此,悬浮体的输运、沉积过程研究对全球物质循环和生态系统动力研究有着重要的启示作用。

    长江是世界上著名的河流,每年向海洋提供约470 Mt的沉积物。其中,洪季的输沙量约占全年总量的87%,多数堆积于长江河口及其三角洲系统[4]。冬季长江口附近的沉积物经再悬浮过程随浙闽沿岸流向南扩散。而携沙的南下沿岸流受到北上的台湾暖流的阻隔在浙闽沿岸形成巨厚的沉积体[5]。因而,在东海内陆架造就了世界上典型的源-汇体系。在这一体系中,沉积物从源到汇的迁移问题是关键。因此,要认识东海内陆架这一准封闭的沉积系统,了解位于长江口和浙闽泥质区之间海域的沉积物输运过程很有必要。

    舟山群岛海域地处长江沉积物南下的必经之路,海底地形多变,岛屿间水动力复杂。群岛的存在使得潮流和波浪能量只能通过水道从群岛外向内部海域传播,从而导致了水体挟沙能力在这些区域发生非连续性的变化,进而影响了挟沙力整体的空间分布特性[6]。风场、陆架环流和冲淡水的季节性变化使得舟山群岛海域悬浮泥沙的输运过程更加复杂。海洋环境中,悬浮沉积物在潮汐和陆架环流等动力条件下,通过平流、再悬浮和沉降这3个过程的共同作用,进行水平输运以及海底与水体的物质交换,从而造成沉积物输运和海底冲淤,塑造源-汇的格局[7]。冬季浙闽沿岸流携带长江沉积物向南的净输运是浙闽泥质区发育的主要机制[8-10]。然而,人们对于夏季长江沉积物是否在泥质区建造过程中扮演角色的认识并不一致。本文在水文、水动力和悬浮体观测资料的基础上,通过通量机制分解法,探讨夏季大潮期间舟山群岛外侧海域悬浮体的输运特征和影响机制。

    舟山群岛地处长江口,位于杭州湾和东海陆架(<50 m水深)的相交处,岛礁众多,棋布星罗,水深为5~100 m,走向以东西向和东北、西南向为主[11]。舟山群岛海域位于长江口泥质区和浙闽泥质区之间,海底表层沉积物多以粉砂为主[12]。群岛地处副热带季风区,风速风向具有明显的季节变化:冬半年(9月至翌年3月)偏北风占优势;夏半年(4—8月)以偏南风为主。冬季风的驱动下浙闽沿岸流南下,水体浑浊。夏季风的影响下偏北向的台湾暖流盛行。太平洋潮波由东南向西北方向传播,在舟山群岛附近受阻而偏转向西,大致与纬度线平行,在传播过程中,波形和结构也不断发生变化,平均落潮历时长于涨潮历时。舟山海域的潮汐类型以规则半日潮为主,局部为不规则半日混合潮,多年平均潮差为1.9~3.3 m,最大潮差可达3.7~5.0 m[13]。潮流因受水道、岛屿等的束流作用其流速较大,其流向在群岛范围内的岛屿之间以往复流为主,在较宽阔的水道或水域以旋转流方式存在[13]。舟山海域受长江径流、浙闽沿岸流、台湾暖流、潮流及地形等因素的综合影响,水动力条件非常复杂[12]

    于2018年6月29—30日期间,在舟山群岛附近海域的观测站位(29.70°N、122.5°E)进行了27小时的连续观测(图1,观测站位如黑点所示)。观测内容包括水动力(ADCP)、温盐深和悬浮体(LISST)等,不同层位的海水和海底表层沉积物的采集。船载声学多普勒流速剖面仪ADCP,频率为600 kHz,换能器置于水下2 m处,采样频率约为1 Hz,第一层观测深度为3.5 m,水层单元厚度为0.5 m,在底部约有10%水深的盲区。现场激光粒度仪LISST(Laser In-Situ Scattering and Transmissiometry)是由美国Sequoia Scientific公司研制出来的系列产品,普遍被用来观测悬浮颗粒。LISST-200X是LISST系列产品之一,它采用激光小角度散射原理来进行悬浮物测量,通过运用Mie散射理论,从数学上反推出散射数据,从而可以获得水体悬浮颗粒36个不同粒级的体积浓度分布。LISST-200X每小时进行一次剖面观测,采样频率为1 Hz,分辨率可达0.1 μL/L。在表层、5、10和20 mbs(meters below sea-surface)及近底层(距底约3 m)每小时进行一次海水采集,5 mbs层水样因为条件限制只在前半段时间采集。另外,每两小时采集海底表层沉积物。水样过滤实验是在浙江海洋大学遥感实验室进行的,使用孔径0.45 μm的滤膜(直径47 mm)过滤定量的海水样品,烘干后经电子天平称重获得样品质量,进而计算得到悬浮体质量浓度。海底表层沉积物的粒度测试在浙江海洋生态环境监测站实验室完成,粒度参数采用激光粒度仪(Microtrac S3500)测定获得。

    图  1  研究区域和观测站位图(据胡日军[12]绘制)
    Figure  1.  Map of the study area (black dot represents the observation site)

    Dyer[14]提出用瞬时流速、瞬时质量浓度和横截面的面积三者的乘积对时间的积分来表示在一个潮周期过程中通过某一横断面的物质通量:

    $$Q=\int U\cdot C\cdot AD \Delta t$$ (1)

    其中Q为物质输运通量,U为流速(可分解为南北向和东西向流速),C为质量浓度,A为断面面积,t为时间。而通过通量机制分解公式可以计算各个因素或过程对总通量的贡献[15]。国外学者[16-19]不断建立和发展了断面输运的计算公式,并将其引用到世界各地的河口通量研究中,探讨了不同环境下不同动力因子对物质输移的贡献大小。国内的学者也在长江河口[20-21]、苏北辐射沙洲的潮汐水道[22-25]以及杭州湾、舟山群岛水道和群岛外海域[12, 26-27]等输沙机理研究中运用了此类公式。

    根据物质通量计算方法,流速U可分解为垂向平均项($\bar U$)和垂向平均偏差项(Uv),其中垂向平均项($\bar U$)又可分解成垂向平均潮平均项($ {\bar U_0} $)和垂向平均潮偏差项($ {\bar U_t} $)。表达式为:$U = {U_v} + \overline {{U_t}} + {\bar U_0}$。同理,悬浮体质量浓度C可分解为:$C = {C_v} + \overline {{C_t}} + {\bar C_0}$;水深可分解为:$H = {H_v} + \overline {{H_t}} $。根据现场观测的质量浓度和流速数据,在一个潮周期内的平均悬浮体输运通量表达式如下[25]

    $$\begin{split} \left\langle {F} \right\rangle =& \frac{1}{{T}}\mathop \smallint \limits_0^{{T}} \mathop \smallint \limits_0^{{H}} {UC{\bf d}z} = {{H}_0}{{\bar{ U}}_0}{{\bar{ C}}_0} + {{\bar{ C}}_0}\left\langle {{{H}_{{t}}}{{\bar{ U}}_{{t}}}} \right\rangle +\\& {{\bar{ U}}_0}\left\langle {{{H}_{{t}}}{{\bar{ C}}_{{t}}}} \right\rangle + {{H}_0}\left\langle {{{\bar{ C}}_{{t}}}{{\bar{ U}}_{{t}}}} \right\rangle + \\ &\left\langle {{{H}_{{t}}}{{\bar{ C}}_{{t}}}{{\bar{ U}}_{{t}}}} \right\rangle + {{H}_0}\left\langle {\overline {{{C}_{{v}}}{{U}_{{v}}}} } \right\rangle + \left\langle {\overline {{{H}_{{t}}}{{C}_{{v}}}{{U}_{{v}}}} } \right\rangle= \\ & {{F}_1} + {{F}_2} + {{F}_3} + {{F}_4} + {{F}_5} + {{F}_6} + {{F}_7} \end{split}$$ (2)

    式中,< >代表垂直方向的平均,代表潮周期内的平均。第一项(F1)代表非潮汐扩散项,称为欧拉通量,而第二项(F2)是潮流相关项,为斯托克斯漂移。这两项之和表示由余流以及时空平均质量浓度引起的水平扩散通量(拉格朗日通量)。F3F5是由涨落潮不对称引起的潮泵效应,由潮相位差产生的。F6+F7是由悬浮体质量浓度和流速的垂向分布不均导致的,与扩散剪切有关。

    悬浮体的有效密度是指去除了海水影响后悬浮体本身的真实密度[28]。相比其他悬浮体参数,悬浮体有效密度能更加真实地反映出悬浮体在水体中的物质组成和结构特征。海洋中的悬浮体包括矿物碎屑、生物颗粒等,前者往往表现出极大的黏滞性,将生物颗粒、人类纤维等聚合成为较大的絮凝体。这类絮凝体具有与单个颗粒完全不同的物理和行为特征:体积较大,密度较轻,具有较高的沉降速度[29]。而在水体雷诺数较小时,絮凝体的粒径和有效密度共同决定其沉降速度。悬浮体的有效密度可表达为质量浓度和体积浓度之比[30]

    $$\Delta \rho = {\rho _f} - {\rho _w} = \frac{{{C}}}{{{\rm{VC}}}}$$ (3)

    式中$ {\mathit{\rho }}_{\mathit{f}} $为絮凝体密度,$ {\mathit{\rho }}_{\mathit{w}} $为海水密度,VC为悬浮体的体积浓度。

    为了研究海底表层沉积物的再悬浮行为,根据测定的沉积物粒度和近底部流速,计算底部切应力。

    $$ {\mathit{\tau }}_{{}_{0}}={\mathit{\rho }}_{\mathit{w}}{\mathit{u}}_{\mathit{*}}^{2} $$ (4)

    其中,摩阻流速根据近底层流速采用流速对数剖面模型计算获得:

    $$ \mathit{u}\left(\textit{z}\right)=\frac{{\mathit{u}}_{\mathit{*}}}{\mathit{\kappa }}{\ln}\left(\frac{\textit{z}}{{\textit{z}}_{{}_{{0}}}}\right) $$ (5)

    对于粉砂的底床,粗糙长度z0取0.2 mm。泥沙起动时的临界切应力可通过Soulsby公式计算[31]

    $$ {\tau }_{\rm{cr}}={\theta }_{\rm{cr}}\times g\left({\rho }_{\rm s}-{\rho }_{\rm w}\right)\times {d}_{50} $$ (6)
    $$ {\theta }_{\rm{cr}}=\frac{0.3}{1+1.2{D}_{*}}+0.055\times \left(1-{\exp}^{-0.02{D}_{*}}\right) $$ (7)

    其中$ {\theta }_{\rm{cr}} $为临界Shields数,$ {\rho }_{\rm s} $为沉积物颗粒的密度(取2 650 kg·m−3),d50为平均粒径,D*为无量纲粒径,与海水的运动黏滞系数$ \upsilon $和泥沙大小有关:

    $$ {D}_{*}={\left[\frac{g\left({\rho }_{s}-{\rho }_{w}\right)}{{\rho }_{w}{\upsilon }^{2}}\right]}^{1/3}{d}_{50} $$ (8)

    研究区的水深约为27 m,水体层化明显,整个水体分为上下两层:上层水体温度较高,为22~24 ℃;下层的温度较低,为18~20 ℃(图2a)。在两层之间存在一个较强的温跃层,垂向上的温度梯度可达1 ℃·m−1图2b,其中品红色等值线对应的值为0.5 ℃·m−1)。温跃层厚度约为2~5 m,在距海底10~20 m范围内有规律波动,涨潮时上升,落潮时下潜,略滞后于水位变化。跃层上部和下部水体的混合情况较好,温度垂向分布较为均匀。跃层以下水体的温度呈现周期性的变动,在涨潮阶段升高而在落潮阶段降到最低。相对于底部,上部水体的情况较为复杂,在涨落潮期间均出现高值。由于YSI出现故障,其观测资料包括盐度数据在此不加以展示。

    图  2  温度(a)、温度梯度(b)、流速(c)、流向(d)、悬浮体的体积浓度(e)和平均粒径(f)剖面分布图(图2b-f中品红色曲线为温度梯度0.5 ℃·m−1的等值线)
    Figure  2.  Contour diagrams of temperature (a), temperature gradient (b), current speed (c) current direction (d), SPM volume concentration (e) and mean grain size (f) (The magenta line in Fig. 2b-f represents the contour line of 0.5 ℃·m−1 temperature gradient)

    观测期间,潮汐不对称性较强:第一个半日潮的潮差(3.6 m)大于第二个(2.1 m);两个半日潮的涨潮历时(分别为5.17和6.33 h)均小于落潮历时(分别为6.67和6.85 h);涨潮流速均大于落潮流速,最大流速出现在第一个半日潮的涨潮阶段(图2c)。流速在垂向上分布极不均匀,一般来说,底部较小,跃层和上部较大,最大可达1.2 m·s−1。水流呈顺时针方向旋转,落平潮时向南,涨平潮时向北,上部水体的转向略滞后于底部(图2d)。然而,在第一个半日潮的落潮初期阶段,跃层流向较其上下层水体滞后约1 h且流速达到最小。

    悬浮体在时间和垂向上的分布极不均匀。结合温度跃层的位置,悬浮颗粒体积浓度的分布呈现如下的特点:在温跃层以上及跃层附近较低,在温跃层以下随水深增加逐渐升高,最高值可达400 μL·L−1图2e)。此外,在跃层附近还存在斑点状的高浓度区。跃层以上的悬浮体平均粒径较小,一般小于20 μm;底部水体中悬浮体平均粒径约为30~80 μm;而跃层附近悬浮体的平均粒径较大,最大可达100 μm以上,在水层中呈斑块状分布(图2f)。对比悬浮体的粒级组成发现:表层主要由2~20 μm的小颗粒和少量的大颗粒组成,故平均粒径相对较小;底部分布较广,为20~200 μm,平均粒径较大;而跃层附近多为大于100 μm的大颗粒,导致平均粒径最大(图2f3a)。相比较而言,海底表层沉积物组成以4~63 μm的粉砂为主(占比达80%以上),平均粒径为11~16 μm(图3b)。

    图  3  悬浮体(a)和海底表层沉积物(b)的粒级分布图
    Figure  3.  Grain-size distribution of suspended particles (a) and seabed surface sediment (b)

    悬浮体的质量浓度也显示出类似的趋势。观测期间,跃层及其上部水体的悬浮体质量浓度较低,多小于10 mg·L−1;而底部的质量浓度可达20~96 mg·L−1图4a)。通过初步的数据分析可以发现,平均质量浓度自表层到底部呈现先降低后增加的趋势,且其垂向梯度随水深而增加(表1)。悬浮体质量浓度的离散程度也呈现出与质量浓度相同的趋势,在近底部达到最大。为了研究海底表层沉积物的再悬浮行为,计算底部切应力以及10、63和153 μm粒级颗粒对应的起动临界值(图4b)。结果发现,这3个粒级的颗粒在绝大多数时间均可被起动,这与类似环境的研究结果比较接近[32-33]。因此,大潮期间,研究区的海底表层沉积物几乎均可经再悬浮进入水体,导致底部悬浮体浓度增大。可以发现近底层悬浮体高质量浓度与底部切应力峰值对应良好但存在一定的滞后(如图4箭头所示)。此外,悬浮体质量浓度(C)和体积浓度(VC)之间存在着显著的线性相关性(图5),因质量浓度的采样精度较低,据此关系可通过悬浮体的体积浓度估算整个水体的质量浓度分布。

    表  1  悬浮体质量浓度的特征值
    Table  1.  The characteristic values of mass concentration of suspended particles
    平均质量浓度/
    (mg·L−1
    质量浓度的标准差/
    (mg·L−1
    质量浓度梯度/
    (mg·L−1
    表层2.883.62
    5 mbs1.550.69−0.26
    10 mbs2.833.820.26
    20 mbs35.5210.453.27
    近底层61.0215.735.10
    下载: 导出CSV 
    | 显示表格
    图  4  悬浮体质量浓度(a)和底部切应力及起动临界值(b)随时间序列图
    Figure  4.  Time series of mass concentration of suspended particles (C) and bottom shear stress and the threshold values of 10, 63 and 153 μm for movement
    图  5  悬浮体的体积浓度VC与质量浓度C的关系图
    Figure  5.  C/VC scatter plot of suspended particles

    悬浮体根据有效密度与平均粒径的关系在垂向上可分为三种类型:温跃层上部(包括表层、5 mbs和部分10 mbs,如红圈所示)的平均粒径较小,有效密度跨度较大,除个别异常高值,一般为7~1 750 kg·m−3;底部水体(20 mbs 、近底层和部分10 mbs,如黑圈所示)的悬浮体平均粒径为30~80 μm,有效密度为100~400 kg·m−3,分散性较小;而跃层附近(10 mbs,如绿圈所示)的悬浮体较大,有效密度一般小于100 kg·m−3图6)。不难发现,有效密度和粒径之间存在负相关关系。其他研究结果显示,悬浮体的有效密度因为絮凝过程会随着粒径的增加而降低[30, 34-38]:小的悬浮体由原始碎屑经较低程度的絮凝形成,具有较高的有效密度[30, 38];大的颗粒因为程度较高的絮凝而含有较高比例的间隙水,从而具有较低的密度[39]。杭州湾和舟山群岛海域悬浮沉积物平均粒径为7~9 μm[12],而海底表层沉积物的平均粒径为11~16 μm。因此,跃层以上的悬浮颗粒平均粒径与碎屑沉积物的大小比较接近,但有效密度与之相比普遍较低。因此,上部水体中有效密度相对较高的悬浮体应经较低程度的絮凝形成。底部水体中的悬浮体平均粒径较海底和水体中沉积物大,有效密度较低,应为细颗粒沉积物经较高程度的絮凝形成的絮凝体。而且,随着紊动增强和悬浮体质量浓度升高,絮凝程度有增加的趋势(图4图7中第3~10、15~17小时底部切应力和质量浓度均较高时有效密度降低)。除此之外,较低密度的生物碎屑也会使悬浮体的有效密度降低。跃层附近存在与底部絮凝体大小相当(30~80 μm)但有效密度(10~100 kg·m−3)显著降低的悬浮体(图6),应为生物颗粒。其他学者也发现跃层附近普遍具有较高的初级生产力[40-43],浮游生物富集。此外,跃层以上有效密度较低的悬浮体,推测亦受生物碎屑的影响。

    图  6  悬浮体的有效密度与粒径关系图(红圈对应跃层以上悬浮颗粒,绿圈对应跃层附近悬浮颗粒,黑圈对应跃层以下悬浮颗粒)
    Figure  6.  The relationship between effective density and mean grain size of suspended particles
    图  7  底部絮凝体的有效密度序列图
    Figure  7.  Time series of floc effective density in the bottom water

    对一个潮周期内的各层流速做平均,发现整个水层的余流具有表、底层流速小而中层大的特点(可达0.15 m·s−1)。余流在整个水体中的流向并不一致,大致在西南方向左右摆动:余流在表层流速较小,指向西南方向;随着水深增加,余流向逆时针方向偏转且保持方向基本不变,速度增大;流速在中层达到最大后随着水深增加逐渐降低,流向沿逆时针方向偏转;在底部附近余流流速降到最小,流向又沿顺时针方向偏转(图8a)。结合悬浮体的垂向分布,在一个全日潮周期内,通过单位面积的净输运量随着深度的增加而增大:在上部较小,在中层处稍有增加但方向变动频繁(东-西北-东南),最后在海水底部达到最大(500 kg·m−2),方向指向南偏西(图8b-c)。在一个全日潮周期内整个水体内悬浮体的单宽净输运量约为3 166 kg,指向西偏南15.6°方向。由于观测区域受水动力的冲刷作用,底部悬浮体浓度增高,形成远远高于其他水层的底部雾浊层。而跃层的屏障作用,使得再悬浮的沉积物只在跃层以下水体富集,跃层以上输运能力不显。跃层附近的悬浮体输运方向多变,相互抵消,输运能力也较弱。因此,一个潮周期过程中超过3 000 kg的单宽净输运绝大部分是通过底部雾浊层实现的。而底部水体中悬浮体向偏南方向的输运,对浙闽泥质区的沉积过程意义重大。

    图  8  东西和南北向余流(a)和单位面积净输运量(b)随水深变化图以及净输运方向示意图(c)
    Figure  8.  Residual flow (a) and SPM transport per unit area (b) during a diurnal tide changes with water depth, and schematic diagram of net transport direction (c)

    悬浮体输运通量的机制分解结果如表2所示,总输运通量为0.038 kg·m−1·s−1,即一个潮周期内的单宽净输运量约为3 400 kg,与通量法计算的结果比较接近。其中,欧拉余流(F1)引起的悬浮体输运占主导作用,一个全日潮周期中的输运通量达0.046 kg·m−1·s−1,指向西偏南方向。其他主要贡献项包括F4F6,前者是潮汐捕捉项,由再悬浮和沉降作用所致,输运通量为0.022 kg·m−1·s−1,指向东南方向;后者是垂向的剪切扩散作用,其值为0.013 kg·m−1·s−1,指向正北。这两者的输运方向相反,相互抵消了一部分后仍指向东南方向。

    表  2  单位宽度悬浮体通量各分量及方向(正北方向为0°)
    Table  2.  Tidal-averaged suspended particle flux per width and direction
    F1F2F3F4F5F6F7$\sum\limits_{{\rm{i}} = 1}^7 {{F_{{i}}}} $
    东向通量−0.020 1 −0.003 50.000 10.014 9 0.000 0−0.000 3 0.000 7−0.008 2
    北向通量−0.041 8 0.007 10.000 2−0.016 0 0.000 80.013 3 −0.000 7−0.037 2
    通量/(kg·m−1·s−10.046 4 0.007 90.000 20.021 9 0.000 80.013 3 0.001 00.038 1
    输运方向/(°)206 33426137 359359 135
    下载: 导出CSV 
    | 显示表格

    拉格朗日通量(F1+F2,两者方向相反,抵消部分后向南)主导了悬浮体的净输运,这与其他学者的研究结果一致:舟山群岛内水道[44-45]、群岛区[12, 46]或岛外海域[12]的沉积物输运机制均以拉格朗日余流输运为主。观测区域位于岛外较开敞海域,受群岛地形的作用较小,潮流呈椭圆形,余流优势相对变小。然而,陆架环流(浙闽沿岸流、台湾暖流等)的增强,使得余流输运仍不容小觑。潮汐捕捉项F4是由悬浮体的沉降、海底沉积物的再悬浮滞后引起的,是研究区除余流输运之外最重要的输运机制。据图4b可知,观测过程中海底表层的粉砂和沙在大多数时间都可发生再悬浮:在底部切应力增大时,悬浮体浓度迅速增高;底部切应力小于临界值时,浓度降到最低。正是这种周期性变化,引起了沉积物的再悬浮和沉降作用,从而影响了研究区域的物质输运。垂向净环流输运F6是由流速和悬浮体质量浓度的垂向分布不均引起的,与水体层化现象密切相关。因此,本文的研究结果显示了夏季陆架环流和潮汐以及水体层化共同控制了悬浮体的输运过程。偏南向的陆架环流(拉格朗日余流)驱动的拉格朗日通量和潮泵通量造就了南向的沿岸输运,被北向的垂向净环流通量抵消了一部分。可以推测,在冬季风浪作用下水体混合均匀,垂向环流输运减弱,而南向的浙闽沿岸流进一步增强,将导致南向的输运通量显著增加。

    舟山海域位于长江沉积物向南输运的通道上,在此处进行的悬浮体通量观测有益于认识沉积物源到汇的过程。对于浙闽泥质区这一巨大沉积体系的研究,长时间多站位的观测是必需的。然而条件的限制,选择在具有代表性的站位进行观测也是认识问题的有效途径。因此,在选取站位进行悬浮体特征和输运过程的研究有利于丰富浙闽泥质区形成和演化的知识体系。冬季,在浙闽沿岸流的带动下,长江冲淡水及其携带的泥沙沿东海内陆架向南输运[45-46],遇台湾暖流阻碍堆积于浙闽沿岸[5]。夏季,浙闽沿岸流在西南风作用下北上且携带南部河口入海物质向北推进[47]。然而,本文通过调查大潮期间的一个全日潮过程,发现夏季也存在南向的沿岸输运。这一南向输运是认识浙闽泥质区从源到汇迁移过程的关键。因此,除潮汐捕捉作用外,夏季的浙闽沿岸流亦可以对泥质区的形成和演化起积极作用。当然,这与观测期间优势风场为北向密切相关。值得指出的是,冬季强沿岸流作用下悬浮体的输运对浙闽泥质区演化的贡献更为重要。

    (1)观测区域潮汐不对称性特征显著:第一个半日潮的潮差大于第二个;涨潮历时小于落潮历时而涨潮流速大于落潮流速。流速在垂向上分布不均,余流在跃层附近达到最大,向上和向下逐渐减小。

    (2)悬浮体按照特征分为三种类型:跃层以上有效密度高的悬浮体絮凝程度较低;底部悬浮体絮凝程度较高,有效密度较低;跃层附近的悬浮体主要为生物颗粒,有效密度最低。

    (3)随着紊动增强和悬浮体质量浓度升高,底部悬浮体的絮凝程度有增加的趋势。

    (4)一个全日潮周期内,受夏季陆架环流和潮汐捕捉以及垂向净环流输运的共同作用,研究区发生了超过3 000 kg·m−1的偏南向净输运。其中,浙闽沿岸流和潮汐不对称引起的悬浮体输运向南,流速和悬浮体垂向分布不均导致的输运向北。

    致谢:感谢南京大学海岸与海岛开发教育部重点实验室提供的人力和仪器。感谢浙海科1号的全体船员帮助,感谢参加调查的吴昊、兰庭飞、卢军炯、王寇、张炜、谷海玲等同学的帮助。

  • 图  1   海洋天然气水合物调查研究现状[5]

    Figure  1.   Current status of scientific and industrial researches for Marine gas hydrate [5]

    图  2   粗粒沉积物孔隙中水合物的3种赋存模式示意图

    Figure  2.   Occurrence types of hydrate in coarse-grained sediments

    图  3   块状水合物岩心样品CT二维截面图

    Figure  3.   CT section of massive hydrate sample

    图  4   分散状水合物岩心样品CT二维截面图

    Figure  4.   CT section of dispersed hydrate sample

    图  5   海洋天然气水合物资源量评价结果

    绿色代表体积法,紫色代表类比法,青色代表成因法。

    Figure  5.   Marine gas hydrate resources evaluation

    Green, purple and cyan represents the resources calculated by volume method, analogy method and genetic method respectively.

    图  6   海洋天然气水合物资源评价思路

    Figure  6.   Thoughts on evaluation of marine gas hydrate resources

    表  1   主要海洋天然气水合物资源量评价结果

    Table  1   Evaluation of main marine gas hydrate resources

    评价阶段评价方法资源量/(1015 m3)参考文献
    探索研究阶段
    (1970’)
    体积法3 053[79]
    体积法1 573[80]
    体积法120[81]
    资源发现阶段
    (1980’—1990’)
    体积法40[82]
    体积法、类比法26.4[83]
    体积法、类比法21[84]
    能源开发阶段
    (2000年至今)
    成因法3.05~3.81[85]
    体积法、类比法3.34[86]
    成因法1.05[87]
    成因法2.13[88]
    下载: 导出CSV
  • [1]

    Boswell R, Hancock S, Yamamoto K, et al. 6-Natural gas hydrates: status of potential as an energy resource[M]// Letcher T M. Future Energy. 3rd ed. Boston: Elsevier, 2020: 111−131.

    [2] 吴能友. 天然气水合物运聚体系: 理论、方法与实践[M]. 合肥: 安徽科学技术出版社, 2020: 1−294.

    WU Nengyou. Gas Hydrate Migration and Accumulation System: Theory, Method and Practice[M]. Hefei: Anhui Science and Technology Press, 2020: 1−294.

    [3] 宁伏龙, 梁金强, 吴能友, 等. 中国天然气水合物赋存特征[J]. 天然气工业, 2020, 40(8):1-24

    NING Fulong, LIANG Jinqiang, WU Nengyou, et al. Reservoir characteristics of natural gas hydrates in China [J]. Natural Gas Industry, 2020, 40(8): 1-24.

    [4]

    Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: Prospects and challenges [J]. Applied Energy, 2016, 162: 1633-1652.

    [5]

    Collett T, Bahk J J, Baker R, et al. Methane hydrates in nature-current knowledge and challenges [J]. Journal of Chemical & Engineering Data, 2015, 60(2): 319-329.

    [6]

    Collett T S, Lee M W, Agena W F, et al. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope [J]. Marine and Petroleum Geology, 2011, 28(2): 279-294.

    [7]

    Miyakawa A, Saito S, Yamada Y, et al. Gas hydrate saturation at Site C0002, IODP Expeditions 314 and 315, in the Kumano Basin, Nankai trough [J]. Island Arc, 2014, 23(2): 142-156.

    [8] 吴时国, 王吉亮. 南海神狐海域天然气水合物试采成功后的思考[J]. 科学通报, 2018, 63(1):2-8

    WU Shiguo, WANG Jiliang. On the China's successful gas production test from marine gas hydrate reservoirs [J]. Chinese Science Bulletin, 2018, 63(1): 2-8.

    [9]

    Boswell R, Collett T S. Current perspectives on gas hydrate resources [J]. Energy & Environment Science, 2011, 4(4): 1206-1215.

    [10] 叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3):557-568

    YE Jianliang, QIN Xuwen, XIE Wenwei, et al. Main progress of the second gas hydrate trial production in the South China Sea [J]. Geology In China, 2020, 47(3): 557-568.

    [11]

    Haeckel M, Bialas J, Klaucke I, et al. Gas hydrate occurrences in the Black Sea- new observations from the German sugar Project [J]. Fire in the Ice:Methane Hydrate Newsletter, 2015, 15(2): 6-9.

    [12]

    Collett T S, Lee M W, Zyrianova M V, et al. Gulf of Mexico gas hydrate Joint Industry Project Leg II logging‐while‐drilling data acquisition and analysis [J]. Marine and Petroleum Geology, 2012, 34(1): 41-61.

    [13]

    Komatsu Y, Suzuki K, Fujii T. Sedimentary facies and paleoenvironments of a gas-hydrate- bearing sediment core in the eastern Nankai Trough, Japan [J]. Marine and Petroleum Geology, 2015, 66: 358-367.

    [14]

    Malinverno A, Goldberg D S. Testing short‐range migration of microbial methane as a hydrate formation mechanism: Results from Andaman Sea and Kumano basin drill sites and global implications [J]. Earth and Planetary Science Letters, 2015, 422: 105-114.

    [15]

    Ginsburg G, Soloviev V, Matveeva T, et al. 24. Sediment grain‐size control on gas hydrate presence, sites 994, 995 and 997[M]//Paull C K, Matsumoto R, Wallace P J, et al. Proceedings of the Ocean Drilling Program: Scientific Results 164. College Station, TX: Ocean Drilling Program, 2000: 1 − 459.

    [16]

    Wang X J, Collett T S, Lee M W, et al. Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu Area, South China Sea [J]. Marine Geology, 2014, 357: 272-292.

    [17]

    Portnov A, Santra M, Cook A E, et al. The Jackalope gas hydrate system in the northeastern Gulf of Mexico [J]. Marine and Petroleum Geology, 2020, 111: 261-278.

    [18]

    Matsumoto R, Tanahashi M, Kakuwa Y, et al. Recovery of thick deposits of massive gas hydrates from gas chimney structures, eastern margin of Japan Sea: Japan Sea shallow gas hydrate project [J]. Fire in the Ice:Methane Hydrate Newsletter, 2017, 17(1): 1-22.

    [19]

    Liu C L, Meng Q G, Hu G W, et al. Characterization of hydrate-bearing sediments recovered from the Shenhu Area of the South China Sea [J]. Interpretation, 2017, 5(3): SM13-SM23.

    [20] 陈芳, 苏新, 陆红锋, 等. 南海神狐海域有孔虫与高饱和度水合物的储存关系[J]. 地球科学:中国地质大学学报, 2013, 38(5):907-915

    Chen Fang, Su Xin, Lu Hongfeng, et al. Relations between biogenic component (foraminifera) and highly saturated gas hydrates distribution from Shenhu Area, northern South China Sea [J]. Earth Science:Journal of China University of Geosciences, 2013, 38(5): 907-915.

    [21]

    Li C F, Hu G W, Zhang W, et al. Influence of foraminifera on formation and occurrence characteristics of natural gas hydrates in fine-grained sediments from ShenHu Area, South China Sea [J]. Science China Earth Sciences, 2016, 59(11): 2223-2230.

    [22]

    Bahk J J, Kim D H, Chun J H, et al. Gas hydrate occurrences and their relation to host sediment properties: results from Second Ulleung basin gas hydrate Drilling Expedition, East Sea [J]. Marine and Petroleum Geology, 2013, 47: 21-29.

    [23]

    Liu C L, Ye Y G, Meng Q G, et al. The characteristics of gas hydrates recovered from Shenhu Area in the South China Sea [J]. Marine Geology, 2012, 307-310: 22-27.

    [24]

    Liu C L, Meng Q G, He X L, et al. Characterization of natural gas hydrate recovered from Pearl River Mouth basin in South China Sea [J]. Marine and Petroleum Geology, 2015, 61: 14-21.

    [25]

    Max M D, Johnson A H. Exploration and Production of Oceanic Natural Gas Hydrate: Critical Factors for Commercialization[M]. Switzerland: Springer, 2016.

    [26]

    Wei J G, Liang J Q, Lu J G, et al. Characteristics and dynamics of gas hydrate systems in the northwestern South China Sea - Results of the fifth gas hydrate drilling expedition [J]. Marine and Petroleum Geology, 2019, 110: 287-298.

    [27] 张辉, 卢海龙, 梁金强, 等. 南海北部神狐海域沉积物颗粒对天然气水合物聚集的主要影响[J]. 科学通报, 2016, 61(3):388-397

    ZHANG Hui, LU Hailong, LIANG Jinqiang, et al. The methane hydrate accumulation controlled compellingly by sediment grain at Shenhu, northern South China Sea [J]. Chinese Science Bulletin, 2016, 61(3): 388-397.

    [28] 姜衡, 苏明, 邬黛黛, 等. 南海北部陆坡神狐海域GMGS01 区块细粒浊积体的识别特征及意义[J]. 海洋地质与第四纪地质, 2017, 37(5): 131 − 140.

    JIANG Heng, SU Ming, WU Daidai, et al. Fine- grained turbidites in GMGS01 of the Shenhu Area, northern South China Sea and its significance[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 131 − 140.

    [29]

    Horozal S, Kim G Y, Bahk J J, et al. Core and sediment physical property correlation of the second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) results in the East Sea (Japan Sea) [J]. Marine and Petroleum Geology, 2015, 59: 535-562.

    [30]

    Miyajima Y, Watanabe Y, Yanagisawa Y, et al. A late Miocene methane-seep deposit bearing methane-trapping silica minerals at Joetsu, central Japan [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 455: 1-15.

    [31]

    Winters W J, Wilcox-Cline R W, Long P, et al. Comparison of the physical and geotechnical properties of gas-hydrate-bearing sediments from offshore India and other gas-hydrate-reservoir systems [J]. Marine and Petroleum Geology, 2014, 58: 139-167.

    [32]

    Liu X L, Flemings P B. Capillary effects on hydrate stability in marine sediments [J]. Journal of Geophysical Research:Solid Earth, 2011, 116(B7): B07102.

    [33]

    Lorenson T. Microscopic character of marine sediment containing disseminated gas hydrate: Examples from the Blake Ridge and the Middle America Trench[M]//Holder G D, Bishnoi P R. Gas Hydrates: Challenges for the Future. New York: Annals of the New York Academy of Sciences 2000: 1 − 1039.

    [34]

    Collett T S, Boswell R, Cochran J R, et al. Geologic implications of gas hydrates in the offshore of India: Results of the National Gas Hydrate Program Expedition 01 [J]. Marine and Petroleum Geology, 2014, 58: 3-28.

    [35]

    Hutchinson D R, Hart P E, Collett T S, et al. Geologic framework of the 2005 Keathley Canyon gas hydrate research well, northern Gulf of Mexico [J]. Marine and Petroleum Geology, 2008, 25(9): 906-918.

    [36]

    Matsumoto R, Paull C, Wallace P. Gas hydrate sampling on the Blake Ridge and the Carolina Rise[R]. Ocean Drilling Program Leg 164 Preliminary Report, College Station, TX: Ocean Drilling Program, 1996(64): 1-72.

    [37]

    Tréhu A M, Torres M E, Bohrmann G, et al. Leg 204 synthesis: gas hydrate distribution and dynamics in the central Cascadia accretionary complex[M]//Tréhu A M, Bohrmann G, Torres M E, et al. Proceedings of the Ocean Drilling Program: Scientific Results 204. College Station, TX: Ocean Drilling Program, 2006: 1-815.

    [38] 钟广法, 张迪, 赵峦啸. 大洋钻探天然气水合物储层测井评价研究进展[J]. 天然气工业, 2020, 40(8):25-44

    ZHONG Guangfa, ZHANG Di, ZHAO Luanxiao. Current states of well-logging evaluation of deep-sea gas hydrate-bearing sediments by international scientific ocean drilling (DSDP/ODP/IODP) programs [J]. Natural Gas Industry, 2020, 40(8): 25-44.

    [39] 胡高伟, 业渝光, 张剑, 等. 松散沉积物中天然气水合物生成、分解过程与声学特性的实验研究[J]. 现代地质, 2008, 22(3):465-474

    HU Gaowei, YE Yuguang, ZHANG Jian, et al. Study on gas hydrate formation-dissociation and its acoustic responses in unconsolidated sands [J]. Geoscience, 2008, 22(3): 465-474.

    [40] 胡高伟, 业渝光, 张剑, 等. 基于弯曲元技术的含水合物松散沉积物声学特性研究[J]. 地球物理学报, 2012, 55(11):3762-3773

    HU Gaowei, YE Yuguang, ZHANG Jian, et al. Acoustic properties of hydrate-bearing unconsolidated sediments based on bender element technique [J]. Chinese Journal of Geophysics, 2012, 55(11): 3762-3773.

    [41]

    Best A I, Priest J A, Clayton C R I, et al. The effect of methane hydrate morphology and water saturation on seismic wave attenuation in sand under shallow sub-seafloor conditions [J]. Earth and Planetary Science Letters, 2013, 368: 78-87.

    [42] 宁伏龙, 吴能友, 李实, 等. 基于常规测井方法估算原位水合物储集层力学参数[J]. 石油勘探与开发, 2013, 40(4):507-512

    NING Fulong, WU Nengyou, LI Shi, et al. Estimation of in-situ mechanical properties of gas hydrate-bearing sediments by well logging [J]. Petroleum Exploration and Development, 2013, 40(4): 507-512.

    [43] 陆敬安, 杨胜雄, 吴能友, 等. 南海神狐海域天然气水合物地球物理测井评价[J]. 现代地质, 2008, 22(3):447-451

    LU Jing’an, YANG Shengxiong, WU Nengyou, et al. Well logging evaluation of gas hydrates in Shenhu Area, South China Sea [J]. Geoscience, 2008, 22(3): 447-451.

    [44]

    Zhang W, Liang J Q, Wei J G, et al. Geological and geophysical features of and controls on occurrence and accumulation of gas hydrates in the first offshore gas-hydrate production test region in the Shenhu area, Northern South China Sea [J]. Marine and Petroleum Geology, 2020, 114: 104191.

    [45]

    Ren S R, Liu Y J, Liu Y X, et al. Acoustic velocity and electrical resistance of hydrate bearing sediments [J]. Journal of Petroleum Science and Engineering, 2010, 70(1-2): 52-56.

    [46]

    Lei L, Liu Z C, Seol Y, et al. An investigation of hydrate formation in unsaturated sediments using X‐Ray computed tomography [J]. Journal of Geophysical Research:Solid Earth, 2019, 124(4): 3335-3349.

    [47]

    Dong H M, Sun J M, Zhu J J, et al. Developing a new hydrate saturation calculation model for hydrate-bearing sediments [J]. Fuel, 2019, 248: 27-37.

    [48]

    Dong H M, Sun J M, Arif M, et al. A novel hybrid method for gas hydrate filling modes identification via digital rock [J]. Marine and Petroleum Geology, 2020, 115: 104255.

    [49] 陈国旗, 李承峰, 刘昌岭, 等. 多孔介质中甲烷水合物的微观分布对电阻率的影响[J]. 新能源进展, 2019, 7(6):493-499

    Chen Guoqi, Li Chengfeng, Liu Changling, et al. Effect of microscopic distribution of methane hydrate on resistivity in porous media [J]. Advances in New and Renewable Energy, 2019, 7(6): 493-499.

    [50]

    Shankar U, Riedel M. Gas hydrate saturation in the Krishna-Godavari basin from P-wave velocity and electrical resistivity logs [J]. Marine and Petroleum Geology, 2011, 28(10): 1768-1778.

    [51]

    Wang X J, Wu S G, Lee M, et al. Gas hydrate saturation from acoustic impedance and resistivity logs in the Shenhu Area, South China Sea [J]. Marine and Petroleum Geology, 2011, 28(9): 1625-1633.

    [52] 胡高伟, 李彦龙, 吴能友, 等. 神狐海域W18/19 站位天然气水合物上覆层不排水抗剪强度预测[J]. 海洋地质与第四纪地质, 2017, 37(5):151-158

    HU Gaowei, LI Yanlong, WU Nengyou, et al. Undrained shear strength estimation of the cover layer of hydrate at site W18/19 of Shenhu Area [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 151-158.

    [53]

    Luo T T, Song Y C, Zhu Y M, et al. Triaxial experiments on the mechanical properties of hydrate-bearing marine sediments of South China Sea [J]. Marine and Petroleum Geology, 2016, 77: 507-514.

    [54] 石要红, 张旭辉, 鲁晓兵, 等. 南海水合物黏土沉积物力学特性试验模拟研究[J]. 力学学报, 2015, 47(3):521-528

    SHI Yaohong, ZHANG Xuhui, LU Xiaobing, et al. Experimental study on the static mechanical properties of hydrate-bearing silty-clay in the South China Sea [J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 521-528.

    [55] 关进安, 卢静生, 梁德青, 等. 高压下南海神狐水合物区域海底沉积地层三轴力学性质初步测试[J]. 新能源进展, 2017, 5(1):40-46

    GUAN Jin’an, LU Jingsheng, LIANG Deqing, et al. Preliminary tri-axial mechanical test on the hydrate-bearing media from Shenhu Area of South China Sea under high confining pressures [J]. Advances in New and Renewable Energy, 2017, 5(1): 40-46.

    [56]

    Wang B, Huo P, Luo T T, et al. Analysis of the physical properties of hydrate sediments recovered from the Pearl River Mouth Basin in the South China Sea: Preliminary investigation for gas hydrate exploitation [J]. Energies, 2017, 10(4): 531.

    [57]

    Wang L, Li Y H, Wu P, et al. Physical and mechanical properties of the overburden layer on gas hydrate-bearing sediments of the South China Sea [J]. Journal of Petroleum Science and Engineering, 2020, 189: 107020.

    [58] 宁伏龙, 刘力, 李实, 等. 天然气水合物储层测井评价及其影响因素[J]. 石油学报, 2013, 34(3):591-606

    NING Fulong, LIU Li, LI Shi, et al. Well logging assessment of natural gas hydrate reservoirs and relevant influential factors [J]. Acta Petrolei Sinica, 2013, 34(3): 591-606.

    [59]

    Liu Z C, Wei H Z, Peng L, et al. An easy and efficient way to evaluate mechanical properties of gas hydrate-bearing sediments: The direct shear test [J]. Journal of Petroleum Science and Engineering, 2017, 149: 56-64.

    [60]

    Liu Z C, Dai S, Ning F L, et al. Strength estimation for hydrate-bearing sediments from direct shear tests of hydrate-bearing sand and silt [J]. Geophysical Research Letters, 2018, 45(2): 715-723.

    [61] 张永超, 刘昌岭, 刘乐乐, 等. 水合物生成导致沉积物孔隙结构和渗透率变化的低场核磁共振观测[J]. 海洋地质与第四纪地质, 2021, 41(3):193-202

    ZHANG Yongchao, LIU Changling, LIU Lele, et al. Sediment pore-structure and permeability variation induced by hydrate formation: Evidence from low field nuclear magnetic resonance observation [J]. Marine Geology & Quaternary Geology, 2021, 41(3): 193-202.

    [62]

    Li C F, Liu C L, Hu G W, et al. Investigation on the multi-parameter of hydrate-bearing sands using nano focus X-ray computed tomography [J]. Journal of Geophysical Research:Solid Earth, 2019, 124(3): 2286-2296.

    [63]

    Zhang L X, Ge K, Wang J Q, et al. Pore-scale investigation of permeability evolution during hydrate formation using a pore network model based on X-ray CT [J]. Marine and Petroleum Geology, 2020, 113: 104157.

    [64]

    Li J F, Ye J L, Qin X W, et al, The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5-16.

    [65] 吴能友, 黄丽, 胡高伟, 等. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质, 2017, 37(5):1-11

    WU Nengyou, HUANG Li, HU Gaowei, et al. Geological controlling factors and scientific challenges for offshore gas hydrate exploitation [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 1-11.

    [66]

    Sun J X, Zhang L, Ning F L, et al. Production potential and stability of hydrate-bearing sediments at the site GMGS3-W19 in the South China Sea: A preliminary feasibility study [J]. Marine and Petroleum Geology, 2017, 86: 447-473.

    [67]

    Zhang W, Liang J Q, Wei J G, et al. Origin of natural gases and associated gas hydrates in the Shenhu Area, northern South China Sea: Results from the China gas hydrate drilling expeditions [J]. Journal of Asian Earth Sciences, 2019, 183: 103953.

    [68]

    Qin X W, Lu J A, Lu H L, et al. Coexistence of natural gas hydrate, free gas and water in the gas hydrate system in the Shenhu Area, South China Sea [J]. China Geology, 2020, 3(2): 210-220.

    [69]

    Wang X J, Liu B, Qian J, et al. Geophysical evidence for gas hydrate accumulation related to methane seepage in the Taixinan Basin, South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 27-37.

    [70]

    Yang S X, Liang J Q, Lei Y, et al. GMGS4 gas hydrate drilling expedition in the South China Sea [J]. Fire in the Ice:Methane Hydrate Newsletter, 2017, 17(1): 7-11.

    [71]

    Majumdar U, Cook A E. The volume of gas hydrate‐bound gas in the northern gulf of Mexico [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(11): 4313-4328.

    [72]

    Shankar U, Ojha M, Ghosh R. Assessment of gas hydrate reservoir from inverted seismic impedance and porosity in the northern Hikurangi margin, New Zealand [J]. Marine and Petroleum Geology, 2021, 123: 104751.

    [73]

    Piñero E, Hensen C, Haeckel M, et al. 3-D numerical modelling of methane hydrate accumulations using PetroMod [J]. Marine and Petroleum Geology, 2016, 71: 288-295.

    [74]

    Su P B, Liang J Q, Peng J, et al. Petroleum systems modeling on gas hydrate of the first experimental exploitation region in the Shenhu Area, northern South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 57-76.

    [75]

    Kroeger K F, Plaza-Faverola A, Barnes P M, et al. Thermal evolution of the New Zealand Hikurangi subduction margin: Impact on natural gas generation and methane hydrate formation-a model study [J]. Marine and Petroleum Geology, 2015, 63: 97-114.

    [76]

    Hillman J I T, Crutchley G J, Kroeger K. Investigating the role of faults in fluid migration and gas hydrate formation along the southern Hikurangi Margin, New Zealand [J]. Marine Geophysical Research, 2020, 41(1): 8.

    [77]

    Burwicz E, Haeckel M. Basin-scale estimates on petroleum components generation in the Western Black Sea basin based on 3-D numerical modelling [J]. Marine and Petroleum Geology, 2020, 113: 104122.

    [78]

    Tsuji Y, Ishida H, Nakamizu M, et al. Overview of the MITI Nankai trough Wells: a milestone in the evaluation of methane hydrate resources [J]. Resource Geology, 2004, 54(1): 3-10.

    [79]

    Trofimuk A A, Cherskiy N V, Tsarev V P. Accumulation of natural gases in zones of hydrate formation in the hydrosphere [J]. Doklady Akademii Nauk SSSR, 1973, 212: 931-934(inRussian).

    [80]

    Cherskiy N V, Tsarev V P. Evaluation of the reserves in the light of search and prospecting of natural gases from the bottom sediments of the world’s ocean [J]. Geologiya i Geofizika, 1977, 5: 21-31.

    [81]

    Trofimuk A A, Cherskiy N V, Tsarev V P. Gas hydrates-new sources of hydrocarbons [J]. Priroda (Nature), 1979, 1: 18-27.

    [82]

    Kvenvolden K A, Claypool GE. Gas hydrates in oceanic sediment[R]. Open-File Report 88-216, Denver: US Geological Survey, 1988: 1-50.

    [83]

    Gornitz V, Fung I. Potential distribution of methane hydrates in the world’s oceans [J]. Global Biogeochemical Cycles, 1994, 8(3): 335-347.

    [84]

    Kvenvolden K A. Potential effects of gas hydrate on human welfare [J]. Proceedings of National Academy of Science of the United States of America, 1999, 96(7): 3420-3426.

    [85]

    Archer D, Buffet B, Brovkin V. Ocean methane hydrates as a slow tipping point in the global carbon cycle [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(49): 20596-20601.

    [86]

    Johnson A H. Global resource potential of gas hydrate- a new calculation [J]. Fire in the Ice:Methane Hydrate Newsletter, 2011, 11(2): 1-4.

    [87]

    Piñero E, Marquardt M, Hensen C, et al. Estimation of the global inventory of methane hydrates in marine sediments using transfer functions [J]. Biogeosciences, 2013, 10(2): 959-975.

    [88]

    Kretschmer K, Biastoch A, Rüpke L, et al. Modeling the fate of methane hydrates under global warming [J]. Global Biogeochemical. Cycles, 2015, 29(5): 610-625.

    [89]

    Collett T S, Johnson A H, Knapp C C, et al. Natural gas hydrates: A review[M]//Collett TS, Johnson A, Knapp C, et al. Natural gas hydrates-Energy resource potential and associated geologic hazards. Tulsa, Oklahoma, USA: American Association of Petroleum Geologists, 2009, 89: 146-219.

  • 期刊类型引用(1)

    1. 边佳琪,时美楠,吴怀春,汪卫国. 俄罗斯极地海表层海水悬浮体浓度和磁性矿物分布特征及其影响因素. 海洋地质与第四纪地质. 2022(05): 94-102 . 本站查看

    其他类型引用(1)

图(6)  /  表(1)
计量
  • 文章访问数:  58093
  • HTML全文浏览量:  4210
  • PDF下载量:  129
  • 被引次数: 2
出版历程
  • 收稿日期:  2021-08-23
  • 修回日期:  2021-09-06
  • 网络出版日期:  2021-09-25
  • 刊出日期:  2021-10-27

目录

/

返回文章
返回