南黄海中-古生界地震勘探震源设计及其应用

李玉剑, 张异彪, 刘璐晨, 黄涛, 李斌, 陈建文

李玉剑, 张异彪, 刘璐晨, 黄涛, 李斌, 陈建文. 南黄海中-古生界地震勘探震源设计及其应用[J]. 海洋地质与第四纪地质, 2019, 39(2): 200-212. DOI: 10.16562/j.cnki.0256-1492.2018011905
引用本文: 李玉剑, 张异彪, 刘璐晨, 黄涛, 李斌, 陈建文. 南黄海中-古生界地震勘探震源设计及其应用[J]. 海洋地质与第四纪地质, 2019, 39(2): 200-212. DOI: 10.16562/j.cnki.0256-1492.2018011905
LI Yujian, ZHANG Yibiao, LIU Luchen, HUANG Tao, LI Bin, CHEN Jianwen. Seismic source specially designed for the Meso-Paleozoic strata and its applicaton to South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 200-212. DOI: 10.16562/j.cnki.0256-1492.2018011905
Citation: LI Yujian, ZHANG Yibiao, LIU Luchen, HUANG Tao, LI Bin, CHEN Jianwen. Seismic source specially designed for the Meso-Paleozoic strata and its applicaton to South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 200-212. DOI: 10.16562/j.cnki.0256-1492.2018011905

南黄海中-古生界地震勘探震源设计及其应用

基金项目: 

南黄海油气资源调查 DD20160512

南黄海前第三系油气前景研究 XQ-2005-01

南黄海海域油气资源普查 GZH20080503

详细信息
    作者简介:

    李玉剑(1987—), 男, 硕士, 工程师, 主要从事海洋地震采集参数设计与论证, E-mail:chinaliyujian@126.com

    通讯作者:

    张异彪(1969—), 男, 高级工程师, 主要从事海洋地质、地球物理调查研究, E-mail:zyb@sopgc.com

  • 中图分类号: P738

Seismic source specially designed for the Meso-Paleozoic strata and its applicaton to South Yellow Sea

  • 摘要: 南黄海崂山隆起存在新近系底界T2强反射界面, 中深部发育多套碳酸盐岩高速层, 并经历长期的压实作用及复杂的构造运动, 波阻抗差异变小, 构造特征更为复杂, 使得地震波场复杂, 深层有效的地震反射信号较弱, 信噪比较低, 成像质量较差。为了改善中-古生界反射波成像质量, 着重对震源端进行攻关, 优化设计了2组富低频、强能量的气枪组合震源(总容量为6390in3), 分别是沉放10m的平面组合震源和“倒梯形”立体组合震源(4子阵沉放深度分别为7、10、10、7m)。通过外业试验, 优选了低频更强的平面组合震源作为地震采集震源方案。与以往地震资料进行了对比, 本次采集的地震资料能量衰减较慢, 深层能量更强, 整体改善了T2不整合面下伏反射层的成像质量, 为该区的中-古生界油气勘探奠定基础。
    Abstract: Successful seismic survey in the South Yellow Sea has been a great challenge to both researchers and oil industry for years. The seismic reflection signal from deep is always very weak and the seismic wave field very complex. Therefore, the seismic imaging quality of the deep strata has been considerably poor in the past decades. The main reasons come from: 1. there are a strong reflector (T2 seismic reflection interface) and multi-sets of carbonate strata with high seismic velocity widely distributed in the region. 2. the impedance contrast of strata is small in the region as both the Mesozoic and Paleozoic strata have suffered long-term compaction. 3. the structure of the region is too complicated as the result of strong tectonic movement. In this paper, we proposed a specific and targeted seismic survey design, especially a special air-gun source, for the purpose to improve the images from the deep part. A systematic review is made on airgun theories. The wavelet features of sigle airguns, strongly-interacting clustered airguns, weakly- interacting tuning airguns and sub-array airguns are reviewed one by one. Above it, key factors for multi-level source are analyzed, such as the sub-array depth combination and firing time-delay. Then a design approach on plane-distributed airgun source and cubic-distributed airgun source(multi-level source) are developed. A 6390in3 airgun source composed of 4 sub-arrays is specially designed for the South Yellow Sea 2016 Project. Two sets of seismic source is optimized, one is 10m in depth for all 4 sub-arrays and the other is 7m-10m-10m-7m in depth in shape of an inverted trapezoid. Field testing demonstrates that the plane-distributed airgu system with stronger low frequency components absorbs less energy and thus is more effective. It is a breakthrough indeed. Some deep strata become visible, and the seismic signal of the deep strata strengthened. The general quality of seismic images below the strong reflector (T2 seismic reflection interface) is greatly improved. The breakthrough and improvement have laid a solid foundations for future exploration of petroleum in deep strata of the region.
  • 致谢: 特别感谢青岛海洋地质研究所施剑、刘俊等在本研究工作中的悉心指导!衷心感谢杨文达、徐洪斌、周云和等专家的帮助和指导!
  • 图  1   南黄海构造区划图(据青岛海洋地质研究所,2016年)

    Figure  1.   Tectonic map of the South Yellow Sea

    图  2   南黄海某海域近道剖面多次波特征

    Figure  2.   The multiple characteristics in a near trace profile of South Yellow Sea

    图  3   南黄海某海域叠前时间偏移叠加剖面

    Figure  3.   PTSM profile along a seismic line in South Yellow Sea

    图  4   6390in3气枪组合震源平面排布示意图

    Figure  4.   Distribution of the 6390in3 source

    图  5   气枪组合震源(6390in3)不同沉放深度模拟远场子波波形对比

    Figure  5.   Comparison of the far-field seismic wavelet signature of 6390in3 source in different depths

    图  6   气枪组合震源(6390in3)不同沉放深度模拟远场子波频谱对比

    Figure  6.   Comparison of the far-field seismic wavelet spectrum of 6390in3 source in different depths

    图  7   气枪立体组合震源(6390in3)不同沉放深度模拟远场子波波形对比

    Figure  7.   Comparison of the far-field seismic wavelet spectrum of 6390in3 source in different depths

    图  8   气枪立体组合震源(6390in3)不同沉放深度模拟远场子波频谱对比

    Figure  8.   Comparison of the far-field seismic wavelet spectrum of 6390in3 source in different depths

    图  9   6390in3气枪平面组合震源和5040in3立体组合震源远场子波波形对比

    Figure  9.   Seismic wavelet comparison of 6390in3 traditional source and 5040in3 multi-level source

    图  10   6390in3气枪平面组合震源和5040in3立体组合震源远场子波频谱对比

    Figure  10.   Spectrum comparison of 6390in3 traditional source and 5040in3 multi-level source

    图  11   6390in3“倒梯形”立体组合震源和5040in3立体组合震源远场子波波形对比

    Figure  11.   Seismic wavelet comparison of 6390in3 multi-level source with inverted-trapezoid shape and 5040in3 multi-level source

    图  12   6390in3“倒梯形”立体组合震源和5040in3立体组合震源远场子波频谱对比

    Figure  12.   Spectrum comparison of 6390in3 multi-level source with inverted-trapezoid shape and 5040in3 multi-level source

    图  13   6390in3气枪平面组合震源和“倒梯形”立体组合震源远场子波波形对比

    Figure  13.   Seismic wavelet comparison of 6390in3 traditional source and multi-level source with inverted-trapezoid shape

    图  14   6390in3气枪平面组合震源和“倒梯形”立体组合震源远场子波频谱对比

    Figure  14.   Spectrum comparison of 6390in3 traditional source and multi-level source with inverted-trapezoid shape

    图  15   4组试验方案初叠剖面

    Figure  15.   Pre-stacked profiles of the 4 test plans

    图  16   4组试验方案目的层段(双程旅行时1.5~3s)频谱分析

    Figure  16.   Spectrum analysis of the target strata (double travel time 1.5~3s) of the 4 test plans

    图  17   试验方案1和4叠后偏移剖面对比(据陈建文等,2016年)

    Figure  17.   Comparison of post-migration profiles between test plan 1 and plan 4

    图  18   平面和立体组合震源电缆沉放16m子波波形对比(T=3s,Q=110)

    Figure  18.   Comparison of the seismic wavelet on conventional and multi-level source in 16m(T=3s, Q=110)

    图  19   平面和立体组合震源电缆沉放16m子波频谱对比(T=3s,Q=110)

    Figure  19.   Comparison of the seismic wavelet spectrum on conventional and multi-level source in 16m(T=3s, Q=110)

    图  20   单炮记录浅、中、深层均方根振幅对比分析

    Figure  20.   Comparison of the RMS Aptitudes on shallow, middle and deep strata in single shot gathers

    图  21   叠加剖面对比分析

    Figure  21.   Comparison of the stacked seismic profiles

    表  1   南黄海盆地地震反射界面以及地质属性(据陈建文等,2016年)

    Table  1   The seismic reflection interfaces and their geological properties

    下载: 导出CSV

    表  2   气枪组合震源(6390in3)不同沉放深度模拟远场子波参数统计

    Table  2   The far-field seismic wavelet parameters on 6390in3 source in different depths

    沉放深度/m 主峰值/(bar·m) 峰-峰值/(bar·m) 初泡比 低截频/(-6dB,Hz) 高截频/(-6dB,Hz) 优势频宽/(-6dB,Hz) 主频/(-6dB,Hz)
    6 113.0 234.7 26.1 6 99 93 52.5
    8 107.7 222.2 19.8 6 89 83 47.5
    10 110.6 228.0 19.9 6 66 60 36
    12 106.9 220.3 13.8 6 50 44 28
    下载: 导出CSV

    表  3   气枪立体组合震源(6390in3)不同沉放深度模拟远场子波参数统计

    Table  3   The far-field seismic wavelet parameters on 6390in3 source in different depths

    沉放深度/m 主峰值/
    (bar·m)
    峰-峰值/
    (bar·m)
    初泡比 低截频/
    (-6dB,Hz)
    高截频/
    (-6dB,Hz)
    优势频宽/
    (-6dB,Hz)
    主频/
    (-6dB,Hz)
    5.5/10 109.1 183.5 20.1 6 70 64 38.0
    7/10 112.6 182.5 20.6 6 70 64 38.0
    8.5/10 108.4 206.7 20.8 6 69 63 37.5
    下载: 导出CSV

    表  4   气枪立体组合震源(6390in3)不同组合形状模拟远场子波参数统计

    Table  4   The seismic wavelet parameters of 6390in3 multi-level source in different shapes

    序号 震源沉放
    深度/m
    主峰值/
    (bar·m)
    峰-峰值/
    (bar·m)
    初泡比 低截频/
    (-6dB,Hz)
    高截频/
    (-6dB,Hz)
    优势频宽/
    (-6dB,Hz)
    主频/
    (-6dB,Hz)
    1 倒梯形7-10-10-7 112.6 182.5 20.6 6 70 64 38.0
    2 正梯形10-7-7-10 112.1 178.0 18.0 6 70 64 38.0
    3 N形10-7-10-7 112.4 178.6 15.3 6 70 64 38.0
    下载: 导出CSV

    表  5   地震数据采集参数试验方案

    Table  5   4 test plans for acquisition of parameters

    试验方案 震源类型 震源沉放深度/m 电缆沉放深度/m
    1 平面组合震源 10 16
    2 平面组合震源 10 20
    3 “倒梯形”立体组合震源 7-10-10-7 20
    4 “倒梯形”立体组合震源 7-10-10-7 16
    下载: 导出CSV
  • [1] 陈建文, 龚建明, 李刚, 等.南黄海盆地海相中-古生界油气资源潜力巨大[J].海洋地质前沿, 2016, 32(1):1-7.

    CHEN Jianwen, GONG Jianming, LI Gang, et al.Great resources potential of the marine Mesozoic-Paleozoic in the South Yellow Sea basin[J]. Marine Geology Frontiers, 2016, 32(1):1-7.

    [2] 杨金玉.南黄海盆地与周边构造关系及海相中-古生界分布特征与构造演化研究[D].浙江大学, 2010.

    YANG Jinyu. Research on the tectonic relation between the South Yellow Sea basin and its adjacent area and distribution characteristic and tectonic evolution of the Mesozoic-Paleozoic marine strata[D].Zhejiang University, 2010.

    [3] 马立桥, 陈汉林, 董庸, 等.苏北-南黄海南部叠合盆地构造演化与海相油气勘探潜力[J].石油与天然气地质, 2007, 28(1):35-42. doi: 10.3321/j.issn:0253-9985.2007.01.005

    MA Liqiao, CHEN Hanlin, DONG Yong, et al. Tectonic evolution of Subei-Nanhuanghai superim posed basin from the late Mesozoic to Cenozoic and marine petroleum potential[J]. Oil & Gas Geology, 2007, 28(1):35-42. doi: 10.3321/j.issn:0253-9985.2007.01.005

    [4] 侯方辉, 张志珣, 张训华, 等.南黄海盆地地质演化及构造样式地震解释[J].海洋地质与第四纪地质, 2008, 28(5):61-68. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=64dd6cf3-ddca-482e-941c-6a365b2da7fd

    HOU Fanghui, ZHANG Zhixun, ZHANG Xunhua, et al. Geologic evolution and tectonic styles in the South Yellow Sea basin[J]. Marine Geology & Quaternary Geology, 2008, 28(5):61-68. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=64dd6cf3-ddca-482e-941c-6a365b2da7fd

    [5] 祁江豪.南黄海盆地中、古生界构造演化及与四川盆地对比分析[D].中国地质大学(北京), 2012.

    QI Jianghao. Mesozoic-Paleozoic tectonic evolution in the South Yellow Sea basin and the comparative analysis with Sichuan basin[D]. China University of Geosciences(Beijing), 2012.

    [6] 庞玉茂, 张训华, 肖国林, 等.下扬子南黄海沉积盆地构造地质特征[J].地质论评, 2016, 62(3):604-616. http://d.old.wanfangdata.com.cn/Periodical/dzlp201603006

    PANG Yumao, ZHANG Xunhua, XIAO Guolin, et al. Structural and geological characteristics of the South Yellow Sea Basin in Lower Yangtze Block[J].Geological Review, 2016, 62(3):604-616. http://d.old.wanfangdata.com.cn/Periodical/dzlp201603006

    [7] 吴志强, 吴时国, 童思友, 等.基于南黄海海相油气勘探的地震采集技术研究[J].地球物理学报, 2011, 54(4):1061-1070. doi: 10.3969/j.issn.0001-5733.2011.04.021

    WU Zhiqiang, WU Shiguo, TONG Siyou, et al. A study on seismic acquisition basic on marine carbonate hydrocarbon exploration in the southern Yellow Sea[J]. Chinese Journal of Geophysics, 2011, 54(4):1061-1070. doi: 10.3969/j.issn.0001-5733.2011.04.021

    [8] 吴志强, 骆迪, 曾天玖, 等.南黄海海相油气地震勘探难点分析与对策建议[J].海相油气地质, 2014, 19(3):8-17. doi: 10.3969/j.issn.1672-9854.2014.03.002

    WU Zhiqiang, LUO Di, ZENG Tianjiu, et al. Techinical difficulties and countermeasures of petroleum seismic exploration in the South Yellow Sea basin[J]. Marine Origin Petroleum Geology, 2014, 19(3):8-17. doi: 10.3969/j.issn.1672-9854.2014.03.002

    [9] 张海啟, 陈建文, 李刚, 等.地震调查在南黄海崂山隆起的发现及其石油地质意义[J].海洋地质与第四纪地质, 2009, 29(3):107-113. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=4eebe772-99fd-42f2-9eeb-aa7a99680ae6

    ZHANG Haiqi, CHEN Jianwen, LI Gang, et al. Discovery from seismic survey in LaoShan Uplift of the South Yellow Sea and the significance[J].Marine Geology & Quaternary Geology, 2009, 29(3):107-113. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=4eebe772-99fd-42f2-9eeb-aa7a99680ae6

    [10] 熊忠, 张敏强, 高顺莉, 等.南黄海中、古生界地震波场反射特征模拟与采集技术攻关[J].地球物理学进展, 2016, 31(5):2172-2180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201605040

    XIONG Zhong, ZHANG Minqiang, GAO Shunli, et al. Seismic wave field simulation for reflection characteristics and technology study on seismic acquisition of Mesozoic-Paleozoic in the South Yellow Sea[J]. Progress in Geophysics, 2016, 31(5):2172-2180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201605040

    [11] 吴志强.南黄海中部隆起海相地层油气地震勘探关键技术研究[D].中国海洋大学, 2009.

    WU Zhiqiang. The seismic techniques for exploring marine facies stratigraphic hydrocarbon entrapped in the middle uplift of the South Yellow Sea[D]. Ocean University of China, 2009.

    [12] 邢涛, 张训华, 张维冈.南黄海地球物理调查研究现状[J].海洋地质态, 2005, 21(6):1-4, 37. http://d.old.wanfangdata.com.cn/Periodical/hydzdt200506001

    XING Tao, ZHANG Xunhua, ZHANG Weigang. Progress in geophysical survey and researches in the South Yellow Sea [J]. Marine Geology Letters, 2005, 21(6):1-4, 37. http://d.old.wanfangdata.com.cn/Periodical/hydzdt200506001

    [13]

    Guillaume Cambois, Multi-level airgun array a simple and effecttive way to enhance the low frequency content of marine seismic data[C]. SEG, 2009.

    [14]

    Zhan Fu, Source deghosting for synchronized multi-level source streamer data[C].SEG, 2015.

    [15] 陈建文, 施剑, 刘俊, 等.南黄海海相中-古生界地震地质条件[J].海洋地质前沿, 2016, 32(10):1-8. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201610001

    CHEN Jianwen, SHI Jian, LIU Jun, et al. Seismic geological conditions of the marine Meso-Paleozoic in the South Yellow Sea basin[J]. Marine Geology Frontiers, 2016, 32(10):1-8. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201610001

    [16] 金之钧.中国海相碳酸盐岩层系油气勘探特殊性问题[J].地学前缘, 2005, 12(3):15-22. doi: 10.3321/j.issn:1005-2321.2005.03.003

    JIN Zhijun. Particularity of petroleum exploration on marine carbonate strata in China sedimentary basins[J]. Earth Science Fromtiers, 2005, 12(3): 15 —22. doi: 10.3321/j.issn:1005-2321.2005.03.003

    [17] 李可恩.含高速屏蔽层的地震数据采集及分析[D].成都理工大学, 2007.

    LI Keen. Seismic acquisition and analysis in the area of high velocity shielding layers[D]. Chengdu University Technology, 2007.

    [18] 孟祥梅, 刘保华, 阚光明, 等.南黄海海底沉积物声学特性及其影响因素试验研究[J].海洋学报, 2012, 34(6):74-83. http://d.old.wanfangdata.com.cn/Periodical/hyxb201206009

    MENG Xiangmei, LIU Baohua, KAN GuanGmin. et al. An experimental study on acoustic properties and their influencing factors of marine sediment in the southern Huanghai Sea[J]. Acta Oceanologica Sinica, 2012, 34(6):74-83. http://d.old.wanfangdata.com.cn/Periodical/hyxb201206009

    [19] 李鹏, 刘伊克, 常旭, 等.多次波问题的研究进展[J].地球物理学进展, 2006, 21(3):888-897. doi: 10.3969/j.issn.1004-2903.2006.03.029

    LI Peng, LIU Yike, CHANG Xu, et al. Progress on the multiple problems[J]. Progress in Geophysics, 2006, 21(3):888-897. doi: 10.3969/j.issn.1004-2903.2006.03.029

    [20] 张广利, 郝重涛, 姚陈.海洋地震资料多次波衰减方法综述[J].地球物理学进展, 2016, 31(6):2777-2787. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201606057

    ZHANG Guangli, HAO Chongtao, YAO Chen.Summary of multiples attenuation approaches in marine seismic data processing[J]. Progress in Geophysics, 2016, 31(6):2777-2787. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201606057

    [21] 陈建文, 龚建明, 李刚, 等.南黄海盆地海相中-古生界油气资源潜力巨大[J].海洋地质前沿, 2016, 32(1):1-7.

    CHEN Jianwen, GONG Jianming, LI Gang, et al. Great resources potential of the marine Mesozoic-Paleozoic in the South Yellow Sea basin[J]. Marine Geology Frontiers, 2016, 32(1):1-7.

    [22] 王建花, 李庆忠, 邱睿.浅层强反射界面的能量屏蔽作用[J].石油地球物理勘探, 2003, 38(6):589-596+602-708+577. doi: 10.3321/j.issn:1000-7210.2003.06.002

    WANG Jianhua, LI Qingzhong, QIU Rui. Energy shielding action of shallow strong reflector[J].OGP, 2003, 38(6):589-596+602-708+577. doi: 10.3321/j.issn:1000-7210.2003.06.002

    [23] 王立明.范氏气体下气枪激发子波信号模拟研究[D].长安大学, 2010.

    WANG Liming. Simulation study on signature stimulated by air-guns in conditions of van der waals gas[D]. Changan University, 2010.

    [24]

    Ziolkowski A. Measurement of air-gun bubble oscillations[J]. Geophysics, 1998, 63(6):2009-2024. doi: 10.1190/1.1444494

    [25]

    Ziolkowski A M, Hanssen P, Gatliff R, et al. Use of low frequencies for sub-basalt imaging[J].Geophysical Prospecting. 2003, 51:169-182. doi: 10.1046/j.1365-2478.2003.00363.x

    [26]

    Safar M H. The radiation of acoustic waves from an airgun[J]. Geophysical Prospecting, 1976, 24:756-772. doi: 10.1111/gpr.1976.24.issue-4

    [27]

    Nooteboom J J. Signature and amplitude of linear air gun arrays[J]. Geophysical Prospecting, 1978, 26:194-201. doi: 10.1111/gpr.1978.26.issue-1

    [28]

    SHEN Honglei, Elboth Thomas, TIAN Gang, et al. Modeling of multi-depth slanted airgun source for deghosting[J]. Applied Geophysics, 11(4):405-417. doi: 10.1007/s11770-014-0461-1

    [29]

    Denis Mougenot, Sercel France. Land and marine equipment for broadband seismic[C]. SEG, 2012.

    [30] 杨凯, 陈华, 顾汉明.深水立体延迟激发气枪震源的设计与应用[J].工程地球物理学报, 2011, 8(6): 641-647. doi: 10.3969/j.issn.1672-7940.2011.06.001

    YANG Kai, CHEN Hua, GU Hanming. The design and application of tridimensional delayed excitation air-gun arrays to deep water seismic exploration[J]. Chinese Journal of Engineering Geophysics, 2011, 8(6):641- 647. doi: 10.3969/j.issn.1672-7940.2011.06.001

    [31]

    Zhan Fu, Nan Du, Hao Shen, et al.Source deghosting for synchronized multi-level source streamer data[C].SEG, 2015.

    [32]

    Cambois G, Long A, Parkes G, et al.Multi-level airgun array - A simple and effective way to enhance low frequencies in marine seismic[C].EAGE, 2009.

    [33]

    Ronan Sablon, Thierry Payen, Helene Tonchia, et al. Ghost-free imaging combining synchronized multi-level source and variable-depth streamer[C].SEG, 2013.

    [34] 唐松华, 李斌, 张异彪, 等.立体阵列组合技术在南黄海盆地的应用[J].海洋地质前沿, 2013, 29(5):64-70. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201305009

    TANG Songhua, LI Bin, ZHANG Yibiao, et al. Application of tridimensional delayed excitation air-gun array in the South Yellow Sea basin[J]. Marine Geology Frontiers, 2013, 29(5):64-70. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201305009

图(21)  /  表(5)
计量
  • 文章访问数:  2777
  • HTML全文浏览量:  811
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-18
  • 修回日期:  2018-03-22
  • 刊出日期:  2019-04-27

目录

    /

    返回文章
    返回