东海陆架盆地南部海域油气地球化学探测:烃类地球化学异常与含油气性综合评价

李双林, 王建强, 董贺平, 赵青芳

李双林, 王建强, 董贺平, 赵青芳. 东海陆架盆地南部海域油气地球化学探测:烃类地球化学异常与含油气性综合评价[J]. 海洋地质与第四纪地质, 2019, 39(6): 188-199. DOI: 10.16562/j.cnki.0256-1492.2019070302
引用本文: 李双林, 王建强, 董贺平, 赵青芳. 东海陆架盆地南部海域油气地球化学探测:烃类地球化学异常与含油气性综合评价[J]. 海洋地质与第四纪地质, 2019, 39(6): 188-199. DOI: 10.16562/j.cnki.0256-1492.2019070302
LI Shuanglin, WANG Jianqiang, DONG Heping, ZHAO Qingfang. Oil and gas geochemical exploration in the southern part of East China Sea Shelf Basin—Hydrocarbon anomalies and integrated evaluation of oil-gas potentials[J]. Marine Geology & Quaternary Geology, 2019, 39(6): 188-199. DOI: 10.16562/j.cnki.0256-1492.2019070302
Citation: LI Shuanglin, WANG Jianqiang, DONG Heping, ZHAO Qingfang. Oil and gas geochemical exploration in the southern part of East China Sea Shelf Basin—Hydrocarbon anomalies and integrated evaluation of oil-gas potentials[J]. Marine Geology & Quaternary Geology, 2019, 39(6): 188-199. DOI: 10.16562/j.cnki.0256-1492.2019070302

东海陆架盆地南部海域油气地球化学探测:烃类地球化学异常与含油气性综合评价

基金项目: 中国地质调查局项目(DD20190211);国家自然科学基金项目“南黄海崂山隆起中南部海底渗漏烃类源区示踪与运移路径重建”(41776075);山东省基金项目“南黄海盆地崂山隆起海底烃类渗漏成因及其三维模型构建”(ZR2019BD067)
详细信息
    作者简介:

    李双林(1962—),男,博士,研究员,现主要从事海洋油气地球化学方面的研究工作,E-mail:lishuanglin5335@hotmail.com

  • 中图分类号: P736.4

Oil and gas geochemical exploration in the southern part of East China Sea Shelf Basin—Hydrocarbon anomalies and integrated evaluation of oil-gas potentials

  • 摘要: 通过对东海陆架盆地南部海域油气地球化学样品采集、酸解烃类气体和芳烃类指标的分析测试,以及地球化学异常提取,揭示了烃类地球化学指标的异常分布特征,分析了烃类气体的成因类型和深部油气属性,进行了综合地球化学异常分区和含油气性评价。烃类地球化学指标,包括酸解甲烷、酸解乙烷、芳烃及其衍生物总量260 nm和稠环芳烃总量360 nm的异常,主要集中分布在研究区的西部和东部,分别与瓯江凹陷和闽江凹陷相对应。酸解烃类气体组合及甲烷碳同位素组成指示酸解烃类气体异常主要为热成因并遭受了表层氧化,深部油气属性属于干气至凝析油气,以干气为主。根据综合地球化学异常特征,划分了西部综合地球化学异常区和东部综合地球化学异常区。酸解甲烷、酸解乙烷、芳烃及其衍生物总量260 nm和稠环芳烃总量360 nm指标异常在西部综合地球化学异常区均有明显显示,而东部综合地球化学异常区则以酸解烃类气体异常为主,稠环芳烃总量360 nm异常部分分布,芳烃及其衍生物总量260 nm异常只有零星分布。综合评价结果表明,西部综合地球化学异常区含油气性明显优于东部综合地球化学异常区,也就是瓯江凹陷的含油气性好于闽江凹陷。
    Abstract: Geochemical samples are collected from the southern part of East China Sea Shelf Basin and analyzed for oil and gas geochemical indices by the authors. Geochemical indices, such as acidolysis hydrocarbon gases and aromatic hydrocarbons are analyzed. From the analysis results, geochemical anomalies are extracted, and the distribution patterns of anomalous hydrocarbon geochemical indicators revealed, in addition to the genetic types of hydrocarbon gases and deep hydrocarbon attributes. Based upon the work, integrated geochemical anomaly areas are defined and their hydrocarbon-bearing capacity evaluated for the southern area of the East China Sea Shelf Basin. The indicators of the hydrocarbon geochemical anomalies include acidolysis methane and acidolysis ethane. The anomalies with total aromatics and their derivatives over 260 nm and the total polycyclic aromatic hydrocarbons above 360 nm, are mainly distributed in the eastern and western parts of the study area, corresponding to the Oujiang Sag and Minjiang Sag, respectively. Acidolysis hydrocarbon gas assemblages and methane carbon isotope compositions suggest that the anomalies of acidolysis hydrocarbon gas are mainly thermogenic type and have suffered surface oxidation. Deep hydrocarbon attributes suggest a source of dry gas to condensate oil -gas, dominated by dry gas. According to the distribution pattern of geochemical anomalies, the western comprehensive geochemical anomaly area and the eastern comprehensive geochemical anomaly areas are divided. The anomalies of acidolysis methane, acidolysis ethane, total aromatics and their derivatives over 260 nm and total polycyclic aromatics over 360 nm are evident in the western comprehensive geochemical anomaly area, while the eastern comprehensive geochemical anomaly area is dominated by acidolysis hydrocarbon gas anomalies. The total polycyclic aromatics at 360 nm are locally observed, the total aromatics and their derivatives at 260 nm are only sporadically observed in the east comprehensive geochemical anomaly area. Therefore, the western comprehensive geochemical anomaly area is obviously better than that of the eastern comprehensive geochemical anomaly area, that is, the oil and gas-bearing capacity of the Oujiang Sag is better than that of the Minjiang Sag.
  • 图  1   东海陆架盆地南部海域地球化学探测取样站位图

    Figure  1.   Sampling locations of geochemical exploration in the southern part of the East China Sea Shelf Basin

    图  2   主要地球化学指标相关分析图

    Figure  2.   Correlation of main geochemical indicators

    图  3   主要地球化学指标频率分布图

    Figure  3.   Frequency charts of main geochemical indicators

    图  4   海底沉积物酸解甲烷地球化学异常分布图

    Figure  4.   Geochemical anomaly map of acidolysis methane from seabed sediments

    图  5   海底沉积物酸解乙烷地球化学异常分布图

    Figure  5.   Geochemical anomaly map of acidolysis ethane from seabed sediments

    图  6   海底沉积物芳烃及其衍生物总量260 nm地球化学异常分布图

    Figure  6.   Geochemical anomaly map of the total amount of aromatics and their derivatives over 260 nm from seabed sediments

    图  7   海底沉积物稠环芳烃总量360 nm地球化学异常分布图

    Figure  7.   Geochemical anomaly map of the total amount of polycyclic aromatic hydrocarbons over 360 nm from seabed sediments

    图  8   海底沉积物酸解烃类气体Bernard图 (据文献[7])

    Figure  8.   Bernard diagram of acidolysis hydrocarbon gases from seabed sediments(after reference [7])

    图  9   海底沉积物酸解烃类气体δ13C1与C1/C1-5图(据文献[10])

    Figure  9.   δ13C1 and C1/C1-5 diagram of acidolysis hydrocarbon gases from seabed sediments(after reference [10])

    图  10   海底沉积物酸解烃类气体C1/C2+C3与C2/C3+C4图(据文献[11])

    Figure  10.   C1/C2+C3 and C2/C3+C4 diagram of acidolysis hydrocarbon gases from seabed sediments(after reference [11])

    图  11   海底沉积物酸解烃类气体C2/C3频率分布与油气类型图(据文献[20])

    Figure  11.   C2/C3 frequency distribution of acidolysis hydrocarbon gases from seabed sediments and oil-gas types(after reference [20])

    图  12   东海陆架盆地南部海域油气地球化学异常区综合评价

    Figure  12.   Comprehensive evaluation map of oil and gas geochemical anomaly areas in the southern part of the East China Sea Shelf Basin

    表  1   地球化学指标数值特征

    Table  1   Data of geochemical indicators

    指标及数值参数最小值最大值均值标准偏差变异系数
    酸解甲烷(μL/kg)28.341 106.38310.13181.710.59
    酸解乙烷(μL/kg)0.6216.955.913.320.56
    酸解丙烷(μL/kg)0.154.631.760.930.53
    酸解异丁烷(μL/kg)0.031.150.470.260.55
    酸解正丁烷(μL/kg)0.041.530.570.320.56
    酸解异戊烷(μL/kg)0.050.970.340.210.62
    酸解正戊烷(μL/kg)0.020.670.230.130.57
    芳烃及其衍生物220 nm(ω(B)(10−9))2.902 615.70218.47489.212.24
    芳烃及其衍生物260 nm(ω(B)(10−9))1.002 502.10154.82404.142.61
    芳烃及其衍生物275 nm(ω(B)(10−9))0.602 520.60149.97400.902.67
    稠环芳烃320 nm(ω(B)(10−9))5.9075.0018.617.870.43
    稠环芳烃360 nm(ω(B)(10−9))6.4079.0021.5912.440.58
    稠环芳烃405 nm(ω(B)(10−9))1.2046.007.016.460.92
    下载: 导出CSV

    表  2   海底沉积物酸解烃类气体异常属性判别标志[7-8]

    Table  2   Discriminant index of anomaly attributes of acidolysis hydrocarbon gases from seabed sediments[7-8]

    C1/C2+C3C1/C2δ13C1/‰
    判别标准生物构成>1 000<−54
    热成因<504~100−20~−54
    研究区酸解烃类气体29.80~54.9839.78~72.07−32.4~−34.8
    下载: 导出CSV

    表  3   东海陆架盆地南部海域综合地球化学异常区累积得分及评价结果

    Table  3   Accumulative score and evaluation results of comprehensive geochemical areas in the southern part of the East China Sea shelf basin

    综合地球化学异常区评价因子异常指标累积得分
    酸解甲烷酸解乙烷芳烃及其衍生物总量260 nm稠环芳烃总量360 nm
    西部综合地球化学异常区(A)异常规模222225
    异常强度2222
    构造符合2222
    油气显示1
    东部综合地球化学异常区(B)异常规模220115
    异常强度2201
    构造符合2201
    油气显示0
    下载: 导出CSV
  • [1]

    Horvitz L. Geochemical exploration for petroleum [J]. Science, 1985, 229(4716): 812-827.

    [2]

    Brooks J M, Kennicott M C, Carey B D. Offshore surface geochemical exploration [J]. Oil and Gas Journal, 1986, 84(42): 66-72.

    [3]

    Abrams M A. Geophysical and geochemical evidence for subsurface hydrocarbon leakage in the Bering Sea, Alaska [J]. Marine and Petroleum Geology, 1992, 9(2): 208-221. doi: 10.1016/0264-8172(92)90092-S

    [4]

    Abrams M A. Interpretation of Methane Carbon Isotopes Extracted from Surficial Marine Sediments for Detection of Subsurface Hydrocarbons[M]//Schumacher D, Abrams M A. Hydrocarbon Migration and Its Near-Surface Expression. Tulsa, Oklahoma, USA: AAPG, 1996, 66: 309-318.

    [5]

    Klusman R W, Saeed M A. Comparison of Light Hydrocarbon Microseepage Mechanism[M]//Schumacher D, Abrams M A. Hydrocarbon Migration and Its Near-Surface Expression. Tulsa, Oklahoma, USA: AAPG, 1996, 66: 157-168.

    [6]

    Faber E, Stahl W. Geochemical surface exploration for hydrocarbons in North Sea [J]. AAPG Bulletin, 1984, 68(3): 363-386.

    [7]

    Bernard B B, Brooks J M, Sackett W M. Light hydrocarbons in recent Texas continental shelf and slope sediments [J]. Journal of Geophysical Research: Oceans, 1978, 83(C8): 4053-4061. doi: 10.1029/JC083iC08p04053

    [8]

    Bernard B, Brooks J M, Zumberge J. Determining the Origin of Gases in Near Surface Sediments[M]//Near-Surface Hydrocarbon Migration:Mechanisms and Seepage Rates. Vancouver, BC, Canada: American Association of Petroleum Geologist, 2002,7-10.

    [9]

    Whiticar M J, Suess E, Wehner H. Thermogenic hydrocarbons in surface sediments of the Bransfield Strait, Antarctic Peninsula [J]. Nature, 1985, 314(6006): 87-90. doi: 10.1038/314087a0

    [10]

    Tissot B P, Welte D H. Petroleum Formation and Occurrence[M]. Berlin, Heidelberg: Springer, 1984: 207-224.

    [11]

    Jones V T, Matthews M D, Richers D M. Light hydrocarbons for petroleum and gas prospecting [J]. Handbook of Exploration Geochemistry, 2000, 7: 133-212. doi: 10.1016/S0168-6275(00)80029-X

    [12]

    Abrams M A, Dahdah N F, Geršlová E. Evaluating petroleum systems in frontier exploration areas using seabed geochemistry [J]. World Oil, 2004, 225(6): 53-60.

    [13]

    Abrams M A. Significance of hydrocarbon seepage relative to petroleum generation and entrapment [J]. Marine and Petroleum Geology, 2005, 22(4): 457-477. doi: 10.1016/j.marpetgeo.2004.08.003

    [14] 李维显, 刘峻, 黄招莲. 东海油气表层地球化学勘查指标的讨论[J]. 物探与化探, 1993, 17(2):98-101. [LI Weixian, LIU Jun, HUANG Zhaolian. A discussion on indices of surface geochemical exploration for oil and gas in the East Sea [J]. Geophysical and Geochemical Exploration, 1993, 17(2): 98-101.
    [15] 朱炳球, 孙忠军, 余慧. 浅海油气地球化学勘查前景[J]. 物探与化探, 1996, 20(3):161-172. [ZHU Bingqiu, SUN Zhongjun, YU Hui. The prospects of shallow-sea oil and gas geochemical exploration [J]. Geophysical and Geochemical Exploration, 1996, 20(3): 161-172.
    [16] 张建培, 王飞. 海洋油气地球化学勘探-以东海某研究区为例[J]. 石油实验地质, 1997, 19(4):332-336. [ZHANG Jianpei, WANG Fei. Marine hydrocarbon geochemical prospecting -with a study area in East China Sea as a example [J]. Petroleum Geology and Experiment, 1997, 19(4): 332-336. doi: 10.11781/sysydz199704332
    [17] 席敏红, 须雪豪. 西湖凹陷保俶斜坡油气化探资料连片处理与解释[J]. 海洋石油, 1998, 18(3):44-48. [XI Minhong, XU Xuehao. The processing and explaining of hydrocarbon geochemical data in the Baochu slope of the Xihu Sag [J]. Offshore Oil, 1998, 18(3): 44-48.
    [18] 张建培, 须雪豪. 东海海礁凸起地球化学特征及含油气性分析[J]. 海洋石油, 2001, 21(2):1-6. [ZHANG Jianpei, XU Xuehao. Geochemical processing characters & analysis of hydrocarbon potential in the Haijiao Uplift, the East China Sea [J]. Offshore Oil, 2001, 21(2): 1-6. doi: 10.3969/j.issn.1008-2336.2001.02.001
    [19] 李维显. 东海海礁凸起及邻近海区油气表层地球化学勘查[J]. 石油实验地质, 2003, 25(2):190-196. [LI Weixian. Oil and gas surface geochemical exploration in the Haijiao Uplift and its neighbouring of the East China Sea [J]. Petroleum Geology and Experiment, 2003, 25(2): 190-196. doi: 10.3969/j.issn.1001-6112.2003.02.016
    [20] 杨文达, 崔征科, 张异彪. 东海地质与矿产[M]. 北京: 海洋出版社, 2010.

    YANG Wenda, CUI Zhengke, ZHANG Yibiao. Geology and Mineral of East China Sea[M]. Beijing: China Ocean Press, 2010.

    [21] 张锦伟, 赵汗青, 傅志飞. 东海陆架盆地南部构造演化及对油气的控制作用[J]. 海洋石油, 2011, 31(2):8-12. [ZHANG Jinwei, ZHAO Hanqing, FU Zhifei. Tectonic evolution of the southern East China Sea Shelf Basin and its control on hydrocarbon accumulation [J]. Offshore Oil, 2011, 31(2): 8-12. doi: 10.3969/j.issn.1008-2336.2011.02.008
    [22] 刘金水, 廖宗廷, 贾健谊, 等. 东海陆架盆地地质结构及构造演化[J]. 上海地质, 2003(3):1-6. [LIU Jinshui, LIAO Zongting, JIA Jianyi, et al. The geological structure and tectonic evolution of the East China Sea Shelf Basin [J]. Shanghai Geology, 2003(3): 1-6. doi: 10.3969/j.issn.2095-1329.2003.03.001
    [23] 王国纯. 东海盆地油气勘探焦点问题探讨[J]. 中国海上油气(地质), 2003, 17(1):29-32. [WANG Guochun. A discussion on some focal problems of petroleum exploration in East China Sea Basin [J]. China Offshore Oil and Gas(Geology), 2003, 17(1): 29-32. doi: 10.3969/j.issn.1673-1506.2003.01.007
    [24] 杨长清, 杨传胜, 李刚, 等. 东海陆架盆地南部中生代构造演化与原型盆地性质[J]. 海洋地质与第四纪地质, 2012, 32(3):105-111. [YANG Changqing, YANG Chuansheng, LI Gang, et al. Mesozoic tectonic evolution and prototype basin characters in the southern East China Sea Shelf Basin [J]. Marine Geology & Quaternary Geology, 2012, 32(3): 105-111.
    [25] 姜亮. 东海陆架盆地油气资源勘探现状及含油气远景[J]. 中国海上油气(地质), 2003, 17(1):1-5. [JIANG Liang. Exploration status and perspective of petroleum resources in East China Sea Shelf Basin [J]. China Offshore Oil and Gas(Geology), 2003, 17(1): 1-5. doi: 10.3969/j.issn.1673-1506.2003.01.001
    [26] 冯晓杰, 蔡东升. 东海陆架盆地中新生代构造演化对烃源岩分布的控制作用[J]. 中国海上油气, 2006, 18(6):372-375. [FENG Xiaojie, CAI Dongsheng. Controls of Mesozoic and Cenozoic tectonic evolution on source rock distribution in East China Sea Shelf Basin [J]. China Offshore Oil and Gas, 2006, 18(6): 372-375. doi: 10.3969/j.issn.1673-1506.2006.06.003
    [27] 郝乐伟, 王琪, 梁建设, 等. 东海陆架盆地瓯江凹陷烃源岩评价及资源量预测[J]. 天然气地球科学, 2012, 23(6):1054-1059. [HAO Lewei, WANG Qi, LIANG Jianshe, et al. Evaluation of source rock and petroleum resource estimation in the Oujiang Sag, the East China Sea Shelf Basin [J]. Natural Gas Geoscience, 2012, 23(6): 1054-1059.
    [28] 杨传胜, 杨长清, 李刚, 等. 东海陆架盆地中-新生界油气勘探研究进展与前景分析[J]. 海洋地质与第四纪地质, 2018, 38(2):136-147. [YANG Chuansheng, YANG Changqing, LI Gang, et al. Prospecting of Meso-Cenozoic hydrocarbon in the East China Sea Shelf Basin [J]. Marine Geology & Quaternary Geology, 2018, 38(2): 136-147.
    [29]

    Barker J F, Fritz P. Carbon isotope fractionation during microbial methane oxidation [J]. Nature, 1981, 293(5830): 289-291. doi: 10.1038/293289a0

    [30]

    Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane [J]. Chemical Geology, 1999, 161(1-3): 291-314. doi: 10.1016/S0009-2541(99)00092-3

    [31] 李双林, 董贺平, 赵青芳, 等. 北黄海盆地烃类地球化学场与综合异常分区[J]. 海洋地质与第四纪地质, 2010, 30(5):91-99. [LI Shuanglin, DONG Heping, ZHAO Qingfang, et al. Hydrocarbon geochemical fields and anomalies regions in the North Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2010, 30(5): 91-99.
图(12)  /  表(3)
计量
  • 文章访问数:  2635
  • HTML全文浏览量:  611
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-02
  • 修回日期:  2019-07-14
  • 网络出版日期:  2019-10-16
  • 刊出日期:  2019-11-30

目录

    /

    返回文章
    返回