基于光纤感测技术的水合物储层动态温度、应力监测探头研发

陈明涛, 李彦龙, 赵强, 张亚娟, 范好好, 王振豪, 吴能友

陈明涛,李彦龙,赵强,等. 基于光纤感测技术的水合物储层动态温度、应力监测探头研发[J]. 海洋地质与第四纪地质,2025,45(3): 166-180. DOI: 10.16562/j.cnki.0256-1492.2023112001
引用本文: 陈明涛,李彦龙,赵强,等. 基于光纤感测技术的水合物储层动态温度、应力监测探头研发[J]. 海洋地质与第四纪地质,2025,45(3): 166-180. DOI: 10.16562/j.cnki.0256-1492.2023112001
CHEN Mingtao,LI Yanlong,ZHAO Qiang,et al. Research and development of a dynamic temperature and stress monitoring probe for hydrate reservoirs based on fiber optic sensing technology[J]. Marine Geology & Quaternary Geology,2025,45(3):166-180. DOI: 10.16562/j.cnki.0256-1492.2023112001
Citation: CHEN Mingtao,LI Yanlong,ZHAO Qiang,et al. Research and development of a dynamic temperature and stress monitoring probe for hydrate reservoirs based on fiber optic sensing technology[J]. Marine Geology & Quaternary Geology,2025,45(3):166-180. DOI: 10.16562/j.cnki.0256-1492.2023112001

基于光纤感测技术的水合物储层动态温度、应力监测探头研发

基金项目: 

国家自然科学基金 “南海天然气水合物降压开采储层人工裂缝失效机理与增渗修复方法” (U2444215);江苏省研究生科研创新项目 “水力割缝对南海神狐海域含水合物沉积物变形的影响” (KYCX22_0584)

详细信息
    作者简介:

    陈明涛(1994—),男,博士研究生,主要从事天然气水合物开采理论与技术研究,E-mail:ChenMt2022@hhu.edu.cn

    通讯作者:

    李彦龙(1989—),男,博士,研究员,主要从事天然气水合物开采理论与技术研究,E-mail:ylli@qnlm.ac

  • 中图分类号: P754.1;P736

Research and development of a dynamic temperature and stress monitoring probe for hydrate reservoirs based on fiber optic sensing technology

  • 摘要:

    水合物生成与分解以及加载变形下含水合物沉积物内部的温度、应力变化规律对破解水合物储层失稳破坏的演化机制至关重要。为了监测含水合物沉积物内部温度、应力在水合物生成、分解、变形等全过程中的演化机制,本文提出一种基于光纤传感技术的含水合物沉积物温度、应力监测方案,并研制了集温度、应力监测于一体的光纤探头,实现了从沉积物装样到水合物合成到加载变形,再到水合物分解过程中试样温度和应力的监测。与常规热电阻温度传感器和加载压力传感器监测数据初步对比表明,二者具有一致的变化趋势。但在数值上存在一定差异,分析认为是储层的非均质性、应力加载端与光纤感测端的距离变化共同导致。整体而言,光纤感测探头可以较好地捕捉因水合物合成产生的挤压应力升高与水合物分解过程中含水合物沉积物水平应力的降低。

    Abstract:

    Studying the changes in temperature and stress of hydrate-bearing sediment (HBS) during hydrate growth, decomposition, and deformation is crucial for understanding the destabilization mechanism of hydrate reservoir. To monitor the changes of internal temperature and stress in HBS during these processes, we proposed a temperature and stress monitoring scheme for HBS based on fiber-optic sensing technology, for which an optical fiber monitoring probe was designed. The feasibility and precision of the probe in the temperature and stress of HBS were compared with those of conventional sensors. Additionally, the changes of horizontal stress of HBS during hydrate formation and dissociation were effectively monitored by the optical fiber sensor. Experimental results show that the stress and temperature obtained by fiber-optic probe exhibit similar trends to those obtained with conventional sensors. However, some differences were observed due mainly to the heterogeneity of the HBS and the distance between the loading point and the sensing point. Overall, the fiber optic probe could better capture the increase in compressive stress caused by hydrate formation and the decrease in horizontal stress of hydrate-bearing sediments during hydrate decomposition.

  • 图  1   光纤光栅传感原理示意图

    Figure  1.   Schematic diagram of the sensing principle of fiber Bragg grating

    图  2   测试系统示意图

    Figure  2.   Schematic diagram of the testing system

    图  3   光纤温度、压力监测探头结构示意图

    Figure  3.   Schematic of the structure of the temperature and pressure monitoring probe based on fiber-optic technology

    图  4   反应釜内各测试探头布局示意(a)及实物照片(b)

    Figure  4.   Layout of the testing probes in the chamber and the photo

    图  5   测试流程图

    Figure  5.   Flow chart of the testing

    图  6   光纤温度、应力标定曲线

    a:光波波长与温度标定的关系曲线,b:光波波长与应力标定的关系曲线。

    Figure  6.   Calibration curves of temperature and stress of the fiber-optic probe

    Fitting curve of the optical wavelength versus temperature (a) and the stress (b).

    图  7   含水细砂沉积物加载过程中的温度(a)和应力(b)变化曲线

    Figure  7.   Curves of temperature (left) and stress (right) versus the time of water-bearing fine sand loading

    图  8   含水细砂沉积物装样压实过程中的温度(a)和应力(b)监测曲线

    Figure  8.   Temperature (a) and stress (b) monitoring curves of water-bearing fine sand loading and compaction

    图  9   含水合物细砂沉积物在水合物合成阶段温度(a)和应力(b)监测曲线

    Figure  9.   Temperature (a) and stress (a) monitoring curves of hydrate-bearing sediments during hydrate formation

    图  10   加载过程中的含水合物细砂沉积物温度(a)和应力(b)监测曲线

    图中灰蓝色阴影部分为加载阶段。

    Figure  10.   Temperature (a) and stress (b) monitoring curves of hydrate-bearing fine sand sediment loading

    The shaded part represents the loading stage.

    图  11   卸载下监测的含水合物细砂沉积物的温度(a)和应力(b)变化曲线

    Figure  11.   Temperature (a) and stress (b) curves during hydrate-bearing fine sand sediment unloading

    图  12   含水合物细砂沉积物在水合物分解时储层内部温度(a)和压力(b)变化曲线

    Figure  12.   Temperature (a) and internal pressure (b) curves of hydrate-bearing fine sand sediments during hydrate decomposition

    图  13   前人光纤监测与热电阻监测对比图

    a图改自文献[28],b图改自文献[32]。

    Figure  13.   Comparison of the monitoring results from fiber-optic probe and from traditional resistance temperature detectors

    a. Modified from literature [28], b. modified from literature [32].

    图  14   不同变形阶段下含水合物沉积物的变形机制与光纤探头受力变化机制示意图

    图中pz为旁压内液体压力,p为沉积物孔隙压力,σ为沉积物所受的有效应力。

    Figure  14.   Deformation mechanism of hydrate-bearing sediments at different stages of hydrate formation (a), stress applying (b), and hydrate decomposition (c), and the stress variation of the optical fiber probe

    pz, p, and σ denote the liquid pressure of the pressure meter, pore pressure of hydrate-bearing sediment, and effective stress of hydrate-bearing sediment, respectively.

    图  15   光纤光栅监测技术用于海底水合物储层原位监测示意图

    Figure  15.   Schematic of fiber Bragg grating monitoring technology for in situ monitoring of hydrate reservoirs

  • [1] 胡高伟, 李彦龙, 吴能友, 等. 神狐海域W18/19站位天然气水合物上覆层不排水抗剪强度预测[J]. 海洋地质与第四纪地质, 2017, 37(5):151-158

    HU Gaowei, LI Yanlong, WU Nengyou, et al. Undrained shear strength estimation of the cover layer of hydrate at site W18/19 of Shenhu area[J]. Marine Geology & Quaternary Geology, 2017, 37(5):151-158.]

    [2]

    Li Y L, Wu N Y, Gao D L, et al. Optimization and analysis of gravel packing parameters in horizontal wells for natural gas hydrate production[J]. Energy, 2021, 219:119585. doi: 10.1016/j.energy.2020.119585

    [3]

    Chen M T, Li Y L, Merey Ş, et al. Review on the test methods and devices for mechanical properties of hydrate-bearing sediments[J]. Sustainability, 2022, 14(10):6239. doi: 10.3390/su14106239

    [4] 葛勇强, 曹晨, 陈家旺, 等. 基于MEMS传感阵列的海底地形形变原位监测装置[J]. 浙江大学学报: 工学版, 2022, 56(9):1732-1739

    GE Yongqiang, CAO Chen, CHEN Jiawang, et al. In-situ monitoring device for seabed terrain deformation based on MEMS sensor array[J]. Journal of Zhejiang University: Engineering Science, 2022, 56(9):1732-1739.]

    [5] 贾永刚, 陈天, 李培英, 等. 海洋地质灾害原位监测技术研究进展[J]. 中国地质灾害与防治学报, 2022, 33(3):1-14

    JIA Yonggang, CHEN Tian, LI Peiying, et al. Research progress on the in-situ monitoring technologies of marine geohazards[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3):1-14.]

    [6] 栾锡武, 秦蕴珊, 张训华, 等. 东海陆坡及相邻槽底天然气水合物的稳定域分析[J]. 地球物理学报, 2003, 46(4):467-475 doi: 10.3321/j.issn:0001-5733.2003.04.007

    LUAN Xiwu, QIN Yunshan, ZHANG Xunhua, et al. The stability zone of gas hydrate in the slope of East China Sea and neighboring trough basin area[J]. Chinese Journal of Geophysics, 2003, 46(4):467-475.] doi: 10.3321/j.issn:0001-5733.2003.04.007

    [7] 王超群, 丁莹莹, 胡道功, 等. 祁连山冻土区DK-9孔温度监测及天然气水合物稳定带厚度[J]. 现代地质, 2017, 31(1):158-166 doi: 10.3969/j.issn.1000-8527.2017.01.014

    WANG Chaoqun, DING Yingying, HU Daogong, et al. Temperature monitoring results for gas hydrate borehole DK-9 and thickness of gas hydrate stability zone in the Qilian mountains permafrost[J]. Geoscience, 2017, 31(1):158-166.] doi: 10.3969/j.issn.1000-8527.2017.01.014

    [8]

    Fan Z H, Zhu X M, Xu H B, et al. A new method for long-term in situ monitoring of seabed interface evolution: A self-potential probe[J]. Ocean Engineering, 2023, 280:114917. doi: 10.1016/j.oceaneng.2023.114917

    [9]

    Mei W X, Liu Z, Wang C D, et al. Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies[J]. Nature Communications, 2023, 14(1):5251. doi: 10.1038/s41467-023-40995-3

    [10]

    Li T L, Tan Y G, Shi C Y, et al. A high-sensitivity fiber Bragg grating displacement sensor based on transverse property of a tensioned optical fiber configuration and its dynamic performance improvement[J]. IEEE Sensors Journal, 2017, 17(18):5840-5848. doi: 10.1109/JSEN.2017.2737556

    [11] 仲志成, 赵斌, 林君, 等. 基于光纤传感技术的三维地应力传感器[J]. 光学精密工程, 2018, 26(2):325-335 doi: 10.3788/OPE.20182602.0325

    ZHONG Zhicheng, ZHAO Bin, LIN Jun, et al. Three dimensional in-situ stress sensor based on optical fiber sensing technology[J]. Optics and Precision Engineering, 2018, 26(2):325-335.] doi: 10.3788/OPE.20182602.0325

    [12]

    De Moustier C, Spiess F N, Jabson D, et al. Deep-sea borehole re-entry with fiber optic wireline technology[C]//Proceedings of the 2000 International Symposium on Underwater Technology. Tokyo, Japan: IEEE, 2000: 379-384.

    [13] 万庭辉, 邱海峻, 陆敬安, 等. 天然气水合物试采中分布式光纤测温(DTS)数据现场处理及可视化[J]. 海洋地质前沿, 2020, 36(2):59-64

    WAN Tinghui, QIU Haijun, LU Jing’an, et al. Study of on-site processing and visualization of DTS data from China's first offshore natural gas hydrate production test in South China Sea[J]. Marine Geology Frontiers, 2020, 36(2):59-64.]

    [14] 段胜男, 潘勇, 芦志伟. 光纤温压动态监测技术的油田应用和发展趋势[J]. 石油工业技术监督, 2016, 32(5):49-52 doi: 10.3969/j.issn.1004-1346.2016.05.013

    DUAN Shengnan, PAN Yong, LU Zhiwei. Oilfield application and development trend of optical fiber temperature and pressure dynamic monitoring technology[J]. Technology Supervision in Petroleum Industry, 2016, 32(5):49-52.] doi: 10.3969/j.issn.1004-1346.2016.05.013

    [15] 张怀文, 李庭强. 油气井光纤测温技术及其应用[J]. 新疆石油科技, 2009, 19(4):22-25

    ZHANG Huaiwen, LI Tingqiang. Fiber optic temperature measurement technology for oil and gas wells and its application[J]. Xinjiang Petroleum Science & Technology, 2009, 19(4):22-25.]

    [16]

    He X G, Xie S R, Gu L J, et al. High-resolution quasi-distributed temperature and pressure sensing system for deep-sea reservoir monitoring[J]. Measurement, 2022, 199:111568. doi: 10.1016/j.measurement.2022.111568

    [17]

    Chee S, Leokprasirtkul T, Kanno T, et al. A deepwater sandface monitoring system for offshore gas hydrate[C]//Offshore Technology Conference. Houston, Texas , 2014.

    [18]

    Schwenk M, Katzir A, Mizaikoff B. Mid-infrared fiber-optic evanescent field spectroscopy for in situ monitoring of tetrahydrofuran hydrate formation and dissociation[J]. The Analyst, 2017, 142(5):740-744. doi: 10.1039/C6AN02237E

    [19] 刘康, 朱渊, 陈国明, 等. 天然气水合物开采井筒温度监测实验[J]. 实验室研究与探索, 2019, 38(10):76-79,161 doi: 10.3969/j.issn.1006-7167.2019.10.020

    LIU Kang, ZHU Yuan, CHEN Guoming, et al. Experimental study on wellbore monitoring of methane hydrate[J]. Research and Exploration in Laboratory, 2019, 38(10):76-79,161.] doi: 10.3969/j.issn.1006-7167.2019.10.020

    [20] 陈强, 刘琨, 梁宇, 等. 天然气水合物开采井CH4-CO2光纤气体传感监测仪器研发[J]. 海洋地质前沿, 2021, 37(10):78-84

    CHEN Qiang, LIU Kun, LIANG Yu, et al. Development of CH4-CO2 optical fiber gas sensor monitoring instrument for natural gas hydrate production well[J]. Marine Geology Frontiers, 2021, 37(10):78-84.]

    [21]

    He X G, Wu X M, Wang L, et al. Distributed optical fiber acoustic sensor for in situ monitoring of marine natural gas hydrates production for the first time in the Shenhu Area, China[J]. China Geology, 2022, 5(2):322-329.

    [22]

    Longo J P N, Galvao J R, Antes T, et al. Sensing hydrates in pipes by a combined electrical and optical fiber sensor[J]. IEEE Sensors Journal, 2020, 20(9):5012-5018. doi: 10.1109/JSEN.2020.2966086

    [23]

    Qian H F, Wang X C, Chen X L, et al. Research on noise suppression technology of marine optical fiber towed streamer seismic data based on ResUNet[J]. Energies, 2022, 15(9):3362. doi: 10.3390/en15093362

    [24]

    Chen M T, Li Y L, Zhang Y J, et al. Recent advances in creep behaviors characterization for hydrate-bearing sediment[J]. Renewable and Sustainable Energy Reviews, 2023, 183:113434. doi: 10.1016/j.rser.2023.113434

    [25]

    Chen M T, Li Y L, Zhang P H, et al. Numerical simulation of failure properties of interbedded hydrate-bearing sediment and their implications on field exploitation[J]. Ocean Engineering, 2023, 274:114030. doi: 10.1016/j.oceaneng.2023.114030

    [26] 施斌, 张丹, 朱鸿鹄. 地质与岩土工程分布式光纤监测技术[M]. 北京: 科学出版社, 2019:12-20

    SHI Bin, ZHANG Dan, ZHU Honghu. Distributed Fiber Optic Sensing for Geoengineering Monitoring[M]. Beijing: Science Press, 2019: 12-20.]

    [27]

    Li Y L, Chen M T, Guang S X, et al. “Ladetes”—A novel device to test deformation behaviors of hydrate-bearing sediments[J]. Review of Scientific Instruments, 2022, 93(12):125004. doi: 10.1063/5.0120205

    [28]

    Faichnie D M, Graham A, McStay D. The application of fibre optic temperature sensing for under insulation monitoring of subsea infrastructure[C]//Proceedings Volume 7726, Optical Sensing and Detection. Brussels, Belgium: SPIE, 2010: 522-528.

    [29]

    Liu Z Y, Zhang S Q, Yang C K, et al. Submarine optical fiber sensing system for the real-time monitoring of depth, vibration, and temperature[J]. Frontiers in Marine Science, 2022, 9:922669. doi: 10.3389/fmars.2022.922669

    [30]

    Teng Y, Wang P F, Zhou Y B, et al. Potential applications of distributed optical fiber sensor in hydrate-induced sedimentary deformation research[J]. Energy Science & Engineering, 2022, 10(1):4-12.

    [31] 范好好, 赵强, 杜大伟, 等. 高抗噪光纤光栅波峰计数式位移传感器[J]. 光学学报, 2024, 53(6):0606003 doi: 10.3788/gzxb20245306.0606003

    FAN Haohao, ZHAO Qiang, DU Dawei, et al. High anti-noise displacement sensor base on fiber Bragg grating peak counting[J]. Acta Photonica Sinica, 2024, 53(6):0606003.] doi: 10.3788/gzxb20245306.0606003

    [32]

    Faichnie D M, Graham A, Costello L, et al. Use of fibre sensors for temperature measurement in subsea infrastructure to monitor flow-loop cool-down[J]. Journal of Physics: Conference Series, 2009, 178(1):012018.

图(15)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  4
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-19
  • 修回日期:  2024-07-03
  • 刊出日期:  2025-06-27

目录

    WU Nengyou

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回