我国泥炭纤维素同位素记录的古气候变化研究进展

黄超, 李英红, 李云霞, 郭文康, 饶志国

黄超, 李英红, 李云霞, 郭文康, 饶志国. 我国泥炭纤维素同位素记录的古气候变化研究进展[J]. 海洋地质与第四纪地质, 2013, 33(4): 113-124. DOI: 10.3724/SP.J.1140.2013.04113
引用本文: 黄超, 李英红, 李云霞, 郭文康, 饶志国. 我国泥炭纤维素同位素记录的古气候变化研究进展[J]. 海洋地质与第四纪地质, 2013, 33(4): 113-124. DOI: 10.3724/SP.J.1140.2013.04113
HUANG Chao, LI Yinghong, LI Yunxia, GUO Wenkang, RAO Zhiguo. A REVIEW OF PALEOCLIMATIC CHANGES IN CHINA BASED ON PEAT CELLULOSE ISOTOPIC RECORDS[J]. Marine Geology & Quaternary Geology, 2013, 33(4): 113-124. DOI: 10.3724/SP.J.1140.2013.04113
Citation: HUANG Chao, LI Yinghong, LI Yunxia, GUO Wenkang, RAO Zhiguo. A REVIEW OF PALEOCLIMATIC CHANGES IN CHINA BASED ON PEAT CELLULOSE ISOTOPIC RECORDS[J]. Marine Geology & Quaternary Geology, 2013, 33(4): 113-124. DOI: 10.3724/SP.J.1140.2013.04113

我国泥炭纤维素同位素记录的古气候变化研究进展

基金项目: 

国家重点基础研究发展规划项目(2010CB950202);国家自然科学基金项目(41171091)

教育部新世纪优秀人才支持计划(NCET-10-0468);兰州大学中央高校基本科研业务费重点项目(lzujbky-2012-k49)

详细信息
    作者简介:

    黄超(1988-),男,硕士研究生,主要从事泥炭与古气候学研究,E-mail:huangch2012@lzu.edu.cn

  • 中图分类号: P532

A REVIEW OF PALEOCLIMATIC CHANGES IN CHINA BASED ON PEAT CELLULOSE ISOTOPIC RECORDS

  • 摘要: 泥炭作为一类重要的地质载体,在开展古气候(尤其是全新世古气候)变化研究方面,具有一些其他地质载体所不具备的天然优势,特别适合开展有机地球化学和同位素地球化学方面的研究工作。概括了目前我国泥炭纤维素同位素研究的现状,对已经获得的数据进行了详细的总结和分析,结合与其他地质载体所获得的最新成果的对比,指明了目前我国泥炭纤维素同位素应用于古气候研究当中所存在的一些问题。产生这些问题的一个重要原因很可能是由于缺乏详细的现代过程研究,以至泥炭纤维素同位素代用指标的古气候指示意义因缺乏现代参照而不能加以明确。在此基础上,对我国泥炭纤维素同位素的进一步研究进行了展望,指出了在以后研究当中值得注意的几个方面。
    Abstract: Peat, as an important geological archive, has some internal advantages over other geological archives in researching paleoclimatic changes (especially the paleoclimatic changes during Holocene), and is particularly suitable for organic geochemistry and isotopic geochemistry studies. There are many peat bogs in China. Various researches have been conducted on these peat archives by both the domestic and international scientists,and important progresses have been reached. In this paper, we made a comprehensive review of the reported stable isotopic results for peat cellulose in China. The available data has been carefully collected and analyzed, upon the comparison with the latest results of paleoclimatic reconstruction obtained from other geological archives, then discussed are the critical problems about the application of peat cellulose isotopes in paleoclimatic research. We believe that these problems come from the insufficient study of modern-process. Therefore, the paleoclimatic significance of the stable isotopes of peat cellulose from a specific locality is not certain, due to lack of modern analogues. Finally, a discussion was devoted to the future development of stable isotopes of peat cellulose in China and some methodological problems.
  • 近年来,随着对深海环境的进一步勘探,在深水盆地边缘发现了许多重力流沉积的产物。人们通过对陆架、陆坡和盆地底部的高分辨率地震资料的分析将这些复杂的重力流沉积特征进行了详细研究[1]。其中块体搬运沉积(MTDs)是深水重力流沉积中的重要组成单元。MTDs是指由于滑动、滑塌、碎屑流等重力流沉积因素,顺着陆坡从高地移动到坡度较低地区的过程中所形成的沉积体[2-3]。前人的研究中,MTDs存在于许多深水盆地边缘地层中,甚至达到陆坡边缘盆地面积的50%,它还是深海沉积物输运的重要来源之一[4-5]。2016年对意大利Maiolica白垩纪碳酸盐岩的研究表明,该盆地地层中MTDs约占50%~60%[6]。由于块体搬运沉积广泛发育于浅海—深海中的陆架边缘盆地中,因此,对其深入研究有助于认识海底地形和构造活动,为深水领域油气资源勘探与预防海底地质灾害提供有利依据。

    但是由于MTDs多发育于深海沉积环境中,我们无法直观地通过观察其外部特征与内部结构来识别,因此需要借助高分辨率的地震资料、回声探测、多波束测深系统等对其进行表征与识别[7-8]。本文基于琼东南盆地陵水凹陷高分辨率三维地震资料,发现在陵水凹陷陆坡处发育有大量重力流沉积的产物,其中块体搬运沉积占有较大比例。由于海底陆坡和盆地底部的沉积体系是以重力流沉积为主,因此MTDs的广泛发育会影响海底形态和MTDs之后地层的沉积与构造变形,还会影响水道的发育位置[3,9]。但现在的研究依然没有足够的证据表明MTDs内部构造的发育对上覆地层沉积的影响,以及它是如何影响和控制后期地层沉积的。本文基于以上问题,研究国内外最新成果,对本地区MTDs进行刻画和分析,重点研究MTDs内部构造特征和它对后续地层沉积的影响。

    琼东南盆地位于中国海南岛南部,整个盆地面积约为4.5×104 km2,整个盆地呈NE方向展布[10]。陵水凹陷位于琼东南盆地深水区,西部与乐东凹陷相连位于琼东南盆地中央坳陷带,南部为陵南低凸起,北部与陵水-松南低凸起连接,东部为松南低凸起。研究区位于陵水凹陷陆坡区,是连接浅海陆架与深海平原的过渡区(图1)。陵水凹陷主要沉积的新生代地层包括始新统、渐新统崖城组和陵水组,中新统三亚组、眉山组和黄流组,上新统莺歌海组及第四系,新生代整体沉积的地层厚度约10 km[10-11]。陵水凹陷新生代地层主要经历了古近纪的裂陷期、新近纪和第四纪的裂后期,裂后期沉积又根据沉降速率划分为热沉降期和加速沉降期,共3大构造演化阶段。在加速沉降阶段的后期,整个琼东南盆地构造活动逐渐稳定,北部海南岛为盆地提供了充足的物源[10]。研究区内目的层段主要发育于第四纪,第四纪的沉积模式主要为陆架陆坡海相沉积,由于陆架边缘的物源供给充足,这些沉积物受重力流沉积作用,在沿陆坡向下不断推进沉积的过程中会发育块体搬运沉积体、水道和峡谷等[12-14]

    图  1  琼东南盆地陵水凹陷位置与研究区MTDs1现今地貌图
    Figure  1.  Location of Lingshui Sag, Qiongdongnan Basin and the MTDs1 current

    由于深水地区资料有限,目前深水MTDs的识别方法仍以地震资料为主,用有限的常规测井资料、岩心等数据辅助解释[15]。地震资料是目前识别深水MTDs最常见、最主要的方法。它主要是根据地震波对MTDs边界及内部运动的响应特征来判断MTDs的形态与搬运过程[8,15]。在地震上常见的陡崖、擦痕、杂乱反射、趾部的逆冲构造等识别标志可以判断MTDs的规模、搬运方向等(图2[15]。利用地震属性资料,如均方根、瞬时频率、相干体、时间切片等,可以进一步识别MTDs的平面展布、内部特征等[2,15]。在常规的测井曲线上MTDs的特征通常为漏斗形和箱形的组合,顶界面为突变或渐变的接触关系,曲线主要为弱齿状或齿状[8,15-16]。在测井资料识别中,以地震资料解释为前提,用井-震结合的方法,对MTDs的测井曲线识别,研究其边界和内部样式等[16]。测井资料的局限性在于,它不能识别出MTDs的搬运方向及内部的具体形态,且深水钻井成本大,岩心资料少。因此本文主要利用高精度的三维地震资料,通过对MTDs的地震剖面、平面、三维模拟来具体识别其特征与展布。

    图  2  琼东南盆地陵水凹陷陆坡典型剖面
    Figure  2.  Type sections through the slope of Lingshui Sag,Qiongdongnan Basin

    根据北康盆地第四纪沉积地层,MTDs在地震剖面上外部呈连续性差、弱振幅的丘状、波状反射特征,内部表现为杂乱、空白、弱-中-强振幅的反射特征;在尼日尔三角洲盆地和珠江口盆地的深水地层中可见MTDs呈半透明、低振幅、杂乱反射特征[7,16]。本文通过研究陵水凹陷陆坡区高分辨率三维地震资料,识别出研究区MTDs有以下特征:① 在地震剖面上MTDs呈平行或亚平行状的弱振幅、杂乱、丘状反射特征;② 研究区处于块体搬运沉积体系体部-趾部区域,因此在研究区识别出逆冲推覆构造,在剖面上通常表现为多个叠瓦状的逆冲断层和一系列挤压脊(图2);③ 在平面上呈长条形—似扇状几何特征(图3),在构造图上可以看到凹陷的区域就是MTDs对基底的侵蚀作用区(图1)。MTDs的岩性主要和陆坡头部垮塌下来的物质有关,深海披覆泥占大多数,并且在MTDs趾部主要是碎屑流沉积,因此在剖面图上可以看到杂乱反射主要为半透明反射特征。MTDs在搬运的过程中本身对下伏地层会有侵蚀作用,因此下伏地层的地震反射会弱于顶界面地震反射[14-15]。MTDs会遭到海底地形的控制,还会受到水道和底流作用的改造,因此它的顶界面通常为不规则起伏形态(图2a[3,13]。顶界面接着被后来的各种沉积物所填充[17]。块体搬运沉积(MTDs1)对下伏地层的侵蚀作用会形成残余地层,MTDs的侵蚀强度和下伏地层岩性决定了残余地层的规模和分布(图2)。研究区主要是MTDs体部和趾部区域,在地震剖面上常见逆冲构造,逆冲构造以连续的弧形向下坡方向搬运(图1图2)。

    图  3  MTDs1均方根属性图(a)和瞬时频率图(b)
    Figure  3.  RMS amplitude map of MTDs1(a), instantaneous frequency map of MTDs1(b)

    在深水重力沉积体系中,水道堤岸复合体也是重要组成部分,水道是沉积物向深海区搬运的主要通道和沉积填充区域[18]。浊积水道主要在MTDs顶界面形成,它分为侵蚀期和填充期[19]。侵蚀期的水道主要对MTDs顶界面进行侵蚀,一般很少发生沉积作用;填充期时,水动力条件减弱,在水道内部发生沉积,在水道外侧形成堤岸沉积(图2)。因此在形成MTDs顶界面不规则起伏形态时,水道的侵蚀作用也是重要的因素。

    侵蚀擦痕一般多发育于MTDs的体部和趾部,由头部所滑塌下来的块体在体部逐渐卸去重力,在体部其重力作用慢慢减弱,物源所携带的物质在此处逐渐沉积[4,8]。沉积物从头部滑动,顺着陆坡向下搬运到体部时逐渐转化为碎屑流[14]。这些碎屑流沉积物由自身重力作用继续沿着基底剪切面向下搬运,会侵蚀水道壁和下伏地层。块体搬运过程中的动力强弱决定了侵蚀擦痕发育的数量和大小,动力越强,块体对下伏地层的侵蚀性越强,侵蚀擦痕越大。由于MTDs在体部的侵蚀作用较强,基底剪切面会受到侵蚀,形成比较常见的剪切槽。研究区发育的侵蚀擦痕显示,它下伏地层的同相轴被断开,侵蚀擦痕内部为杂乱或空白反射,呈波状弱连续地震相特征(图4)。在平面上,侵蚀擦痕表现为不规则的凹槽,图中凹凸不平的表面证实了块体在搬运过程中对下伏地层具有侵蚀性(图1)。侵蚀擦痕较为平直,其宽度大约为1~2 km,MTDs的强度和下伏地层的岩性决定了侵蚀擦痕的规模(图3)。

    图  4  MTDs侵蚀擦痕典型剖面
    Figure  4.  Typical sections for MTDs erosion scratches

    逆冲推覆构造与大型的逆冲断层不同,它是发育在块体搬运沉积的趾部,并且在挤压作用下形成的叠瓦状排列。块体在向下坡方向搬运的过程中由于地形的影响而受到限制,或后面的块体加速挤压前方块体使地层变形,这两种情况是形成逆冲推覆构造的主要动力因素[20]。逆冲推覆构造的规模取决于MTDs沉积体的大小和挤压动力强弱,沉积体的规模越大、挤压作用越强,其内部逆冲推覆构造发育的规模也越大,MTDs趾部逆冲构造的厚度一般达到数十米,有的甚至几百米厚[7]。从研究区逆冲推覆构造典型剖面观察发现,MTDs内部逆冲推覆构造的同相轴表现为中—低振幅且连续的波状反射特征,它一般都是叠瓦状排列并且弯曲方向与块体搬运方向一致(图5)。在平面上,逆冲构造的特征为厚度较大的长条形脊,块体滑塌的方向垂直于逆冲脊(图1);均方根振幅图和瞬时频率图上显示,逆冲构造发育区为连续的条带状,并向块体搬运方向凸出(图3)。从图5可以看到,由于MTDs后期受到的挤压作用较强,因此MTDs顶界面的振幅一般要强于底界面。

    图  5  MTDs逆冲构造典型剖面
    Figure  5.  Typical sections showing MTDs thrust nappe structure

    挤压脊的发育位置比较广泛,在深水环境和陆地都有发育[7]。挤压脊的发育规模受到陆坡坡度和MTDs底部地形的控制,坡度较大或者地形隆起会使块体向前搬运时受阻,地层会受到更严重的挤压作用,容易形成规模较大的挤压脊。挤压脊一般都与逆冲推覆构造一起出现,挤压脊是由于MTDs受到挤压作用时,外部形态会变得起伏不平,后期地层继续发育时就会受到MTDs的影响。挤压脊多发育于挤压作用强烈的趾部区域。研究区的地震剖面显示,挤压脊隆起的区域正是逆冲构造向上抬升的位置,在MTDs的顶界面还可以看到脊和谷会交替出现,谷的位置就是后期浊流最先填充的区域(图6)。在平面上,挤压脊的现象与逆冲推覆构造相似,构造图中表现为地形局部隆起形成连续凹凸不平的表面(图1);瞬时频率图中显示为连续的弧形并且沿着块体搬运方向倾斜(图3b)。

    图  6  MTDs挤压脊典型剖面
    Figure  6.  Typical sections showing MTDs squeeze ridge

    陆坡由于失稳、垮塌等原因形成的MTDs在搬运过程中会侵蚀下伏地层并且边搬运边沉积,MTDs沉积后所形成的海底地形,还可以影响后期浊流的走向和浊流沉积的分布[21]。这些直接或间接地影响了后期地层的发育和沉积物的流动方向。MTDs1和MTDs2的地层直接接触,即MTDs1的顶界面为MTDs2的底界面(图7)。MTDs1的地层沉积薄厚不一,在下伏地层隆起的区域MTDs1的沉积少,地层相对较薄(图7)。通过剖面可以看到,MTDs1沉积厚度较薄的区域,其上部的浊流沉积地层则相对较厚(图8)。在层间也有部分区域发育连续性较好的地震反射,这块连续性较好的地层有可能是浊流沉积的产物,表明了块体搬运沉积在继续向坡下运动时会逐渐向浊流沉积转化,重力流作用下的块体搬运沉积不是时刻发生,在构造作用减弱的区域会发育较为连续的地层[22]。MTDs1的现今地貌图显示有许多凸起和凹陷的区域,并且还有一些弓形的脊,这些长约10~15 km、宽约2~3 km的逆冲脊主要发育在逆冲构造形成的区域(图9a)。MTDs1主要通过起伏不平的顶界面对后期浊流沉积产生控制作用和影响,这些凸起和凹陷会影响后期地层沉积的厚度和沉积物的流向,这些脊也会阻碍和抑制后期沉积物的下坡运动。

    图  7  MTDs与后期浊流沉积的典型剖面
    Figure  7.  Typical sections showing MTDs and late turbidity deposition
    图  8  东北方向上后期浊流沉积的典型剖面
    Figure  8.  Typical sections showing late turbidity current deposition in the northeast
    图  9  MTDs与后期浊流沉积属性图
    Figure  9.  attribute map of MTDs and later turbidity current deposits
    a. Current geomorphology of MTDs1, b. thickness map of turbidity current deposits between MTDs1and MTDs2, c. thickness map of MTDs2, d. the root mean square attribute map of turbidity current deposits.

    MTDs1之上是一期浊流沉积地层,浊流沉积发育的地层相较于MTDs的地层连续性好,呈中—强反射特征(图7图9d)。浊流沉积厚度图的西南低洼区域显示,浊流在此区域内沉积较少,可能的原因是下伏MTDs1向上隆起或上覆MTDs2在搬运时侵蚀作用较大,侵蚀了原本已经沉积的地层(图7图8a-b,图9b)。MTDs1顶界面逆冲脊的区域内地形起伏较大,脊与脊之间也可作为后期浊流的“通道”,这些通道作为浊流沉积物搬运的载体又叫浊积水道,浊积水道内部的振幅强于普通的浊流地层(图7-9)。这些逆冲脊不仅可以作为浊流的通道,而且也会抑制浊流的下坡运动,改变浊流流向,浊流顺着这些脊向地形低处继续运动沉积[22]。在MTDs1东南角区域内,其沉积较薄,地层凹陷,地形相较于前期较低,因此后期的浊流在此处沉积的地层较厚,其后的MTDs2却沉积较薄(图8e-f,图9)。在此处浊流沉积的地层中还发现了混合流,它是同一重力流事件中流体转化为多种不同性质流体的产物,即碎屑流沉积与浊流沉积,混合流的地层连续性比块体搬运沉积好,但比浊流沉积差(图7)。浊流沉积的地层除了受到下伏MTDs1顶界面起伏地形的控制和影响,还受到上覆MTDs2侵蚀作用的影响。当MTDs2的侵蚀作用变强,会对已经沉积的浊流沉积造成侵蚀,改变浊流沉积的地层厚度(图8a-b、e-f)。当浊流沉积的地层厚度改变后又会反过来影响MTDs2的后续沉积,因此这些控制作用都是相互影响的。

    从整体来看,因为MTDs1沉积的厚度分布不一,就形成了起伏不平的顶界面,海底凹凸不平的地形以及那些狭长的槽状地形会影响甚至改变后续浊流的走向及其沉积分布。MTDs1的滑塌方向与后期浊流的流向并不一致,MTDs1的滑塌方向是垂直于它所形成的逆冲脊,而后期浊流的方向会随着地形不断改变(图9a图10a-b)。后期浊流沉积显示,在MTDs1沉积厚、地形较高的区域浊流沉积较薄,在MTDs1沉积较薄的区域浊流沉积的地层厚(图9a-b,图10)。浊流沉积的地层起伏也会受到MTDs1的地形控制,在浊流刚沉积时,会首先填充MTDs1表面低洼区域,之后填充沉积相对较平的地层。MTDs1一些局部的突起太高,后期的浊流沉积并不能完全覆盖这些隆起(图7图10c),就会造成MTDs1直接与后期MTDs2接触并对其产生影响和控制作用(图10b-c)。到MTDs2沉积时,浊流沉积的地层对其起主要的控制作用,它沿着浊流沉积的表面逐渐沉积,先是在低洼处大量沉积然后再向周围扩散沉积,并且MTDs遇到下伏地层凸起处会受到地层影响而改变其自身形态。MTDs的侵蚀能力会使MTDs2侵蚀下伏的浊积地层,使下伏地层缺失并厚度减薄,而自身的厚度增加。因此在浊流沉积较厚的区域,MTDs2沉积较薄;在浊流沉积较薄的区域,MTDs2沉积较厚;MTDs2的厚度会随着浊流沉积的起伏而分布不一(图9b-c,图10)。

    图  10  MTDs1对后期浊流和MTDs2的控制作用
    Figure  10.  The control of MTDs1 on the late turbidity current and MTDs2

    MTDs顶面凸起的区域限制了浊流的继续流动,改变浊流流向,使其顺着凸起边缘向地势较低处继续搬运沉积。在其顶面低洼的区域,如两脊之间的洼陷则充当了浊流的通道,使浊流由通道向地形低处继续搬运沉积。浊流会不断因为MTDs地形的起伏而改变其流向,地形高处抑制其搬运,优先填充地形低处。当后期浊流沉积途径MTDs的起伏地形时,会受到变形速率、泥沙供给、水流动力等的影响,因此浊流的流向与其沉积分布会广泛受到MTDs起伏不平的地层控制。

    (1)研究区所发育的深水重力流沉积单元包括块体搬运沉积体系、浊流沉积、水道堤岸复合体。

    (2)研究区MTDs总体表现为弱振幅、低连续、杂乱或空白的地震反射特征且具有明显的侵蚀作用。在研究区识别出MTDs体部区域发育大量侵蚀擦痕,其地震相特征为波状弱连续;以挤压作用为主的MTDs趾部区域多发育逆冲推覆构造和挤压脊,呈中—弱振幅、中—低连续的丘状地震反射特征。

    (3)研究区识别出两期MTDs分别为MTDs1和MTDs2。MTDs1在趾部挤压区域发育的逆冲脊长约10~15 km、宽约2~3 km,逆冲脊的发育改变了海底地形。通过对MTDs内部结构和MTDs起伏不平的顶界面的分析发现,MTDs内部结构的变化造成其顶界面的凸起与凹陷,顶界面的起伏变化控制了后期浊流流向,且进一步影响了浊积岩的厚度和分布。

  • [1] 柴岫. 泥炭地学[M]. 北京:地质出版社,1990:1-2.[CHAI Xiu. Peat Land[M]. Beijing:Geological Publishing House,1990:1

    -2.]

    [2] 于学峰,周卫建. 全新世泥炭古气候记录研究进展[J]. 海洋地质与第四纪地质,2004,(4):121-125.[YU Xuefeng,ZHOU Weijian. Advances of palaeoclimatic researches of Holocene peat bogs[J]. Marine Geology and Quaternary Geology,2004

    ,(4):121-125.]

    [3]

    Zhou W J,Zheng Y H,Meryers P A,et al. Postglacial climate-change record in biomarker lipid compositions of the Hani peat sequence,Northeastern China[J]. Earth and Planetary Science Letters,2010,294:37-46.

    [4]

    Nichols J E,Walcott M,Bradley R,et al. Quantitative assessment of precipitation seasonality and summer surface wetness using ombrotrophic sediments from an Arctic Norwegian peatland[J]. Quaternary Research,2009,72:443-451.

    [5]

    Swindles G T,Plunkett G,Roe H M. A multi-proxy climate record from a raised bog in County Fermanagh,Northern Ireland:a critical examination of the link between bog surface wetness and solar variability[J]. Journal of Quaternary Science,2007,22(7):667-679.

    [6] 于学峰,周卫建,刘晓清,等. 青藏高原东部全新世泥炭灰分的粒度特征及其古气候意义[J]. 沉积学报,2006,24(6):864-869.

    [YU Xuefeng,ZHOU Weijian,LIU Xiaoqing,et al. Grain size characteristics of the Holocene peat sediment in Eastern Tibetan Plateau and its paleoclimatic significance[J]. Acta Sedimentologica Sinica,2006,24(6):864-869.]

    [7] 石敏,喻建新,顾延生,等. 神农架大九湖晚更新世与全新世之交的气候变化[J]. 地质科技情报,2008,27(6):24-28.

    [SHI Min,YU Jianxin,GU Yansheng,et al. Climate changes in Interim of Late Pleistocene and Holocene in Dajiuhu Basin of Shennongjia,Hubei Province:Evidence from Pollen[J]. Geologica Science and Technology Information,2008,27(6):24-28.]

    [8] 张淑芹,邓伟,阎敏华,等. 中国兴凯湖北岸平原晚全新世花粉记录及泥炭沼泽形成[J]. 湿地科学,2004,2(2):110-115.

    [ZHANG Shuqin,DENG Wei,YAN Minhua,et al. Pollen Record and Forming Process of the Peatland in Late Holocene in the North Bank of the Xingkai Lake,China[J]. Wetland Science,2004,2(2):110-115.]

    [9] 张玉兰. 同江地区中全新世以来的植被与环境研究[J]. 2003,31(6):668-671.[ZHANG Yulan. Studies on Vegetation and Environment Since Mid-Holocene in Tongjiang Region,Heilongjiang Province[J]. Journal of Tongji University,2003,31(6):668-671.]
    [10] 周卫建,李小强,董光荣,等. 新仙女木期沙漠/黄土过渡带高分辨率泥炭记录[J]. 中国科学(D辑),1996,26(2):118-124.[ZHOU Weijian,LI Xiaoqiang,DONG Guangrong,et al. The High resolution of peat records in desert/loess transitional region during Younger Dryas[J]. Science in China(Series D),1996,26(2):118-124.]
    [11] 夏玉梅,汪佩芳. 密山杨木3000多年来气候变化的泥炭记录[J]. 地理研究,2000,19(1):53-59.

    [XIA Yumei, WANG Peifang. Peat record of climate change since 3000 years in Yangmu, Mishan region[J]. Geographical Research,2000,19(1):53-59.]

    [12] 黄润,朱诚,王升堂. 天堂寨泥炭地层的磁化率、Rb/Sr值及其反映的古气候意义[J].地理科学,2007,27(3):385-389.

    [HUANG Run,ZHU Cheng,WANG Shengtang. Magnetic susceptibility and Rb/Sr ratio of peat stratum in Tiantangzhai and its significance of palaeoclimate[J]. Scientia Geographica Sinica,2007,27(3):385-389.]

    [13] 朱颜明,霍文毅,陈定贵. 大兴安岭泥炭微量元素分布特征及其环境意义[J]. 地理科学, 1997,17(2):158-162.

    [ZHU Yanming,HUO Wenyi,CHEN Dinggui. Trace element dispersion on characteristics of peat in the Daxingan Mountains and environmental significance[J]. Scientia Geographica Sinica,1997,17(2):158-162.]

    [14] 王富葆,阎革. 若尔盖高原泥炭δ13C的初步研究[J]. 科学通报,1993,38(1):65-67.

    [WANG Fubao, YAN Ge. A preliminary study of peat δ13C in The Zoige plateau[J]. Chinese Science Bulletin,1993,38(1):65-67.]

    [15] 郑朝贵,朱诚,高华中,等. 南京江北地区晚更新世末期以来泥炭δ13C记录的古气候变化[J]. 地理科学,2006,26(33):28-334.

    [ZHENG Chaogui,ZHU Cheng,GAO Huazhong,et al. Paleoclimatic change recorded by δ13C of peat stratum on North-bank of Changjiang River in Nanjing since last stage of Late Pleistocene Epoch[J]. Scientia Geographica Sinica,2006,26(3):328-334.]

    [16] 赵红艳,郄瑞卿,白燕,等. 敦化大桥泥炭土有机质及其组分研究[J]. 吉林农业大学学报[J]. 2002,24(3):65-72.[ZHAO Hongyan,QIE Ruiqing,BAI Yan,et al. Study on organic matter of peat soil in Dunhua of Jilin Province and its compositions[J]. Journal of Jilin Agricultural University,2002,24(3):65-72.]
    [17] 周卫建,声雪峰,武振坤,等. 若尔盖高原全新世气候变化的泥炭记录与加速器放射性碳测年[J]. 科学通报,2001,46(12):1040-1044.

    [ZHOU Weijian,LU Xuefeng,WU Zhenkun,et al. Peat record reflecting Holocene climatic change in the Zoige Plateau and AMS radiocarbon dating[J]. Chinese Science Bulletin,2002,47(1):66-70.]

    [18] 鲜锋,周卫健,于学峰,等. 高原泥炭记录揭示的全新世季风快速变化[J]. 海洋地质与第四纪地质. 2006,26(1):41-45.

    [XIAN Feng,ZHOU Weijian, YU Xuefeng,et al. Evidence for abrupt changes of the Asian Monsoon during the Holocene:from the peat records of Tibetan Plateau[J]. Marine Geology and Quaternary Geology,2006,26(1):41-45.]

    [19] 王华,洪业汤,朱咏煊,等. 红原泥炭腐殖化度记录的全新世气候变化[J]. 地质地球化学,2003,31(2):51-56.

    [WANG Hua,HONG Yetang,ZHU Yongxuan,et al. The peat humification records of Holocene climate change in Hongyuan region[J]. Geology Geochemistry,2003,31(2):51-56.]

    [20] 尹茜,朱诚,马春梅,等. 天目山千亩田泥炭腐殖化度记录的中全新世气候变化[J]. 海洋地质与第四纪地质,2006,26(6):117-122.

    [YIN qian,ZHU Cheng,MA Chunmei,et al. Holocene Climate Change Recorded In Peat Humification In Tianmu Mountain Region[J]. Marine Geology and Quaternary Geology,2006,26(6):117-122.]

    [21] 马巧红,钟巍,薛积彬,等. 晚更新世晚期以来雷州半岛北部泥炭腐殖化度的古气候意义[J]. 热带地理,2008,28(6):498-503.

    [MA Qiaohong,ZHONG Wei,XUE Jibin,et al. Paleoclimatic Significance of the Peat Humification Degree in Northern Leizhou Peninsula Since Late-pleistocene[J]. Tropical Geography,2008,28(6):498-503.]

    [22] 胡凡根,李志忠,姜修洋,等. 福建屏南天湖山泥炭腐殖化度记录的早全新世以来气候变化[J]. 亚热带资源与环境学报,2011,6(3):31-39.

    [HU Fangen,LI Zhizhong,JIANG Xiuyang,et al. Holocene Climate Change Recorded in Peat Humification on Tianhu Mountain in Northern Fujian Province[J]. Journal of Subtropical Resources and Environment,2011,6(3):31-39.]

    [23]

    Yang G F,Xie S C,Huang J H,et al. Microbial Characteristics and Vegetation Changes as recorded in lipid biomarker of Tianmushan peat bog[J]. Earth Science Frontiers,2008,15(4):170-177.

    [24]

    Zhou W J,Xie S C,Meyers P A,et al. Reconstruction of late glacial and Holocene climate evolution in southern China from geolipids and pollen in the Dingnan peat sequence[J]. Organic Geochemistry,2005,36:1272-1284.

    [25] 谢树成,易轶,梁斌,等. 泥炭分子化石单体碳氢同位素的古气候意义[J]. 矿物岩石地球化学通报,2003,22(1):8-13.

    [XIE Shucheng,YI Yi,LIANG Bin,et al. Paleoclimate Implication from Compound-Specific δ13C and of Molecular Fossils in Peat Deposits[J]. Bulletin of Mineralogy Petrology and Geochemistry,2003,22(1):8-13.]

    [26]

    Yamamoto S,Kawamura K,Seki O,et al. Paleoenvironmental significance of compound-specific δ13C variations in n-alkanes in the Hongyuan peat sequence from southwest China over the last 13 ka[J]. Organic Geochemistry,2010,41:491-497.

    [27] 洪冰,刘丛强,林庆华,等. 哈尼泥炭δ18O记录的过去14000年温度演变化[J]. 中国科学D辑,2009,39(5):626-637.

    [HONG Bing,LIU Congqiang,LIN Qinhua,et al. Temperature variations in the past 14000 years recorded from δ18O of peat from Hani,China[J]. Science in China(Series D),2009,39(5):626-637.]

    [28] 洪业汤,姜洪波,陶发祥,等. 近5 ka温度的金川泥炭δ18O记录[J]. 中国科学D辑,1997,27(6):525-530.

    [HONG Yetang,JIANG Hongbo,TAO Faxiang,et al. The recent 5 ka of temperature recorded in Jinchuan peat δ18O[J]. Science in China(Series D),1997,27(6):525-530.]

    [29] 王志国. 吉林金川泥炭纤维素稳定碳同位素组成序列与东北季风区五千多年来的环境变迁[J]. 矿物岩石地球化学通报,1998,17(1):52-54.

    [WANG Zhiguo. Northeast China using δ13C values of peat cellulose in Jinchuan region,Jilin Province[J]. Bulletin of Mineralogy,Petrology and Geochemistry,1998,17(1):52-54.]

    [30] 林庆华,冷雪天,洪冰. 大兴安岭近1000年来气候变化的泥炭记录[J]. 矿物岩石地球化学通报,2004,23(1):15-18.

    [LIN Qinghua,LENG Xuetian,HONG Bing. The peat record of 1 ka of climate change in Daxing Anling[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2004,23(1):15-18.]

    [31] 林庆华,冷雪天,洪冰. 小兴安岭过去5000年的泥炭δ13C记录[J]. 地球与环境,2004,32(1):51-54.

    [LIN Qinghua,LENG Xuetian,HONG Bing. Peat δ13C record of climate change in Xiaoxing Anling in the past 5000 years[J]. Earth and Environment,2004,32(1):51-54.]

    [32] 徐海,洪业汤,林庆华,等. 红原泥炭纤维素氧同位素指示的距今6ka温度变化[J]. 科学通报,2002,47(15):1181-1186.

    [XU Hai,HONG Yetang,LIN Qinghua,et al. Temperature variations in the past 6000 years inferred from δ18O of peat cellulose from Hongyuan,China[J]. Chinese Science Bulletin,2002,47(15):1181-1186.]

    [33] 洪冰,林庆华,朱詠煊,等. 红原泥炭苔草的碳同位素组成与全新世季风变化[J]. 矿物岩石地球化学通报,2003,22(2):99-103.

    [HONG Bing,LIN Qinghua,ZHU Yongxuan,et al. Carbon isotopic composition of the Carex Mulieensis remain of the Hongyuan peat bog in the Eastern Tibetan Plateau and the Indian Ocean Summer Monsoon variation in the Holocene[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2003,22(2):99-103.]

    [34] 洪冰,林庆华,洪业汤,等. 全新世青藏高原东部西南季风的演变[J]. 地球与环境,2004,32(1):42-49.

    [HONG Bing,LIN Qinghua,HONG Yetang,et al. Evolution of southwest monsoon in the eastern peat of Qinghai-Tibet Plateau during Holocene[J]. Earth and Environment,2004,32(1):42-49.]

    [35] 朱芸,陈晔,赵志军,等. 神农架大九湖泥炭藓泥炭α-纤维素δ13C记录的1000~4000 aBP间环境变化[J]. 科学通报,2009,54(20):3108-3116.

    [ZHU Yun,CHEN Ye,ZHAO Zhijun,et al. Record of environmental change by α-cellulose δ13C of sphagnum peat at Shennongjia,4000~1000 aBP[J]. Chinese Science Bulletin,2009,54(20):3108-3116.]

    [36] 陶发祥,刘广深. 地质档案中的纤维素提取[J]. 矿物岩石地球化学通报,1995,14:245-246.[TAO Faxiang,LIU Guangshen. The cellulose extraction from geoarchives[J]. Bulletin of Mineralogy,Petrology and Geochemistry,1995

    ,14:245-246.]

    [37] 洪业汤,朱詠煊,姜洪波,等. 泥炭纤维素同位素:全新世气候环境变化的敏感记录[J]. 矿物岩石地球化学通报,2006,25:1-4.[HONG Yetang,ZHU Yongyan,JIANG Hongbo,et al. Sensitive records of Holocene climate change[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2006

    ,25:1-4.]

    [38]

    Xu H,Hong Y T,Lin Q H,et al. Temperature responses to quasi-100-yr solar variability during the past 6000 years based on δ18O of peat cellulose in Hongyuan,eastern Qinghai-Tibet plateau,China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2006,230:155-164.

    [39]

    Hong Y T,Jiang H B,Liu T S,et al. Response of climate to solar forcing recorded in a 6000-year δ18O time-series of Chinese peat cellulose[J]. The Holocene,2000,10(1):1-7.

    [40]

    Hong Y T,Hong B,Lin Q H,et al. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene[J]. Earth and Planetary Science Letters,2003,211:371-380.

    [41]

    Hong Y T,Hong B,Lin Q H,et al. Inverse phase oscillations between the East Asian and Indian Ocean summer monsoons during the last 12000 years and paleo-El Ninõ[J]. Earth and Planetary Science Letters,2003,231:337-346.

    [42] 陶发祥,洪业汤,姜洪波,等. 贵州草海地区最近8 ka的气候变化[J]. 科学通报,1996,41(16):1489-1492.

    [TAO Faxiang,HONG Yetang,JIANG Hongbo,et al. The climate changes in the past 8000 years of Caohai region,Guizhou[J]. Chinese Science Bulletin,1996,41(16):1489-1492.]

    [43] 洪业汤,洪冰,林庆华,等. 过去5000年西太平洋副热带高压活动的泥炭纤维素碳同位素记录[J]. 第四纪研究,2003,23(5):485-492.

    [HONG Yetang,HONG Bing,LIN Qinghua,et al. Subtropical high activity of western pacific ocean during the last 5000 years recorded in isotope time series of peat bog[J]. Quaternary Sciences,2003,23(5):485-492.]

    [44] 洪冰,林庆华,洪业汤. 全新世亚洲季风,ENSO及高北纬度气候间的关联[J]. 科学通报,2006,51(7):1977-1984.

    [HONG Bing,LIN Qinhua,HONG Yetang. The correlation between the Holocene Asian monsoon,ENSO and high degrees north latitude climate[J]. Chinese Science Bulletin,2006,51(7):1977-1984.]

    [45]

    Hong Y T,Hong B,Lin Q H,et al. Synchronous climate anomalies in the western North Pacific and North Atlantic regions during the last 14000 years[J]. Quaternary Science Reviews,2009,28:840-849.

    [46] 陶发祥,洪业汤. 泥炭档案气候变化重建的定量模型[J]. 矿物岩石地球化学通报,1997,16(2):93-97.

    [TAO Faxiang,HONG Yetang. A model for quantitative reconstruction of climatic change recorded in peat archives[J]. Bulletin of Mineralogy,Petrology and Geochemistry,1997,16(2):93-97.]

    [47]

    Chen F H,Yu Z C,Yang M L,et al. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews,2008,27:351-364.

    [48] 李宜垠,魏芳,周力平. 泥炭样品的AMS14C年龄测定:全样、植物残体和孢粉浓缩物[J]. 第四纪研究,2007,27(4):499-506.

    [LI Yiyin,WEI Fang,ZHOU Liping. AMS14C dating using bulk samples, plant residues and pollen concentrates from a peat profile at Kulun,inner mongolia[J]. Quaternary Sciences,2007,27(4):499-506.]

    [49] 孙广友,罗新正, Turner R E. 青藏东北部若尔盖高原全新世泥炭沉积年代学研究[J]. 沉积学报,2001,19(2):177-182.

    [SUN Guangyou,LUO Xinzheng, Turner R E. A study on peat deposition chronology of Holocene of Zorge Plateau in the northeast Qinghai-Tibetan Plateau[J]. Acta Sedimentologica Sinica,2001,19(2):177-182.]

    [50] 赵宏丽,刘嘉麒. 东北龙岗火山区孤山屯泥炭中显微火山灰的发现及其意义[J]. 地震地质,2012,34(4):515-530.

    [ZHAO Hongli,LIU Jiaqi. Cryptotephra discovered in Gushantun peat of NE China and its significance[J]. Seismology and Geology,2012,34(4):515-530.]

    [51] 高洁,汤烈贵. 纤维素科学[M]. 北京:科学出版社,1996:1-2.[GAO Jie,TANG Liegui. Cellulose Science[M]. Beijing:Science Press,1996:1

    -2.]

    [52]

    Lehninger A L.Translated by Ren B Z,Lu H L,Zhou Y J,et al. Biochemistry[M]. Beijing:The Chinese Academy of Sciences Press,1981, 232.)

    [53]

    Zanazzi A,Mora G. Paleoclimatic implications of the relationship between oxygen isotope ratios of moss cellulose and source water in wetlands of Lake Superior[J]. Chemical Geology,2005,222:281-291.

    [54]

    Berger A,Loutre M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews,1991,10(4),297-317.

    [55]

    Peterse F,Prins M A,Beets C J,et al. Decoupled warming and monsoon precipitation in East Asia over the last deglaciation[J]. Earth and Planetary Science Letters,2011,301:256-264.

    [56]

    Bond G,Showers W,Cheseby M,et al. A Pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science,1997,278:1257-1266.

    [57]

    Fleitmann D,Burns S J,Mudelsee M,et al. Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman[J]. Science,2003,300:1737-1739.

    [58]

    Fleitmann D,Burns S J,Mangini A,et al. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen(Socotra)[J]. Quaternary Science Reviews,2007,26:170-188.

    [59]

    Dong J G,Wang Y J,Cheng H,et al. A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt Shennongjia,central China[J]. The Holocene,2010,2(20):257-264.

    [60]

    Zhong W,Xue J B,Zheng Y M,et al. Climatic changes since the last deglaciation inferred from a lacustrine sedimentary sequence in the eastern Nanling mountains,south China[J]. Journal of Quaternary Science,2010,25(6),975-984.

    [61]

    Farquha,G D,Ehleringer,J R and Hubick,K T. Carbon isotope discrimination and photosynthesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1989,40(1):503-537.

    [62]

    O'Leary M H. Carbon isotope fractionation in plants[J]. Phytochemistry,1981,20(4):533-567.

    [63]

    O'Leary M H. Carbon isotope in photosynthesis[J]. Bioscience,1988,8(5):328-336.

    [64] 王国安,韩家懋. C3植物碳同位素在旱季和雨季中的变化[J]. 海洋地质与第四纪地质,2001,21(4):43-47.

    [WANG Guoan,HAN Jiamo. δ13C variations of C3 plants in dry and rainy seasons[J]. Marine Geology and Quaternary Geology,2001,21(4):43-47.]

    [65]

    Shukla J,Paolina D. The Southern Oscillation and long range forecasting of the summer monsoon rainfall over India[J]. Monthly Weather Review,1983,111:1830-1837.

    [66]

    Webster P J,Magana V O,Palmer T N,et al. Monsoons:processes,predictability,and the prospects for prediction[J]. Journal of Geophysical Research,1998,103:14451-14510.

    [67]

    Hopmans E C,Weijers J W H,Schefub E,et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters,2004,224:107-116.

    [68]

    Sinninghe Damsté J S,Ossebaar J,Abbas B,et al. Fluxes and distribution of tetraether lipids in an equatorial African lake:constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings[J]. Geochimica et Cosmochimica Acta,2009,73:4232-4249.

    [69]

    Sinninghe Damsté J S,Hopmans E C,Pancost R D,et al. Newly discovered non-isoprenoid dialkylglycerol tetraether lipids in sediments[J]. Journal of the Chemical Society,Chemical Communication,2000:1683-1684.

    [70]

    Peterse F,Vander Meer M T J,Schouten S,et al. Assessment of soil n-alkane and branched tetraether membrane lipid distributions as tools for paleoelevation reconstruction[J]. Biogeosciences Discuss,2009,6:8609-8631.

    [71]

    Rueda G,Rosel-l Melé A,Escala M,et al. Comparison of instrumental and GDGT based estimates of sea surface and air temperatures from the Skagerak[J]. Organic Geochemistry,2009,40:287-291.

    [72]

    Yu K F,Zhao J X,Wei G J,et al. Mid-late Holocene monsoon climate retrieved from seasonal Sr/Ca and δ18O records of Porites lutea corals at Leizhou Peninsula,northern coast of South China Sea[J]. Global and Planetary Change,2005,(47):301-316.

    [73]

    Marcott S A,Shakun J D,Clark P U,et al. A Reconstruction of Regional and Global Temperature for the Past 11,300 Years[J]. Science,2013,339:1198-1201.

    [74] 施雅风,王昭宸,王苏民,等. 中国全新世大暖期的气候波动与重要事件[J]. 中国科学B辑,1992,(12):1300-1308.[SHI Yafeng,KONG Zhaochen,WANG Sumin et al., Climatic fluctuations and special events during the Holocene Optimum of China[J]. Science in China(Series B),1992

    ,12:1300-1308.]

    [75]

    Daley T J,Barber K E,Perrott F A,et al. Holocene climate variability revealed by oxygen isotope analysis of Sphagnum cellulose from Walton Moss,northern England[J]. Quaternary Science Reviews,2010,29:1590-1601.

    [76]

    Holzkämper S,Tillman P K,Kuhry P,et al. Comparison of stable carbon and oxygen isotopes in Picea glauca tree rings and Sphagnum fuscum moss remains from subarctic Canada[J]. Quaternary Research,2012,78:295-302.

    [77]

    Wang Y J,Cheng H,Edwards R L,et al. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave,China[J]. Science,2001,294:2345-2348.

    [78] 程海,Edwards R L,王先锋,等. 中国南方石笋氧同位素记录的重要意义[J]. 第四纪研究,2005,25(2):157-163.

    [CHENG Hai,Edwards R L,WANG Xianfeng,et al. Oxygen isotope records of stalagmites from southern China[J]. Quaternary Science,2005,25(2):157-163.]

    [79]

    Liew P M,Lee C Y,Kuo C M,et al. Holocene thermal optimal and climate variability of East Asian monsoon inferred from forest reconstruction of a subalpine pollen sequence,Taiwan[J]. Earth and Planetary Science Letters,2006,250:596-605.]

    [80]

    Jiang W Y,Guo Z T,Sun X J,et al. Reconstruction of climate and vegetation changes of Lake Bayanchagan (Inner Mongolia):Holocene variability of the East Asian monsoon[J]. Quaternary Research,2006,65:411-420.

    [81]

    Wang L,Sarnthein M,Erlenkeuser H,et al. East Asian monsoon climate during the late Pleistocene:high-resolution sediment records from the South China Sea[J]. Marine Geology,1999,156:245-284.

    [82]

    Seki O,Meyers P A,Kawamura K,et al. Hydrogen isotopic ratios of plant wax n-alkanes in a peat bog deposited in northeast China during the last 16 kyr[J]. Organic Geochemistry,2009,40:671-677.

    [83]

    Tillmann P K,Holzkämper S,Kuhry P,et al. Stable carbon and oxygen isotopes in Sphagnum fuscum peat from subarctic Canada:Implications for palaeoclimate studies[J]. Chemical Geology,2010,270:216-226.

    [84]

    Skrzypek G,Kałuzny A,Wojtun B,et al. The carbon stable isotopic composition of mosses:A record of temperature variation[J]. Organic Geochemistry,2007,38:1770-1781.

    [85]

    Skrzypek G,Engel Z,Chuman T,et al. Distichia peat-A new stable isotope paleoclimate proxy for the Andes[J]. Earth and Planetary Science Letters,2011,307:298-308.

    [86]

    Menot G,Burns S J. Carbon isotopes on omborgenic peat bog plants as climatic indicators calibration from an altitudinal transect in Swizerland[J]. Organic Geochemistry,2001,32:233-245.

    [87]

    Loisel J,Garneau M,Hélie J F. Modern Sphagnum δ13C signatures follow a surface moisture gradient in two boreal peat bogs,James Bay lowlands,Québec[J]. Journal of Quaternary Science,2009,24(3):209-214.

    [88]

    Loader N J,McCorroll D,Knaap W,et al. Characterizing carbon isotopic variability in Sphagnum[J]. The Holocene,2007,17(3):403-410.

    [89]

    Moschen R,Kühl N,Rehberger I,et al. Stable carbon and oxygen isotopes in sub-fossil Sphagnum:Assessment of their applicability for palaeoclimatology[J]. Chemical Geology,2009,259:262-272.

    [90]

    Robertson I,Rolfe J,Switsur V R,et al. Signal strength and climate relationships in 13C/12C ratios of tree ring cellulose from oak in southwest Finland[J]. Geophysical Research Letters,1997,24:1487-1490.

    [91]

    Skrzypek G,Kącka B A,Sikora K A,et al. Analogous trends in pollen percentages and carbon stable isotope composition of Holocene peat-Possible interpretation for Palaeoclimate studies[J]. Review of Palaeobotany and Palynology,2009,156:507-518.

    [92]

    Moschen R,Kühln,Peters S,et al. Temperature variability at Durres Maar,Germany during the migration period and at high medieval times,inferred from stable carbon isotopes of Sphagnum cellulose[J]. Climate of the Past Discussions,2011,7:535-573.

  • 期刊类型引用(2)

    1. 柯旭栋,李磊,颉宇凡,薛国庆,王文杰,杨怡飞. 琼东南盆地L区块体搬运沉积三维地震构型表征及其成因. 海洋石油. 2025(01): 13-20 . 百度学术
    2. 葛家旺,唐小龙,赵晓明,朱筱敏,齐昆. 南海琼东南盆地西区晚更新世陆架边缘层序结构及差异机制. 地球科学进展. 2024(07): 737-751 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  2013
  • HTML全文浏览量:  208
  • PDF下载量:  14
  • 被引次数: 2
出版历程
  • 收稿日期:  2013-06-04
  • 修回日期:  2013-07-04

目录

/

返回文章
返回