CHEMICAL COMPOSITION AND PALEOENVIRONMENTAL RECORD OF THE CO-RICH CRUST FROM MAGELLAN SEAMOUNT IN WESTERN PACIFIC
-
摘要: 针对取自西太平洋麦哲伦海山的富钴结壳,运用EPMA技术研究了其微区成分特征,估算并讨论了结壳的生长速率和生长年龄,并结合前人研究成果讨论了结壳的古环境记录。研究发现:结壳Mn、Fe、Co、Ni、Cu、Ca、P和Al的元素平均含量分别是29.04%、17.40%、0.73%、0.33%、0.15%、1.72%、0.35%和0.45%,与中、西北太平洋、印度洋及大西洋结壳相比具有高Mn、富Co和贫Ni的特征;结壳初始生长年龄为19.26 Ma,在8.05~11.3 Ma之间出现了约3 Ma的生长间断;进一步研究表明,结壳的Al/(Fe+Mn)、Co/(Ni+Cu)和Fe/Mn微区记录能分别较好地反映亚洲季风气候演变、海水氧化性演变和冰室期-变暖期的古气候演变及其相互之间的联系。Abstract: The Co-rich crust samples collected from the Magellan seamounts in the West Pacific have been analyzed for their compositional characteristics in micron scale by using EPMA. The growth rate and age of the samples are calculated according to the concentration of Cobat. Combined with the data from previous researches, paleoenvironmental records of the sample have been further explored. The results show that the average concentration of Mn, Fe, Co, Ni, Cu, Ca、P and Al in the samples is 29.04%、17.40%、0.73%、0.33%、0.15%、1.72%、0.35% and 0.45% respectively. Compared with the average value of elements in the Co-rich crusts from the Mid-Pacific, Northwest Pacific, Atlantic and Indian ocean, the composition of element chemistry of the samples is characterized by high Mn, Co and low Ni. Dating data shows that the crust is 19.26 Ma in age and there is a hiatus from 11.3 Ma to 8.05 Ma, upon which the growth rate of the sample was calculated; Further studies reveals that the ratios of Al/(Fe+Mn), Co/(Ni+Cu) and Fe/Mn records of the samples may indicate the evolution of the Asian monsoon, the oxidation of seawater and the changes in paleoclimate between icehouse and warming periods.
-
Keywords:
- Co-rich crust /
- geochemistry /
- palaeoenvironment /
- western-Pacific /
- Magellan seamounts
-
-
[1] 武光海,周怀阳,陈汉林. 大洋富钴结壳研究现状与进展[J]. 高校地质学报, 2001, 7(4):379-389. [WU Guanghai, ZHOU Huaiyang, CHEN Hanlin. Status and progress of oceanic Co-rich ferromanganese crusts[J]. Geological Journal of China, 2001, 7(4):379-389.]
[2] 王晓红,周力平,王毅民,等.太平洋富钴结壳高密度环境记录解读[J].中国科学D辑,2008, 38(9):1112-1121. [WANG Xiaohong, ZHOU Liping, WANG Yimin, et al. High-resolution interpretation on environmental recordings of Co-rich ferromanganese crusts from Pacific[J]. Science in China(Series D), 2008, 38(9):1112-1121.]
[3] 张海生, 韩正兵, 雷吉江, 等. 太平洋海山富钴结壳钙质超微化石生物地层学及生长过程[J]. 地球科学:中国地质大学学报, 2014, 7:001.[ZHANG Haisheng, HAN Zhengbing, LEI Jijiang, et al. Calcareous nannofossil biostratigraphy and Growth periods of Co-rich crusts from Pacific seamounts[J]. Earth Science (Journal of China University of Geosciences), 2014, 7 :001.]
[4] 张海生, 赵鹏大, 胡光道. 中太平洋多金属结壳的地球化学特征[J]. 地球科学:中国地质大学学报, 2004, 29(3):340-346. [ZHANG Haisheng, ZHAO Pengda, HU Guangdao, et al.Geochemical features of multi-metallic crust in the middle Pacific ocean[J]. Earth Science(Journal of China University of Geosciences), 2004, 29(3):340-346.]
[5] Cronan D S. Handbook of Marine Mineral Deposits[J]. Eos, Transactions American Geophysical Union., 2000, 81(36):411-413.
[6] 赵广涛, 彭俊, 田丽艳, 等. 大洋铁锰结壳的地球化学与古海洋环境示踪[J]. 中国海洋大学学报:自然科学版, 2004, 34(5):886-892. [ZHAO Guangtao, PENG Jun, TIAN Liyan, et al. Geochemistry of Ferromanganese Crusts and the Tracing of Paleocean Environment[J]. Journal of Ocean University of Qingdao, 2004, 34(5):886-892.]
[7] Halbach P, Puteanus D. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from Central Pacific seamount areas[J]. Earth and Planetary Science Letters, 1984, 68(1):73-87.
[8] Puteanus D, Halbach P. Correlation of Co concentration and growth rate-a method for age determination of ferromanganese crusts[J]. Chemical Geology, 1988, 69(1):73-85.
[9] Manheim F T, Lane-Bostwick C M. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor[J]. Nature, 1988, 335(6185):59-62.
[10] Koschinsky A, Stascheit A, Bau M, et al. Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts[J]. Geochimica et Cosmochimica Acta, 1997, 61(19):4079-4094.
[11] 徐兆凯, 李安春, 蒋富清, 等. 东菲律宾海晚中新世末期以来古海洋环境演化的新型铁锰结壳记录[J]. 中国科学D辑, 2007, 37(4):512-520. [XU Zhaokai, LI Anchun, JIANG Fuqing, et al. The marine paleoenvironmental evolution since late Miocene recorded in ferromanganese crusts from the East Philippine Sea[J]. Science in China(Series D), 2007, 37(4):512-520.]
[12] 佟景贵,王吉中,初凤友,等. 中太平洋WM1和WX海山富钴结壳元素相关性及其层间变化研究[J]. 岩石矿物学杂志, 2007(02):155-163.[TONG Jinggui, WANG Jizhong, CHU Fengyou, et al. A study of elemental correlation and elemental variation in different layers of the Co-rich crusts from the Mid-Pacific WM1 and WX seamounts[J]. Acta Petrologica Et Mineralogica, 2007(02):155-163.]
[13] 孙晓明, 薛婷, 何高文, 等. 太平洋海山富钴结壳铂族元素(PGE)和Os同位素地球化学及其成因意义[J]. 岩石学报, 2006, 22(12):3014-3026. [SUN Xiaoming, XUE Ting, HE Gaowen, et al. Platinum group elements (PGE) and Os isotopic geochemistry of ferromanganese crusts from Paeific Oeean seamounts and their constraints on genesis[J]. Aeta Petrologica Siniea, 2006, 22(12):3014-3026.]
[14] Hein J R, Yeh H W, Gunn S H, et al. Two major Cenozoic episodes of phosphogenesis recorded in equatorial Pacific seamount deposits[J]. Paleoceanography, 1993, 8(2):293-311.
[15] Ling H F, Burton K W, O'Nions R K, et al. Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts[J]. Earth and Planetary Science Letters, 1997, 146(1):1-12.
[16] Ling H, Jiang S, Frank M, et al. Differing controls over the Cenozoic Pb and Nd isotope evolution of deepwater in the central North Pacific Ocean[J]. Earth and Planetary Science Letters, 2005, 232(3):345-361.
[17] 胡镕,陈天宇,凌洪飞. 晚新生代北太平洋西部深水洋流演化:来自铁锰结壳Nd同位素的证据[J]. 科学通报, 2012, 57(28):2755-2764. [HU Rong, CHEN Tianyu, LING Hongfei. Late Cenozoic history of deep water circulation in the western North Pacific:Evidence from Nd isotopes of ferromanganese crusts[J]. Chinese Science Bulletin, 2012, 57(28):2755-2764.]
[18] 胡镕. 中北太平洋铁锰结壳化学成分与Nd同位素演化对古海洋环境的指示意义[D]. 南京大学, 2012.[HU Rong. The evolution of chemical compositions and Neodymium isotopes of ferromanganese crusts from the central North Pacific:implications to the paleoceanographic changes[D]. Nanjing University, 2012.] [19] 胡镕,陈天宇,凌洪飞. 晚第四纪中北太平洋铁锰结壳Fe/Mn变化:对古气候变化的响应[J]. 高校地质学报, 2012, 18(4):751-758. [HU Rong, CHEN Tianyu, LING Hongfei. Fe/Mn variations of Late Quaternary ferromanganese crusts from the Central North Pacific:Implications for the paleoenvironment change[J]. Geological Journal of China Universities, 2012, 18(4):751-758.]
[20] 胡镕,凌洪飞,陈天宇. 晚第四纪中北太平洋铁锰结壳成分变化-对古海洋环境的指示意义[C]//中国矿物岩石地球化学学会第13届学术年会论文集, 2011.[HU Rong, LING Hongfei, CHEN Tianyu. Compositional variation of ferromanganese crusts from Central north Pacific in late Quaternary-indicating significance for paleo-ocean environment[C]//The proceedings in the 13th academic annual conference held by Chinese Society of Mineralogy, Petrology and Geochemistry, 2011.] [21] LU Zunlin, LING Hongfei, ZHOU Feng, et al. Variation of the Fe/Mn ratio of ferromanganese crusts from the Central North Pacific:implication for paleoclimate changes[Z]. Natural Science, 2005:v. 15, 530-537.
[22] 任向文. 西太平洋富钴结壳成矿系统[D]. 中国科学院研究生院(海洋研究所), 2005.[REN Xiangwen. The Metallogenic System of Co-rich Manganese Crusts in Western Pacific[D]. the Graduate School of the Chinese Academy of Sciences(Marine Institute), 2005.] [23] Kim J, Hyeong K,Jung H S, et al. Southward of the intertropical convergence zone in the Western Pacific during the Late Tertiary:Evidence from ferromanganese crusts on seamounts west of the Marshall Islands[J]. Paleoceanography, 2006, 21, PA4218, doi: 10.1029/2006PA00129
[24] Stancin A M, Gleason J D, Rea D K, et al. Radiogenic isotopic mapping of late Cenozoic eolian and hemipelagic sediment distribution in the East-Central Pacific[J]. Earth and Planetary Science Letters, 2006, 248(3):840-850.
[25] Dongsheng L, Mianping Z, Zhengtang G. Initiation and evolution of the Asian monsoon system timely coupled with the ice-sheet growth and the tectonic movements in Asia[J]. Quaternary Sciences, 1998, 18(3):194.
[26] Wang P, Clemens S, Beaufort L, et al. Evolution and variability of the Asian monsoon system:state of the art and outstanding issues[J]. Quaternary Science Reviews, 2005, 24(5):595-629.
[27] Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416(6877):159-163.
[28] Sun X, Wang P. How old is the Asian monsoon system?-Palaeobotanical records from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222(3):181-222.
[29] Zhisheng An, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411(6833):62-66.
[30] 安芷生,张培震,王二七,等. 中新世以来我国季风-干旱环境演化与青藏高原的生长[J]. 第四纪研究, 2006, 26(5):678-693. [AN Zhisheng, ZHANG Peizhen, WANG Erqi, et al. Changes of the monsoon-arid environment in China and growth of the Tibetan plateau since the Miocene[J]. Quaternary Sciences, 2006, 26(5):678-693.]
[31] Rea D K, Snoeckx H, Joseph L H. Late Cenozoic eolian deposition in the North Pacific:Asian drying, Tibetan uplift, and cooling of the northern hemisphere[J]. Paleoceanography, 1998, 13(3):215-224.
[32] 武光海, 周怀阳, 张海生, 等. 海山铁锰结壳中反映环境氧化程度的新指标[J]. 中国科学D辑, 2006, 36(12):1098-1110. [WU Guanghai, ZHOU Huaiyang, ZHANG Haisheng, et al, New indicators for oxidation degree of surroundings in oceanic ferromanganese crusts[J]. Science in China (Series D), 2006, 36(12):1098-1110.]
[33] Brovkin V, Ganopolski A, Archer D, et al.. Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry[J]. Paleoceanography, 2007, 22(4):PA4202.
[34] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science. 2001, 292(5517):686-693.
[35] Kennett J P. Marine Geology[M]. 1982.
[36] Sager W W, Winterer E L, Firth J V. Ocean Drilling Program Proceedings[J]. Initial Reports. 1993, 143:724.
[37] Kennett J P, Warnke D A. The Antarctic Paleoenvironment:A Perspective on Global Change:Part Two[M]. American Geophysical Union, 1993.
[38] Vincent E, Berger W H. Carbon dioxide and polar cooling in the Miocene:The Monterey hypothesis[C]//The Carbon Cycle and Atmospheric CO:Natural Variations Archean to Present. 1985:455-468.
[39] Flower B P, Kennett J P. Middle Miocene deepwater paleoceanography in the southwest Pacific:relations with East Antarctic Ice Sheet development[J]. Paleoceanography. 1995, 10(6):1095-1112.
[40] Kennett J P, Barker P F. Latest Cretaceous to Cenozoic climate and oceanographic developments in the Weddell Sea, Antarctica:an ocean-drilling perspective[C]. 1990.
[41] Thiede J, Vorren T O. The Arctic Ocean and its geologic record:research history and perspectives[J]. Marine Geology. 1994, 119(3):179-184.
[42] 鹿化煜, 王先彦, 李郎平. 晚新生代亚洲干旱气候发展与全球变冷联系的风尘沉积证据[J]. 第四纪研究, 2008, 28(5):949-956. [LU Huayu, WANG Xianyan, LI Langping. Aeolian dust records indicate the linkage of global cooling and Asian drying in late Cenozoic[J]. Quaternary Sciences, 2008, 28(5):949-956.]
[43] Qiang X K, Li Z X, Powell C M A, et al. Magnetostratigraphic record of the Late Miocene onset of the East Asian monsoon, and Pliocene uplift of northern Tibet[J]. Earth and Planetary Science Letters, 2001, 187(1):83-93.
-
期刊类型引用(4)
1. 吴潇平,赵广涛,徐翠玲,来志庆. 东南太平洋秘鲁海盆DEA区浅层埋藏型铁锰结核的矿物学和地球化学特征及成因类型. 中国海洋大学学报(自然科学版). 2023(02): 94-106 . 百度学术
2. 刘家岐,兰晓东. 中太平洋莱恩海山富钴结壳元素地球化学特征及成因. 海洋地质与第四纪地质. 2022(02): 81-91 . 本站查看
3. 林梵宇,尹希杰,黄威,黄杰超,梁毓娜. 利用微区XRF技术的大洋固体矿产成分快速无损检测. 海洋地质与第四纪地质. 2021(01): 223-232 . 本站查看
4. 韦振权,何高文,邓希光,姚会强,刘永刚,杨永,任江波. 大洋富钴结壳资源调查与研究进展. 中国地质. 2017(03): 460-472 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 2243
- HTML全文浏览量: 273
- PDF下载量: 22
- 被引次数: 8