闽江河口湿地围垦稻田对土壤铁碳结合特征的影响

刘旭阳, 王纯, 郭萍萍, 方云英, 沈李东, 胡世文, 黑杰, 王亚非, 胥佳忆, 王维奇

刘旭阳,王纯,郭萍萍,等. 闽江河口湿地围垦稻田对土壤铁碳结合特征的影响[J]. 海洋地质与第四纪地质,2024,44(1): 44-54. DOI: 10.16562/j.cnki.0256-1492.2023031701
引用本文: 刘旭阳,王纯,郭萍萍,等. 闽江河口湿地围垦稻田对土壤铁碳结合特征的影响[J]. 海洋地质与第四纪地质,2024,44(1): 44-54. DOI: 10.16562/j.cnki.0256-1492.2023031701
LIU Xuyang,WANG Chun,GUO Pingping,et al. Effects of reclamation of paddy fields on soil iron-bound organic carbon in Minjiang River estuarine wetland[J]. Marine Geology & Quaternary Geology,2024,44(1):44-54. DOI: 10.16562/j.cnki.0256-1492.2023031701
Citation: LIU Xuyang,WANG Chun,GUO Pingping,et al. Effects of reclamation of paddy fields on soil iron-bound organic carbon in Minjiang River estuarine wetland[J]. Marine Geology & Quaternary Geology,2024,44(1):44-54. DOI: 10.16562/j.cnki.0256-1492.2023031701

闽江河口湿地围垦稻田对土壤铁碳结合特征的影响

基金项目: 国家自然科学基金“河口湿地围垦稻田后土壤铁结合态有机碳的演变趋势和稳定机制”(42077086)
详细信息
    作者简介:

    刘旭阳(1994—),男,博士研究生,主要研究方向为湿地生态学,E-mail:lesliexyang@163.com

    通讯作者:

    王维奇(1982—),男,研究员,主要从事生态与环境研究,E-mail:wangweiqi15@163.com

  • 中图分类号: P736.4

Effects of reclamation of paddy fields on soil iron-bound organic carbon in Minjiang River estuarine wetland

  • 摘要:

    土壤铁氧化物结合态有机碳是有机碳长期维持的主要途径,但其机理研究仍较为薄弱。为探究河口湿地围垦稻田对土壤铁碳结合特征的影响,本研究选择福建省闽江河口天然芦苇湿地与围垦稻田为研究对象,对两种类型土壤中的铁结合态有机碳(Fe-OC)及其相关指标进行测定与分析。结果显示:① 芦苇湿地围垦稻田改变了土壤氧化还原过程,显著影响土壤中铁相的转化。围垦后土壤二价铁[Fe(Ⅱ)]、三价铁[Fe(Ⅲ)]、活性总铁含量(HCl-Fet)及Fe(Ⅲ)/Fe(Ⅱ)分别显著下降了24.68%、52.56%、51.45%、35.68% (P<0.05)。游离态氧化铁(Fed)与无定形态铁(Feo)含量分别显著下降了21.64% 和29.24%(P<0.05),络合态铁(Fep)含量则有所增加。② 芦苇湿地围垦稻田显著影响土壤碳固存,Fe-OC与土壤有机碳含量(SOC)在围垦稻田后分别显著下降了39.03% 和18.42%(P<0.05);芦苇湿地与稻田土壤Fe-OC均主要以吸附途径结合,稻田土壤Fe-OC对土壤有机碳的贡献率(fFe-OC)显著高于芦苇湿地(P<0.05)。③ 土壤全氮、含水量、电导率、铁以及土壤有机碳、溶解性有机碳与Fe-OC呈显著正相关(P<0.01)。本研究可为退耕还湿、土壤碳增汇提供科学参考。

    Abstract:

    Iron oxide bound organic carbon is the main pathway for long-term stability of organic carbon. However, study of its mechanism remains weak. To understand the impact of estuarine wetland reclamation of paddy field on soil iron-carbon binding characteristics, we measured the soil iron-bound organic carbon (Fe-OC) and its related indicators in the natural reed (Phragmite australis) wetland and paddy field reclamation in Minjiang River estuary, Fujian Province. Results show that the wetland reclamation significantly affected the soil oxidation and reduction condition, and the redox process significantly affected the transformation of iron (Fe) phase in soil. After the wetland reclamation, the content of bivalent iron [Fe(Ⅱ)], trivalent iron [Fe(Ⅲ)], active total iron (HCl-Fet), and Fe(Ⅲ)/Fe(Ⅱ) in the soil significantly decreased by 24.68%, 52.56%, 51.45%, and 35.68%, respectively (P<0.05). The content of free Fe oxide (Fed) and amorphous iron (Feo) in the soil significantly decreased by 21.64% and 29.24%, respectively (P<0.05), but the content of complex iron (Fep) increased. In addition, the wetland reclamation significantly affected the soil carbon retention, and the content of Fe-OC and soil organic carbon (SOC) in the soil significantly decreased by 39.03% and 18.42% after the reclamation (P<0.05). In both reed wetland and paddy field, soil Fe-OC was combined dominantly through adsorption. The contribution rate of paddy field soil Fe-OC to SOC (fFe-OC) was significantly higher than that of reed wetland (P<0.05). Finally. there were significant positive correlations (P<0.01) between soil TN, water content, conductivity, Fe, SOC, dissolved organic carbon, and Fe-OC. This study provided scientific guidance for wetland restoration and increasing soil carbon sequestration.

  • 湿地是主要的自然碳汇,也是对外界响应较为敏感的生态系统类型,在调节全球碳平衡方面发挥着重要作用[1]。虽然湿地仅占陆地表面的6%,但却储存着世界上三分之一的土壤有机碳 [2-3]。然而,《Nature》的最新研究表明,将其开垦为耕地已造成62%的湿地损失,其中将湿地转化为稻田是重要的因素[4]。土地利用变化是驱动湿地碳损失的主要驱动力[5-6],土地的耕作以及湿地围垦措施,会导致土壤物理和化学性质的变化[7],从而深刻影响土壤有机碳循环。中国滨海湿地1 m土壤的总碳库为57×106 Mg C,在世界滨海湿地“蓝碳”储存中占有重要地位[8]。Tan等[9]通过对全球的综合分析研究表明,滨海湿地、河岸湿地和泥炭地转化为其他土地利用类型降低了土壤碳储量,减少了(17.8±10.3)%,Krause等[2]研究发现围垦会造成有机碳的损失,Sasmito等[1]亦发现红树林湿地经过人为开垦后有机碳减少,张鑫磊等[10]研究发现崇明东滩湿地围垦植稻造成产甲烷菌相对丰度明显增加,这促使甲烷产生速率也大幅度增加,但Wang等[11]通过对杭州湾湿地研究发现,随着开垦时间的增加,pH和电导率显著降低,同时,随着开垦时间的延长,土壤固存有机碳的能力也随之增加,这表明土壤有机碳对湿地围垦的响应存在差异性,而且对于湿地围垦稻田后土壤综合碳固持的研究尚鲜见报道。因此,探究围垦对湿地土壤碳固持的影响可为湿地有机碳固存能力增强提供重要理论支撑。

    铁(Fe)作为氧化还原特性最为敏感的元素,在有机碳固持中具有重要作用[12]。土壤中的二价铁[Fe(Ⅱ)] 一般在土壤中很快会被氧化成三价铁[Fe(Ⅲ)],然后发生水解反应形成铁氧化物,根据铁氧化物在土壤中的存在形式,通常包括游离态氧化铁(Fed)、无定形态铁(Feo)和络合态铁(Fep[12]。游离态氧化铁主要指存在于土壤黏粒中且能够被连二亚硫酸钠提取的铁;活性铁包括无定形铁和晶质铁,无定形铁具有比表面积大、吸附能力强以及高反应活性等特点,能够被草酸提取;络合态铁是指与土壤腐殖质结合的铁,可用焦磷酸钠提取[12-13]。铁氧化物已经被众多研究证明是一种十分有效的“锈汇”,它可以通过有机-矿物络合物形成铁结合态有机碳(Fe-OC),这是促进有机碳稳定的重要机制[14-15]。当前对于铁结合态有机碳的研究主要集中在农田、森林、草地,探究其结合机制以及对有机碳固持的贡献已经成为热点问题[16-17],而关于河口湿地围垦稻田后有关铁结合态有机碳的研究尚鲜见报道。

    福建省位于中国东南沿海,是中国海岸线长度第二、曲折率第一的省份,形成了广泛分布的河口和海岸湿地。闽江是福建省最大的入海河流,其河口区形成了诸多湿地,在过去,当地居民为了满足生产和生活需要,很多天然湿地被围垦成稻田。在河口湿地围垦成稻田后,河流径流带来的铁与有机碳输入会部分减少,植被的改变也会导致植物来源碳输入的降低,这些变化是否会改变铁结合态有机碳形成途径?进而降低土壤铁结合态有机碳含量及其对总有机碳的贡献?围垦成稻田后环境因子改变又将如何调节铁结合态有机碳?为此,本研究拟基于亚热带河口湿地铁氧化物含量丰富的特点,针对铁碳结合特征开展相关研究,预期可为河口湿地有机碳的可持续管理提供理论参考。

    闽江河口区属亚热带海洋性季风气候,年平均气温19.6 ℃,年平均降水量1346 mm [18]。本研究以该区天然芦苇湿地及其围垦稻田(围垦年限>30 a)作为研究对象。其中,天然芦苇湿地主要受到正规半日潮影响,稻田为水旱轮作,水稻种植时期为5月中旬至8月中旬,水稻收获后种植蔬菜。水稻返青期和分蘖旺盛期实行水淹管理,分蘖后期排干约一周后实行淹水-烤田-湿润灌溉相结合水分管理,直至收获前两周排干,蔬菜种植期间根据水分需求进行水分管理。水稻和蔬菜种植期间施肥主要以复合肥(N∶P2O5∶K2O为15∶15∶15)为主,氮(N)、磷(P2O5)、钾(K2O)肥施加量分别为155、80、105 kg·hm−2和160、45、105 kg·hm−2

    分别于2021年春季(5月)和冬季(12月),采集0~10、10~20和20~30 cm的土壤样品,本试验采用完全随机设计,每个深度对芦苇湿地和稻田各随机采4个样品。为了减少每次取样时的人为干扰,搭设栈桥进入样地。考虑到天然湿地的潮汐过程,野外采样时间选在小潮日。采集样品放入便携式冷藏箱中,带回实验室,样品分成两份,一份置于4 ℃冰箱保存;另一份自然风干后,用摄子挑出土壤中的根和杂质,过100 mm筛,而后将土样分成若干份进行不同指标的测定。

    土壤容重(BD)采用环刀法测定,土壤含水量(WC)采用烘干法测定[19],土壤pH和温度(ST)采用PHS-3C pH计(SI400, USA)测定,土壤电导率(EC)采用2265FS电导仪(Spectrum Technologies Inc, USA)测定,土壤有机碳(SOC)和全氮(TN)采用CN元素分析仪(Elementar Vario MAX CN, Germany)测定,全磷(TP)采用硫酸-高氯酸消解,并用连续流动分析仪(Skalar Analytical SAN++, Netherlands)测定[20];土壤微生物生物量碳(MBC)经过氯仿熏蒸-K2SO4浸提,土壤溶解性有机碳(DOC)使用去离子水浸提[21],并用连续流动分析仪(Skalar Analytical SAN++, Netherlands)测定,土壤活性有机碳(LOC)使用333 mmol·L−1高锰酸钾氧化法[22]提取之后,用总有机碳分析仪(Shimadzu TOC-VCPH, Japan)测定。

    土壤不同价态活性铁:土壤活性二价铁-Fe(Ⅱ)和总铁-HCl-Fet的测定采用盐酸浸提[23],使用UV-2450紫外分光光度计(Shimadzu Scientific Instruments, Japan)测定,并通过总铁和二价铁含量的差值,计算三价铁含量[23]

    $$\rm Fe(III)=HCl-Fe_{t}-Fe(II) $$ (1)

    土壤铁氧化物:土壤中游离态氧化铁(Fed)、无定型氧化铁(Feo)和络合态铁(Fep)分别采用DCB、草酸铵和焦磷酸钠方法提取[12]。上述各形态氧化铁的提取液均采用邻菲罗啉比色法,用UV-2450紫外分光光度计(Shimadzu Scientific Instruments, Japan)测定,并根据以下公式计算氧化铁的特征参数[12]

    $$\rm{\text{ 活化度}}= Fe_{o}/Fe_{d}\times 100{\text{%}}$$ (2)
    $$\rm{\text{ 络合度}}= Fe_{p}/Fe_{d}\times 100{\text{%}} $$ (3)
    $$\rm{\text{ 晶质氧化铁}} (g\cdot kg^{-1}) = Fe_{d}-Fe_{o} $$ (4)
    $$\rm{\text{ 晶胶率}}= (Fe_{d} - Fe_{o})/Fe_{o} $$ (5)

    式中,Fed为游离态氧化铁含量,Feo为无定形氧化铁含量,Fep为络合态氧化铁含量,活化度和络合度单位为%。

    土壤铁结合态有机碳含量:采用DCB还原溶解提取法测定[14]。将上述经DCB处理和NaCl处理后的残渣中的有机碳采用CN元素分析仪(Elementar Vario MAX CN, Germany)测定,铁结合态有机碳含量为对照的有机碳含量减去DCB处理的有机碳含量的差值[15]

    $$\rm Fe{\text -}OC (g\cdot kg^{-1}) = OC_{NaCl} - OC_{DCB} $$ (6)

    铁结合态有机碳形成途径:通过前面测定的铁结合态有机碳含量和总的铁氧化物含量转换计算铁结合态有机碳中的OC/Fe[15],并以此判断铁结合态有机碳形成的共沉淀和吸附途径。

    $$\rm OC/Fe{({\text {摩尔比}})}= (Fe-OC/M_{C})/(m_{Fed}/M_{Fe}) $$ (7)

    土壤铁结合态有机碳对总有机碳的贡献分析:土壤总有机碳采用CN元素分析仪(Elementar Vario MAX CN, Germany)测定,并通过结合已测定的铁结合态有机碳含量和总的有机碳含量计算土壤铁结合态有机碳占总有机碳的比例[15]

    $$f_{\rm Fe{\text -}OC} ({\text{%}}) =\rm Fe{\text -}OC/SOC \times 100{\text{%}} $$ (8)

    式中,Fe-OC表示铁结合态有机碳,OCNaCl和 OCDCB分别表示经过NaCl处理和DCB处理后固体残渣中的有机碳含量,fFe-OC表示铁结合态有机碳占总有机碳的比值,OC/Fe(摩尔比)表示铁结合态有机碳的碳铁摩尔比,mFed表示游离态氧化铁含量,MC和MFe分别表示碳和铁的摩尔质量。

    运用Excel 2016、SPSS 20.0、Origin 2019b、Adobe Illustrator 2020、R语言和Canoco 5等软件对测定数据进行整理、分析和绘图。原始数据的平均值及标准偏差的计算采用Excel 2016分析;采用Origin 2019b软件绘制土壤不同价态铁、氧化铁、铁碳结合特征等指标含量图;采用Excel 2016制作土壤氧化铁参数特征表格;基于SPSS 20.0的单因素方差分析比较湿地围垦前后土壤不同价态铁、氧化铁、铁碳结合特征等指标之间的差异性;土壤铁结合态有机碳的影响因子的Pearson 相关性分析通过R语言中的corrplot包进行;土壤铁碳结合特征的RDA分析通过Canoco 5软件进行;论文概念图通过Adobe Illustrator 2020绘制。

    从均值来看,在春季和冬季,芦苇湿地土壤Fe(Ⅱ)含量、Fe(Ⅲ)含量、HCl-Fet含量以及Fe(Ⅲ)/Fe(Ⅱ)明显高于稻田土壤(P<0.05,图1),分别比稻田土壤增加了47.06%和21.54%、95.94%和125.93%、92.57%和119.27%、26.68%和86.51%。在0~30 cm土壤深度上,芦苇湿地土壤Fe(Ⅱ)含量随深度增加而升高,稻田土壤Fe(Ⅱ)含量随深度增加而降低(P<0.05);芦苇湿地土壤Fe(Ⅲ)含量随深度增加而降低(P<0.05),稻田土壤Fe(Ⅲ)含量以及HCl-Fet含量随着深度变化差异不显著;芦苇湿地土壤Fe(Ⅲ)/Fe(Ⅱ)随深度增加而降低(P<0.05),稻田土壤Fe(Ⅲ)/Fe(Ⅱ)随深度增加而增加(P<0.05)。

    图  1  芦苇湿地与稻田土壤铁含量特征
    图中不同小写字母表示不同采样点土壤同一深度间存在显著性差异(P<0.05),不同大写字母表示同一采样点土壤不同深度存在显著差异性(P<0.05)。
    Figure  1.  Characteristics of Fe contents in soil of P. australis wetland and paddy field
    Different lowercase letters in the figure indicate that there is a significant difference between the same depth of soil at different sampling points (P<0.05), and different uppercase letters indicate that there is a significant difference between different depths of soil at the same sampling point (P<0.05).

    从均值来看,在春季和冬季,芦苇湿地土壤Fed与Feo含量明显高于稻田土壤(P<0.05,图2a、c),分别增加了17.73%和30.25%、35.69%和49.80%;而芦苇湿地土壤Fep含量低于稻田土壤(图2b),分别降低了5.13%和6.25%。在0~30 cm土壤深度上,芦苇湿地与稻田土壤Fed含量变化不显著,芦苇湿地土壤Feo含量随深度增加而增加(P<0.05),稻田土壤Feo含量随深度增加而降低(P<0.05),Fep含量随深度增加而降低(P<0.05)。

    图  2  芦苇湿地与稻田土壤氧化铁含量特征
    图中不同小写字母表示不同采样点土壤同一深度间存在显著性差异(P<0.05),不同大写字母表示同一采样点土壤不同深度存在显著差异性(P<0.05)。
    Figure  2.  Characteristics of Fe oxide content in soil of P. australis wetland and paddy field
    Different lowercase letters in the figure indicate that there is a significant difference between the same depth of soil at different sampling points (P<0.05), and different uppercase letters indicate that there is a significant difference between different depths of soil at the same sampling point (P<0.05).

    从均值来看,在春季和冬季,芦苇湿地土壤活化度明显高于稻田土壤(P<0.05,表1),分别增加了14.36%和17.15%;在0~20 cm,芦苇湿地土壤络合度和晶胶率明显低于稻田土壤(P<0.05,表1),分别降低了17.21%和13.96%、30.77%和28.36%;芦苇湿地土壤晶质氧化铁含量与稻田土壤相比,在春季降低了16.10%,但在冬季增加了13.18%(P<0.05,表1)。在0~30 cm土壤深度上,芦苇湿地土壤活化度随深度增加而升高,稻田土壤活化度随深度增加而降低(P<0.05);芦苇湿地土壤络合度、晶质氧化铁含量、晶胶率随深度增加而降低(P<0.05);稻田土壤络合度随深度增加而降低(P<0.05),土壤晶质氧化铁含量和晶胶率随深度增加而增加(P<0.05)。

    表  1  芦苇湿地与稻田土壤氧化铁参数特征
    Table  1.  Characteristics of parameters of Fe oxide in soil in P. australis wetland and paddy field
    指标采样时间土层深度/cm样地类型
    芦苇湿地稻田
    活化度/%0~1067.28 ± 6.84Ba63.84 ± 1.75Aa
    10~2069.79 ± 6.47Ba68.42 ± 5.15Aa
    20~3075.04 ± 3.71Aa53.21 ± 2.07Bb
    0~1051.52 ± 5.66Aa59.11 ± 7.75Aa
    10~2046.43 ± 3.29Bb51.57 ± 3.71Aa
    20~3064.31 ± 4.90Aa27.82 ± 3.73Bb
    络合度/%0~107.17 ± 0.72Ab13.02±1.22Aa
    10~207.80 ± 0.73Ab9.63±0.22Ba
    20~307.11 ± 0.88Aa4.03±1.17Cb
    0~1010.32 ± 1.76Aa12.82±0.85Aa
    10~207.85 ±2.36Bb10.82±0.77Aa
    20~305.70 ± 0.50Ca4.08±1.11Ba
    晶质氧化铁
    /(g·kg-1)
    0~104.42±0.91Aa4.35±0.20Ba
    10~204.35±0.93Aa3.68±0.64Ba
    20~303.87±0.76Ab7.06±1.40Aa
    0~106.85±0.77Aa4.45±0.72Bb
    10~207.73±0.56Aa5.10±0.51Bb
    20~305.25±0.95Ba7.97±0.51Ab
    晶胶率0~100.53±0.15Aa0.57±0.04Ba
    10~200.48±0.17Aa0.49±0.13Ba
    20~300.34±0.07Bb0.89±0.07Aa
    0~101.01±0.20Aa0.79±0.26Bb
    10~201.19±0.15Aa0.97±0.13Ba
    20~300.58±0.13Bb2.14±0.11Aa
    注:图中不同小写字母表示不同采样点土壤同一深度间存在显著性差异(P<0.05),不同大写字母表示同一采样点土壤不同深度存在显著差异性(P<0.05)。
    下载: 导出CSV 
    | 显示表格

    从均值来看,在春季和冬季,芦苇湿地土壤Fe-OC含量和SOC含量明显高于稻田土壤(P<0.05,图3a、b),分别为45.40%和4.78%、75.03%和75.03%;芦苇湿地土壤fFe-OC明显低于稻田土壤(P<0.05,图3c),分别降低了20.84%和32.10%;芦苇湿地与稻田土壤OC/Fe在春季无明显差异,在冬季,芦苇湿地OC/Fe显著低于稻田土壤12.36%(P<0.05)。在0~30 cm土壤深度上,芦苇湿地土壤Fe-OC、SOC含量以及fFe-OC随深度变化不明显,稻田土壤Fe-OC、SOC含量以及OC/Fe随深度加深而降低(P<0.05),fFe-OC随深度加深而升高(P<0.05)。

    图  3  芦苇湿地与稻田土壤铁结合态有机碳及碳铁比特征
    图中不同小写字母表示不同采样点土壤同一深度间存在显著性差异(P<0.05),不同大写字母表示同一采样点土壤不同深度存在显著差异性(P<0.05)。
    Figure  3.  Characteristics of Fe–organic-carbon in soil and organic-carbon/Fe ratio in P. australis wetland and paddy field
    Different lowercase letters in the figure indicate that there is a significant difference between the same depth of soil at different sampling points (P<0.05), and different uppercase letters indicate that there is a significant difference between different depths of soil at the same sampling point (P<0.05).

    图4所示,Fe-OC与铁相均呈正相关,其中与Fe(Ⅱ)呈极显著正相关(P<0.01),与Fep呈显著正相关(P<0.05),且与SOC、DOC、LOC、EC、WC和TN均呈极显著正相关(P<0.01)。从土壤理化性质与铁结合态有机碳、不同价态铁以及铁氧化物的关系来看,RDA 1轴和2轴累积解释了铁结合态有机碳,不同价态铁以及铁氧化物72.9%,其中WC和EC是主要解释因子,贡献率分别达到了86.70%和7.00%(图5),表明WC和EC是影响Fe-OC的重要环境因子。

    图  4  芦苇湿地与稻田土壤铁结合态有机碳与其影响因子相关性
    *代表在0.05水平上差异性显著,**代表在0.01水平上差异性显著。
    Figure  4.  Correlation between iron–organic-carbon binding in soil and its influencing factors in P. australis wetland and paddy field
    *: significant difference at 0.05 level; **: significant difference at 0.01 level.
    图  5  芦苇湿地与稻田土壤铁碳结合特征的RDA分析
    WC的贡献率为86.70%,P<0.01;EC的贡献率为7.00%,P<0.01。
    Figure  5.  RDA analysis on characteristics of iron-carbon binding in soil of P. australis wetland and paddy field
    The contribution rate of WC is 86.70% , P<0.01; The contribution rate of EC is 7.00% , P<0.01.

    湿地土壤铁对围垦响应较为敏感,Fe(Ⅲ)/Fe(Ⅱ)的变化可以很好的表征土壤氧化还原条件,河口湿地围垦稻田后Fe(Ⅲ)/Fe(Ⅱ)显著下降(图1),因为湿地围垦改变了水文条件,对天然湿地土壤的原生环境有所扰动[24]。围垦后Fe(Ⅱ)、Fe(Ⅲ)及HCl-Fet显著下降(图1),这与围垦后土壤含水量和盐度的变化密切相关。湿地围垦后由于人为灌溉而引起的土壤水分状况变化会诱导土壤铁流失 [25],在排水良好的条件下,铁主要以溶解性极低的Fe(Ⅲ)形式存在,而在淹水条件下,Fe(Ⅲ)可作为厌氧还原细菌呼吸的电子受体,发生还原反应形成高溶解性的Fe(Ⅱ)[15],围垦稻田在水稻分蘖后期和成熟收获期,伴随着排水过程,活性铁亦随之流失。此外,围垦后土壤EC的降低会促进铁的活化、迁移与淋溶损失 [25],本研究中EC与铁呈极显著正相关亦印证了这一原因(图4)。围垦会深刻影响湿地土壤铁异化还原反应过程,芦苇与水稻等湿地植物具有较为发达的通气组织来适应淹水环境,促进根系供氧,有利于植物根系表面处Fe(Ⅱ)氧化为Fe(Ⅲ)形成“铁膜” [15]。但相较于河口湿地长期淹水而造成的铁异化还原环境,围垦后稻田的间歇性淹水管理措施明显改变了土壤厌氧环境,影响铁还原菌繁衍,从而改变了铁异化还原过程,导致土壤活性铁进一步损失。土壤较低的有机质含量也是引起铁降低的主要原因[26],本研究中土壤活性铁与土壤SOC显著相关(图4),这表明相较于围垦后有机碳的降低,河口湿地捕获大量的有机质促进了铁的固存[27-28]

    河口湿地围垦稻田后Fed与Feo含量显著下降,Fep含量显著上升(图2),这是由于河口湿地具有丰富的铁氧化物来源,特别是对于亚热带和热带土壤铁富集,在强降水及河流冲刷作用下,其铁氧化物随着河流径流迁移,被河口湿地截获 [27,29]。而当河口湿地围垦成稻田后,阻断河流径流氧化铁的来源,且水稻吸收的铁在收获时被带走,进一步减少了土壤铁含量 [30-31]。稻田水旱轮作特征亦影响着土壤中Fe的转化和稳定,导致Fed和Feo含量显著下降[32]。Fep含量显著上升(图2)是由于水稻根系分泌物对铁的络合能力较强 [33]。作为土壤熟化标志之一的铁活化度[12],在芦苇湿地围垦稻田后有所降低(表1),这主要与稻田长期耕作使得土壤经历着水耕熟化的过程有关,但芦苇湿地络合度、晶质氧化铁与晶胶率低于稻田,这与稻田管理中的干湿交替过程有关[34]

    Fe-OC在固碳中扮演着重要角色,其对土壤总有机碳的贡献也已得到广泛认可[27,32]。芦苇湿地围垦稻田后Fe-OC含量下降,SOC也下降(图3),这表明湿地围垦削弱了其碳汇功能,在Wang等[35]的研究中也得出了相似的规律。铁与碳的耦合作用是促进Fe-OC形成的重要原因[27]。本研究中SOC与Fe-OC呈极显著正相关(图4),说明围垦前的高有机碳含量是促进Fe-OC形成的重要原因。相较于围垦稻田而言,芦苇湿地具有较高的有机碳截获能力,一方面,芦苇可以通过光合作用,将其固定碳输入到土壤中,同时也可将其产生的植物残体分解释放的有机碳输入到土壤中,另一方面,可截获来自河流、潮水等带来的外源碳[36],促进有机碳在土壤中的累积。围垦稻田后,土壤碳来源较少,水稻成熟期的收获、稻田排干期大量的DOC的流失以及频繁的人为耕作增加碳排放等环节,都会导致稻田土壤有机碳低于天然芦苇湿地。与此同时,本研究中DOC与Fe-OC呈显著正相关(图4), Button等[37]研究结果表明,土壤DOC是铁较为容易吸附结合的有机碳,湿地围垦后DOC的损失,也是导致其土壤中Fe-OC含量较低的原因之一。此外,河口湿地围垦前土壤Fe-OC含量较高与有机碳稳定性较高密切相关[27,38]。最近的研究结果表明湿地土壤中存在较为丰富且具有稳定结构的惰性有机碳,并处于较高的盐度环境中,通过抑制微生物活性和自身较强的稳定性维持着较低的有机碳分解速率,使得Fe-OC也可以在很长时间内保持稳定[39-40],这也有利于湿地Fe-OC固存。综上所述,河口芦苇湿地较高的铁和碳截获潜力,是导致Fe-OC形成和积聚的重要原因(图6),正如本研究中土壤铁和SOC均与Fe-OC呈显著正相关的结果(图4),也支持了这一观点。

    图  6  河口湿地围垦稻田铁碳结合特征概念模型图
    Figure  6.  Conceptual map of iron-carbon binding characteristics in paddy field from estuarine wetland reclamation

    氧化铁可以与有机碳吸附或者共沉淀形成Fe-OC,其形成途径受到土壤类型、气候条件、有机质组成及pH和盐度等的影响[34]。OC/Fe可以判断两者的结合途径,吸附和共沉淀作用下土壤OC/Fe分别为 1以及6~10之间,1~6之间则界定为二者的共同作用[41-43]。本研究中围垦前后土壤OC/Fe总体1(图3),这表明本次采样期内,吸附可能是Fe-OC形成的主要途径。在过去关于天然湿地退塘还湿的研究也得出天然湿地土壤OC/Fe1,以吸附途径形成Fe-OC为主 [44]fFe-OC指示了Fe-OC在SOC中的占比,由于Fe-OC含量在不同生态系统中存在一定差异,f Fe-OC也不相同(表2)。本研究表明,芦苇湿地与稻田土壤f Fe-OC分别为6.44%~21.70%和12.29%~26.13%(图3)。虽然围垦后稻田土壤Fe-OC以及SOC含量较低,但稻田土壤fFe-OC要高于芦苇湿地,芦苇湿地土壤f Fe-OC表2中滨海湿地土壤f Fe-OC相一致,稻田土壤f Fe-OC介于表2中农田土壤与轮作农田土壤f Fe-OC之间。不同生态系统土壤f Fe-OC差异主要是由于其气候、植被、土壤类型的不同导致土壤好氧程度、铁形态的转化及有机碳积累速率发生改变,从而影响土壤铁碳结合特征[50]。总体而言,本研究中,在河口湿地围垦稻田后,相对于其他组分的有机碳而言,土壤Fe-OC相对稳定且损失相对较慢,是维持围垦稻田有机碳固持的关键机制。

    表  2  不同生境下铁结合态有机碳对总有机碳的贡献
    Table  2.  Contribution of iron-bound organic carbon to total organic carbon in different habitats
    研究对象铁结合态有机碳对总有机碳贡献/%参考文献
    滨海沉积物21.7±7.8[14]
    淡水湿地根际土壤12.50[15]
    农田土壤15.7±6.4[16]
    轮作农田土壤41~50[45]
    森林土壤37.8±20.0[46]
    亚高山湿地土壤5.4~11.8[47]
    高原永冻土壤19.5±12.3[48]
    泥炭湿地土壤3.42±1.32[49]
    下载: 导出CSV 
    | 显示表格

    (1) 河口湿地围垦稻田后随着氧化还原过程的频繁变化,Fe(Ⅱ)、Fe(Ⅲ)、HCl-Fet含量、Fe(Ⅲ)/Fe(Ⅱ)、Fed与Feo含量均显著下降(P<0.05)。

    (2) 河口湿地围垦稻田显著降低了土壤Fe-OC和SOC含量(P<0.05),芦苇湿地与稻田土壤Fe-OC均以吸附途径形成为主,稻田土壤fFe-OC高于芦苇湿地。

    (3)土壤有机碳及铁均与Fe-OC呈显著的正相关(P<0.01),RDA分析结果表明土壤含水量与EC均对Fe-OC含量产生显著影响。

    致谢:本研究在野外采样与室内分析过程中得到福建师范大学地理科学学院、碳中和未来技术学院金强、林少颖、尹晓雷、阳祥、黄庄、侯宁和谢杨阳等同学的帮助,在此一并表示感谢!

  • 图  1   芦苇湿地与稻田土壤铁含量特征

    图中不同小写字母表示不同采样点土壤同一深度间存在显著性差异(P<0.05),不同大写字母表示同一采样点土壤不同深度存在显著差异性(P<0.05)。

    Figure  1.   Characteristics of Fe contents in soil of P. australis wetland and paddy field

    Different lowercase letters in the figure indicate that there is a significant difference between the same depth of soil at different sampling points (P<0.05), and different uppercase letters indicate that there is a significant difference between different depths of soil at the same sampling point (P<0.05).

    图  2   芦苇湿地与稻田土壤氧化铁含量特征

    图中不同小写字母表示不同采样点土壤同一深度间存在显著性差异(P<0.05),不同大写字母表示同一采样点土壤不同深度存在显著差异性(P<0.05)。

    Figure  2.   Characteristics of Fe oxide content in soil of P. australis wetland and paddy field

    Different lowercase letters in the figure indicate that there is a significant difference between the same depth of soil at different sampling points (P<0.05), and different uppercase letters indicate that there is a significant difference between different depths of soil at the same sampling point (P<0.05).

    图  3   芦苇湿地与稻田土壤铁结合态有机碳及碳铁比特征

    图中不同小写字母表示不同采样点土壤同一深度间存在显著性差异(P<0.05),不同大写字母表示同一采样点土壤不同深度存在显著差异性(P<0.05)。

    Figure  3.   Characteristics of Fe–organic-carbon in soil and organic-carbon/Fe ratio in P. australis wetland and paddy field

    Different lowercase letters in the figure indicate that there is a significant difference between the same depth of soil at different sampling points (P<0.05), and different uppercase letters indicate that there is a significant difference between different depths of soil at the same sampling point (P<0.05).

    图  4   芦苇湿地与稻田土壤铁结合态有机碳与其影响因子相关性

    *代表在0.05水平上差异性显著,**代表在0.01水平上差异性显著。

    Figure  4.   Correlation between iron–organic-carbon binding in soil and its influencing factors in P. australis wetland and paddy field

    *: significant difference at 0.05 level; **: significant difference at 0.01 level.

    图  5   芦苇湿地与稻田土壤铁碳结合特征的RDA分析

    WC的贡献率为86.70%,P<0.01;EC的贡献率为7.00%,P<0.01。

    Figure  5.   RDA analysis on characteristics of iron-carbon binding in soil of P. australis wetland and paddy field

    The contribution rate of WC is 86.70% , P<0.01; The contribution rate of EC is 7.00% , P<0.01.

    图  6   河口湿地围垦稻田铁碳结合特征概念模型图

    Figure  6.   Conceptual map of iron-carbon binding characteristics in paddy field from estuarine wetland reclamation

    表  1   芦苇湿地与稻田土壤氧化铁参数特征

    Table  1   Characteristics of parameters of Fe oxide in soil in P. australis wetland and paddy field

    指标采样时间土层深度/cm样地类型
    芦苇湿地稻田
    活化度/%0~1067.28 ± 6.84Ba63.84 ± 1.75Aa
    10~2069.79 ± 6.47Ba68.42 ± 5.15Aa
    20~3075.04 ± 3.71Aa53.21 ± 2.07Bb
    0~1051.52 ± 5.66Aa59.11 ± 7.75Aa
    10~2046.43 ± 3.29Bb51.57 ± 3.71Aa
    20~3064.31 ± 4.90Aa27.82 ± 3.73Bb
    络合度/%0~107.17 ± 0.72Ab13.02±1.22Aa
    10~207.80 ± 0.73Ab9.63±0.22Ba
    20~307.11 ± 0.88Aa4.03±1.17Cb
    0~1010.32 ± 1.76Aa12.82±0.85Aa
    10~207.85 ±2.36Bb10.82±0.77Aa
    20~305.70 ± 0.50Ca4.08±1.11Ba
    晶质氧化铁
    /(g·kg-1)
    0~104.42±0.91Aa4.35±0.20Ba
    10~204.35±0.93Aa3.68±0.64Ba
    20~303.87±0.76Ab7.06±1.40Aa
    0~106.85±0.77Aa4.45±0.72Bb
    10~207.73±0.56Aa5.10±0.51Bb
    20~305.25±0.95Ba7.97±0.51Ab
    晶胶率0~100.53±0.15Aa0.57±0.04Ba
    10~200.48±0.17Aa0.49±0.13Ba
    20~300.34±0.07Bb0.89±0.07Aa
    0~101.01±0.20Aa0.79±0.26Bb
    10~201.19±0.15Aa0.97±0.13Ba
    20~300.58±0.13Bb2.14±0.11Aa
    注:图中不同小写字母表示不同采样点土壤同一深度间存在显著性差异(P<0.05),不同大写字母表示同一采样点土壤不同深度存在显著差异性(P<0.05)。
    下载: 导出CSV

    表  2   不同生境下铁结合态有机碳对总有机碳的贡献

    Table  2   Contribution of iron-bound organic carbon to total organic carbon in different habitats

    研究对象铁结合态有机碳对总有机碳贡献/%参考文献
    滨海沉积物21.7±7.8[14]
    淡水湿地根际土壤12.50[15]
    农田土壤15.7±6.4[16]
    轮作农田土壤41~50[45]
    森林土壤37.8±20.0[46]
    亚高山湿地土壤5.4~11.8[47]
    高原永冻土壤19.5±12.3[48]
    泥炭湿地土壤3.42±1.32[49]
    下载: 导出CSV
  • [1]

    Sasmito S D, Taillardat P, Clendenning J N, et al. Effect of land-use and land-cover change on mangrove blue carbon: a systematic review [J]. Global Change Biology, 2019, 25(12): 4291-4302. doi: 10.1111/gcb.14774

    [2]

    Krause L, Klumpp E, Nofz I, et al. Colloidal iron and organic carbon control soil aggregate formation and stability in arable Luvisols [J]. Geoderma, 2020, 374: 114421. doi: 10.1016/j.geoderma.2020.114421

    [3]

    Xia S P, Song Z L, Li Q, et al. Distribution, sources, and decomposition of soil organic matter along a salinity gradient in estuarine wetlands characterized by C: N ratio, δ13C-δ15N, and lignin biomarker [J]. Global Change Biology, 2021, 27(2): 417-434. doi: 10.1111/gcb.15403

    [4]

    Fluet-Chouinard E, Stocker B D, Zhang Z, et al. Extensive global wetland loss over the past three centuries [J]. Nature, 2023, 614(7947): 281-286. doi: 10.1038/s41586-022-05572-6

    [5]

    Galford G L, Melillo J, Mustard J F, et al. The Amazon frontier of land-use change: croplands and consequences for greenhouse gas emissions [J]. Earth Interactions, 2010, 14(15): 1-24. doi: 10.1175/2010EI327.1

    [6]

    Girsang S S, Correa T Q, Quilty J R, et al. Soil aeration and relationship to inorganic nitrogen during aerobic cultivation of irrigated rice on a consolidated land parcel [J]. Soil and Tillage Research, 2020, 202: 104647. doi: 10.1016/j.still.2020.104647

    [7] 崔保山, 谢湉, 王青, 等. 大规模围填海对滨海湿地的影响与对策[J]. 中国科学院院刊, 2017, 32(4):418-425

    CUI Baoshan, XIE Tian, WANG Qing, et al. Impact of large-scale reclamation on coastal wetlands and implications for ecological restoration, compensation, and sustainable exploitation framework [J]. Bulletin of Chinese Academy of Sciences, 2017, 32(4): 418-425.

    [8]

    Xia S P, Song Z L, Van Zwieten L, et al. Storage, patterns and influencing factors for soil organic carbon in coastal wetlands of China [J]. Global Change Biology, 2022, 28(20): 6065-6085. doi: 10.1111/gcb.16325

    [9]

    Tan L S, Ge Z M, Ji Y H, et al. Land use and land cover changes in coastal and inland wetlands cause soil carbon and nitrogen loss [J]. Global Ecology and Biogeography, 2022, 31(12): 2541-2563. doi: 10.1111/geb.13597

    [10] 张鑫磊, 宋怡轩, 张洁, 等. 围垦植稻对崇明东滩湿地产甲烷微生物的影响[J]. 农业环境科学学报, 2020, 39(2):411-417

    ZHANG Xinlei, SONG Yixuan, ZHANG Jie, et al. Effects of reclamation and cultivating rice on CH4-producing microorganisms in Chongming Dongtan Wetland, China [J]. Journal of Agro-Environment Science, 2020, 39(2): 411-417.

    [11]

    Wang F, Wang T, Gustave W, et al. Spatial-temporal patterns of organic carbon sequestration capacity after long-term coastal wetland reclamation [J]. Agriculture, Ecosystems & and Environment, 2023, 341: 108209.

    [12] 王璐莹, 秦雷, 吕宪国, 等. 铁促进土壤有机碳累积作用研究进展[J]. 土壤学报, 2018, 55(5):1041-1050

    WANG Luying, QIN Lei, LÜ Xianguo, et al. Progress in researches on effect of iron promoting accumulation of soil organic carbon [J]. Acta Pedologica Sinica, 2018, 55(5): 1041-1050.

    [13] 段勋, 李哲, 刘淼, 等. 铁介导的土壤有机碳固持和矿化研究进展[J]. 地球科学进展, 2022, 37(2):202-211

    DUAN Xun, LI Zhe, LIU Miao, et al. Progress of the iron-mediated soil organic carbon preservation and mineralization [J]. Advances in Earth Science, 2022, 37(2): 202-211.

    [14]

    Lalonde K, Mucci A, Ouellet A, et al. Preservation of organic matter in sediments promoted by iron [J]. Nature, 2012, 483(7388): 198-200. doi: 10.1038/nature10855

    [15]

    Duan X, Yu X F, Li Z, et al. Iron-bound organic carbon is conserved in the rhizosphere soil of freshwater wetlands [J]. Soil Biology and Biochemistry, 2020, 149: 107949. doi: 10.1016/j.soilbio.2020.107949

    [16]

    Wan D, Ye T H, Lu Y, et al. Iron oxides selectively stabilize plant-derived polysaccharides and aliphatic compounds in agricultural soils [J]. European Journal of Soil Science, 2019, 70(6): 1153-1163.

    [17]

    Zhao Q, Poulson S. R, Obrist D, et al. Iron-bound organic carbon in forest soils: quantification and characterization [J]. Biogeosciences, 2016, 13(16): 4777-4788. doi: 10.5194/bg-13-4777-2016

    [18] 仝川, 黄佳芳, 王维奇, 等. 闽江口半咸水芦苇潮汐沼泽湿地甲烷动态[J]. 地理学报, 2012, 67(9):1165-1180

    TONG Chuan, HUANG Jianfang, WANG Weiqi, et al. Methane dynamics of a brackish-water tidal Phragmites australis marsh in the Minjiang River Estuary [J]. Acta Geographica Sinica, 2012, 67(9): 1165-1180.

    [19] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000

    LU Rukun. Analysis Methods of Soil Science and Agricultural Chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000.

    [20]

    Song L, Tian P, Zhang J B, et al. Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of Northeast China [J]. Science of the Total Environment, 2017, 609: ,1303-1311. doi: 10.1016/j.scitotenv.2017.08.017

    [21]

    Murphy D V, Macdonald A J, Stockdale E A, et al. Soluble organic nitrogen in agricultural soils [J]. Biology and Fertility of Soils, 2000, 30(5): 374-387.

    [22]

    Blair G J, Lefroy R D, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems [J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459-1466. doi: 10.1071/AR9951459

    [23]

    Kostka J E, Luther III G W. Partitioning and speciation of solid phase iron in saltmarsh sediments [J]. Geochimica et Cosmochimica Acta, 1994, 58(7): 1701-1710. doi: 10.1016/0016-7037(94)90531-2

    [24]

    Chen C M, Dynes J J, Wang J, et al. Properties of Fe-organic matter associations via coprecipitation versus adsorption [J]. Environmental Science & and Technology, 2014, 48(23): 13751-13759.

    [25] 陈留美, 赵东波, 韩光中, 等. 中国稻田土壤铁流失及其环境意义[J]. 中国科学:地球科学, 2022, 5265(7):127753-129167

    CHEN Liumei, ZHAO Dongbo, HAN Guangzhong, et al. Iron loss of paddy soil in China and its environmental implications [J]. Science China:Earth Sciences, 2022, 5265(7): 127753-129167.

    [26]

    Giannetta B, Siebecker M G, Zaccone C, et al. Iron (Ⅲ) fate after complexation with soil organic matter in fine silt and clay fractions: an EXAFS spectroscopic approach [J]. Soil and Tillage Research, 2020, 200: 104617. doi: 10.1016/j.still.2020.104617

    [27]

    Longman J, Faust J C, Bryce C, et al. Organic carbon burial with reactive iron across global environments [J]. Global Biogeochemical Cycles, 2022, 36(11): e2022GB007447. doi: 10.1029/2022GB007447

    [28]

    Li Y, Fu C C, Zeng L, et al. Black carbon contributes substantially to allochthonous carbon storage in deltaic vegetated coastal habitats [J]. Environmental Science and & Technology, 2021, 55(9): 6495-6504.

    [29]

    Shields M R, Bianchi T S, Gélinas Y, et al. Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments [J]. Geophysical Research Letters, 2016, 43(3): 1149-1157. doi: 10.1002/2015GL067388

    [30]

    Jones M E, Beckler J S, Taillefert M. The flux of soluble organic-iron (Ⅲ) complexes from sediments represents a source of stable iron (Ⅲ) to estuarine waters and to the continental shelf [J]. Limnology and Oceanography, 2011, 56(5): 1811-1823. doi: 10.4319/lo.2011.56.5.1811

    [31]

    Chen N, Fu Q L, Wu T L, et al. Active iron phases regulate the abiotic transformation of organic carbon during redox fluctuation cycles of paddy soil [J]. Environmental Science and & Technology, 2021, 55(20): 14281-14293.

    [32]

    Wei L, Zhu Z K, Razavi B S, et al. Visualization and quantification of carbon “rusty sink” by rice root iron plaque: mechanisms, functions, and global implications [J]. Global Change Biology, 2022, 28(22): 6711-6727. doi: 10.1111/gcb.16372

    [33]

    Yao Y, Wang L L, Peduruhewa J G, et al. The coupling between iron and carbon and iron reducing bacteria control carbon sequestration in paddy soils [J]. Catena, 2023, 223: 106937. doi: 10.1016/j.catena.2023.106937

    [34]

    Riedel T, Zak D, Biester H, et al. T. Iron traps terrestrially derived dissolved organic matter at redox interfaces [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(25): 10101-10105. doi: 10.1073/pnas.1221487110

    [35]

    Wang W, Sardans J, Zeng C, et al. Responses of soil nutrient concentrations and stoichiometry to different human land uses in a subtropical tidal wetland [J]. Geoderma, 2014, 232-234: 459-470. doi: 10.1016/j.geoderma.2014.06.004

    [36]

    Howard J, Sutton-Grier A, Herr D, et al. Clarifying the role of coastal and marine systems in climate mitigation [J]. Frontiers in Ecology and the Environment, 2017, 15(1): 42-50. doi: 10.1002/fee.1451

    [37]

    Button E S, Chadwick D R, Jones D L. Addition of iron to agricultural topsoil and subsoil is not an effective C sequestration strategy [J]. Geoderma, 2022, 409: 115646. doi: 10.1016/j.geoderma.2021.115646

    [38]

    Rowley M C, Grand S, Verrecchia É P. Calcium-mediated stabilisation of soil organic carbon [J]. Biogeochemistry, 2018, 137(1-2): 27-49. doi: 10.1007/s10533-017-0410-1

    [39]

    Faust J C, Tessin A, Fisher B J, et al. Millennial scale persistence of organic carbon bound to iron in Arctic marine sediments [J]. Nature Communications, 2021, 12(1): 275-284. doi: 10.1038/s41467-020-20550-0

    [40]

    Setia R, Smith P, Marschner P, Gottschalk, P, et al. Simulation of salinity effects on past, present, and future soil organic carbon stocks [J]. Environmental Science and & Technology, 2012, 46(3): 1624-1631.

    [41]

    Wagai R, Mayer L M. Sorptive stabilization of organic matter in soils by hydrous iron oxides [J]. Geochimica et Cosmochimica Acta, 2007, 71(1): 25-35. doi: 10.1016/j.gca.2006.08.047

    [42]

    Duan X, Li Z, Li Y H, et al. Iron-organic carbon associations stimulate carbon accumulation in paddy soils by decreasing soil organic carbon priming [J]. Soil Biology and Biochemistry, 2023, 179: 108972. doi: 10.1016/j.soilbio.2023.108972

    [43]

    Jiang Z H, Liu Y Z, Lin J D, et al. Conversion from double-rice to maize-rice increases iron-bound organic carbon by “iron gate” and “enzyme latch” mechanisms [J]. Soil and Tillage Research, 2021, 211: 105014. doi: 10.1016/j.still.2021.105014

    [44] 林于蓝, 陈钰, 尹晓雷, 等. 围垦养殖与退塘还湿对闽江河口湿地土壤铁碳结合特征的影响[J]. 环境科学学报, 2022, 42(7):466-477

    LIN Yulan, CHEN Yu, YIN Xiaolei, et al. Effects of reclamation and pond returning on iron-bound organic carbon characteristics in the soil of Minjiang estuarine wetland [J]. Acta Scientiae Circumstantiae, 2022, 42(7): 466-477.

    [45]

    Jiang Z H, Liu Y Z, Lin J D, et al. Conversion from double-rice to maize-rice increases iron-bound organic carbon by “iron gate” and “enzyme latch” mechanisms [J]. Soil and Tillage Research, 2021, 211: 105014. doi: 10.1016/j.still.2021.105014

    [46]

    Zhao Y P, Xiang W, Ma M, et al. The role of laccase in stabilization of soil organic matter by iron in various plant-dominated peatlands: degradation or sequestration? [J]. Plant and Soil, 2019, 443(1-2): 575-590. doi: 10.1007/s11104-019-04245-0

    [47]

    Wang Y Y, Wang H, He J S, et al. Iron-mediated soil carbon response to water-table decline in an alpine wetland [J]. Nature Communications, 2017, 8(1): 15972-9. doi: 10.1038/ncomms15972

    [48]

    Mu C C, Zhang T J, Zhao Q, et al. Soil organic carbon stabilization by iron in permafrost regions of the Qinghai-Tibet Plateau [J]. Geophysical Research Letters, 2016, 43(19): 10-286-10294.

    [49]

    Huang X Y, Liu X W, Liu J L, et al. Iron-bound organic carbon and their determinants in peatlands of China [J]. Geoderma, 2021, 391: 114974. doi: 10.1016/j.geoderma.2021.114974

    [50] 杨颖, 吴福忠, 吴秋霞, 等. 陆地生态系统土壤铁结合态有机碳: 含量, 分布与调控[J]. 科学通报, 2023, 68(6):695-704 doi: 10.1360/TB-2022-0728

    YANG Ying, WU Fuzhong, WU Qiuxia, et al. Soil organic carbon associated with iron oxides in terrestrial ecosystems: content, distribution and control [J]. Chinese Science Bulletin, 2023, 68(6): 695-704. doi: 10.1360/TB-2022-0728

  • 期刊类型引用(3)

    1. 吴春梅,杨柳明,王维奇,罗欣婕. 闽江河口湿地围垦后土壤微生物残体碳特征. 环境科学学报. 2024(12): 360-368 . 百度学术
    2. 徐晨瀛,胡启武,张桂华,梁金凤,薛文婧,叶雨欣,陈珂,吴菡,尧波. 鄱阳湖湿地剖面土壤铁结合态有机碳沿高程的分布特征. 应用生态学报. 2024(12): 3488-3496 . 百度学术
    3. 刘恩俊,李传良,熊静,吴明,邵学新. 中国滨海盐沼湿地土壤有机碳密度、分布及影响因素. 湿地科学与管理. 2024(06): 37-42 . 百度学术

    其他类型引用(6)

图(6)  /  表(2)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  5
  • PDF下载量:  63
  • 被引次数: 9
出版历程
  • 收稿日期:  2023-03-16
  • 修回日期:  2023-04-10
  • 网络出版日期:  2023-11-30
  • 刊出日期:  2024-02-27

目录

/

返回文章
返回