中国东部陆架海锋面的时空变化及其对细颗粒沉积物输运和沉积的影响

袁萍, 王厚杰, 毕乃双, 吴晓, 张勇

袁萍, 王厚杰, 毕乃双, 吴晓, 张勇. 中国东部陆架海锋面的时空变化及其对细颗粒沉积物输运和沉积的影响[J]. 海洋地质与第四纪地质, 2020, 40(3): 25-42. DOI: 10.16562/j.cnki.0256-1492.2019050602
引用本文: 袁萍, 王厚杰, 毕乃双, 吴晓, 张勇. 中国东部陆架海锋面的时空变化及其对细颗粒沉积物输运和沉积的影响[J]. 海洋地质与第四纪地质, 2020, 40(3): 25-42. DOI: 10.16562/j.cnki.0256-1492.2019050602
YUAN Ping, WANG Houjie, BI Naishuang, WU Xiao, ZHANG Yong. Temporal and spatial variations of oceanic fronts and their impact on transportation and deposition of fine-grained sediments in the East China Shelf Seas[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 25-42. DOI: 10.16562/j.cnki.0256-1492.2019050602
Citation: YUAN Ping, WANG Houjie, BI Naishuang, WU Xiao, ZHANG Yong. Temporal and spatial variations of oceanic fronts and their impact on transportation and deposition of fine-grained sediments in the East China Shelf Seas[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 25-42. DOI: 10.16562/j.cnki.0256-1492.2019050602

中国东部陆架海锋面的时空变化及其对细颗粒沉积物输运和沉积的影响

基金项目: 国家杰出青年科学基金项目“河口海岸学:现代黄河入海沉积物从源到汇的关键沉积动力过程”(41525021);国家重点研发计划项目课题“大型水库调控下河口沉积动力过程及其生物地球化学效应”(2016YFA0600903)
详细信息
    作者简介:

    袁萍(1989—),女,博士研究生,海洋地质专业,E-mail:yuanping89@sina.cn

    通讯作者:

    王厚杰(1970—),男,教授,主要从事近海沉积动力学研究,E-mail:hjwang@ouc.edu.cn

  • 中图分类号: P76

Temporal and spatial variations of oceanic fronts and their impact on transportation and deposition of fine-grained sediments in the East China Shelf Seas

  • 摘要: 本文利用中国东部陆架海不同季节的航次观测数据与HYCOM模式数据,分析了HYCOM模式输出的水体温盐数据在中国东部陆架海的适用性,并探讨了中国东部陆架海表底层温盐锋面的时空变化及其对细颗粒沉积物输运和沉积的影响。研究结果表明,中国东部陆架海表、底层温度锋(盐度锋)的分布趋势基本一致(不考虑冲绳海槽以东的海域),但底层锋面的强度和锋区范围明显大于表层。锋面的位置很好的体现了海区流系的基本格局。表、底层温度锋面基本处于几大水团的交界处,说明表、底层温度锋面的分布与研究区环流和水团配置情况密切相关。而表、底层盐度锋面的分布则与研究区入海径流、沿岸流以及暖流等的分布密切相关。此外,对比锋面与中国东部陆架各泥质沉积区的位置可以发现,研究区温盐锋面的空间分布和季节变化对于泥质沉积区的形成具有重要的控制作用。
    Abstract: Observed hydrologic datasets and HYCOM modelling data were used in this paper to evaluate the applicability and stability of the HYCOM temperature and salinity data to the temporal-spatial distribution of oceanic fronts and its impact on transportation and deposition of fine-grained sediments in the East China Shelf Seas. The results show that the distribution of thermal fronts or salinity fronts are similar on the surface and bottom in the Bohai, Yellow and East China Seas excluding the east of Okinawa Trough. However, the strength and coverage of the fronts on the bottom are larger than those on the surface. The location of thermal fronts depends on the basic structure of currents. Both the surface and bottom thermal fronts develop along the boundaries of water masses, suggesting that thermal current fronts are closely related to the current and water masses of the study area. However, the distribution of the salinity fronts is greatly influenced by water discharge, coastal currents and warm currents. In addition, the distribution of mud patches in the Eastern China Shelf Sea are closely related to the patterns of oceanic fronts, which means that the thermal and salinity fronts do play a critical role in the formation of mud deposits.
  • 海底流体逃逸活动在大陆边缘海域普遍发育[1-2]。以往以油气勘探为主的大多数地震数据主要聚焦于海底中深部目的层,而且浅地层成像的分辨率不高,导致海底聚集型流体逃逸活动研究相对较少[3]。近些年来,海底流体逃逸现象的研究表明,逃逸流体多通过断层、管道、气烟囱等通道运移,进而在海底渗漏逸散,形成海底泥丘、麻坑、泥火山和碳酸盐堆积等地形地貌和活动冷泉羽状流现象[1-2, 4-7]。海底流体逃逸活动的深入研究一方面可用于指示从储层到海底的流体逃逸运移体系[8];另一方面则对海底斜坡稳定性、海洋生态系统研究、全球碳循环和天然气水合物的勘探和开发等具有重要意义[1, 5, 9-12]

    特提斯构造域具有特殊的地质背景以及油气成藏条件,围绕其油气勘探一直是研究热点[13]。特提斯构造域的油气资源特别丰富,世界上常规油气约三分之二分布在特提斯构造域内[14]。在黑海、地中海和南海等特提斯构造域的主要海域,广泛发育麻坑、泥火山、海底活动羽状流、自生碳酸盐岩、冷泉生物群落等流体逃逸活动特征,可以很好地指示过去和现在的海底流体逃逸活动,是海洋油气与天然气水合物等能源勘探的重要指示标志[15-20]。尽管对特提斯构造域主要海域的流体逃逸活动研究越来越多[21-25],但缺乏整体的分析与认识,对其控制因素和演化过程的理解仍然不够透彻。

    本文在调研国内外特提斯构造域现有研究成果的基础上,选取相关典型海域,总结特提斯构造域不同地质背景下的海底流体活动特征,并从流体来源、运移通道及地质构造等方面来分析流体逃逸活动的控制因素,进一步探讨海底流体逃逸活动与油气及天然气水合物的关系以及存在的科学问题,为后续特提斯域海底流体活动、海洋常规油气、天然气水合物等非常规油气勘探以及全球气候变化等科学研究提供参考。

    特提斯构造域是欧亚大陆和冈瓦纳大陆板块之间相互作用的结果,记录了特提斯洋的形成、发展和消亡的整个过程[26]。特提斯构造域近东西走向,现如今的展布范围,东起澳大利亚东北部,经东南亚、中亚、中东直到南欧(图1),不但包括造山带,而且也包含相关海域和沉积盆地,如地中海、黑海、波斯湾、中国南海、澳大利亚西北部近海等。特提斯深水盆地群发育在非洲板块、欧亚板块和澳大利亚板块之间的区域,其盆地发展演化过程的早期处于被动大陆边缘的伸展背景,后期受到碰撞造山影响而处于挤压背景[27]。特提斯构造域具有特定的构造和沉积环境,在地史时期位于冈瓦纳大陆和欧亚大陆两个被动大陆边缘之间的赤道热带、亚热带洋区,生物繁盛,沉积有机质特别发育,泥质岩是主要的烃源岩,而且在浅海沉积形成了大量的碳酸盐岩和盐岩,形成优质的盐岩圈闭和碳酸盐岩储层[14, 28],因而蕴藏丰富的油气资源。

    图  1  特提斯构造域展布范围
    据http://tethys.ac.cn。
    Figure  1.  The distribution of Tethyan tectonic domain
    From http://tethys.ac.cn.

    随着海洋勘探程度逐年上升,以及海洋油气勘探开发技术的迅速发展,特提斯构造域相关海域的海洋油气资源逐渐引起各国重视,相继发现了很多大型油气田,其储量和产量所占比重逐年加大[29]。目前,除了在波斯湾发现大量大型油气田外,在黑海也有发现[30-32]。一直以来,地中海海域油气资源的勘探和开发都集中于地中海东部[33]。近年来,东地中海的尼罗河三角洲盆地和黎凡特盆地成为天然气勘探开发的热点地区[34-37]。澳大利亚西北部近海最近也有重大发现,油气资源开采潜力巨大,“富气贫油”是其最鲜明的特点[38]。而我国海洋油气资源开发还处于早期阶段,深水油气资源主要分布在南海北部地区,目前在珠江口盆地和琼东南盆地已实现深水油气勘探开发[39]

    特提斯构造域除了蕴藏着丰富的常规油气资源外,也储存大量天然气水合物等非常规资源[40-42]。近年来,海域天然气水合物勘探和开发逐渐受到重视,在南海、黑海等海域进行了大量与天然气水合物相关的科学研究[16, 43-45]。研究发现,冷泉羽状流、麻坑和泥火山等海底流体逃逸特征广泛发育在天然气水合物发育区[19-20, 40, 46-47],证明海底流体逃逸活动与海域深部油气及天然气水合物分布之间密切相关,水合物储层和逃逸气体均是富甲烷流体在异常孔隙高压地层释放和储存过程中的产物。

    近些年随着海洋探测技术的深入发展,与海底流体逃逸活动特征相关的报道逐渐丰富起来。海底流体逃逸活动不仅会显著改变海底地形地貌[2],形成泥火山、麻坑等,而且会对海底附近的生物化学过程产生一定的影响,产生自生碳酸盐岩、生物群落等,剧烈的流体逃逸还会在上覆水体中形成羽状流[48]

    泥火山是由剧烈的泥浆排放不断堆积形成的隆起微地貌[6]图2a),通常伴随着深部地下沉积单元的流体和气体排放[49-50],若深部泥质上涌未刺穿海底则形成泥底辟。泥火山在世界范围内分布广泛,主要在俯冲带和造山带附近发现[50]。各国对海底泥火山的研究始于海洋油气资源和海域天然气水合物勘探和开发工作[51],近年来在地中海[52-54]、黑海[55-56]、南海[57-58]以及巴伦支海[59]等海域发现了大量的海底泥火山。

    图  2  海底流体逃逸特征
    a.海底泥火山[6],b.麻坑[6],c.碳酸盐岩[47],d.海底泥丘[83],e.生物群落[7],f.海底冷泉羽状流[59]
    Figure  2.  Fluid escape features on seabed
    a.submarine mud volcanoes[6], b. pockmarks[6], c. carbonate[47], d. submarine mounds[83], e. biotic community[7], f. submarine cold seep plume[59].

    活跃的泥火山通常扎根于成熟的油气系统,喷发出的气体主要是甲烷,在其周围经常发现天然气水合物的富集[53],可以与其他烃类渗漏一起指示潜在的深部丰富油气资源[60-61],具有重要指示意义和研究价值。目前关于海底泥火山的形成机制已经进行了深入的讨论,一般认为主要有3种成因机制:①被动大陆边缘和深海平原的沉积物沉积速率极快,如地中海沿岸[62-63]、挪威海[64];②主动大陆边缘区域的横向构造挤压[49];③天然气水合物分解,如贝加尔湖[65]。此外,不同时期海平面变化也可能影响泥火山的形成,如黑海[66]

    麻坑一般被描述为下伏地层活动流体在海底渗漏逸散形成的侵蚀结构[6]图2b),呈圆形、椭圆形、长条形、彗星型、新月形以及不规则形态,直径最大可达几千米,深度可达几百米[2, 6, 67]。它们单独或随机成簇出现,有些沿着断层走向排列[68]。麻坑可能会保持活跃状态,长时间有气体从中缓慢逸出,或者在间歇性喷发之间处于休眠状态[69]。在世界上的许多地区,如地中海[70-71]、南海[24, 72]、非洲下刚果盆地[12]等都发现了海底麻坑。自从King和MacLean[73]发现海底麻坑以来,麻坑的形成一直被归因于逃逸流体的侵蚀作用,通常与海底流体渗漏或赋存在海洋沉积物中的天然气水合物发生分解有关[2, 48]。然而也有学者分析认为,生物活动也可能是麻坑形成的一种机制,如在澳大利亚西北大陆架南部发现的麻坑[74]。海底麻坑对于海洋油气和天然气水合物资源勘探开发以及海底地质灾害研究具有重要指导作用,因为其指示了大量气体从沉积物到海洋甚至可能进入大气的潜在途径[69, 75-76]。在富烃盆地中形成麻坑的流体来源可能是生物成因,也可能是热成因[2, 77]。一些研究表明,在地震发生前,海水温度升高,麻坑仍有气体逃逸,因此,麻坑可能是地震的先兆[78]。尤其是在一些大型麻坑发育区,地质构造活动活跃,可能会对海底基础设施造成危害[72]

    海底冷泉是由水、碳氢化合物(天然气和石油)等,受地下压力梯度影响从沉积体中运移和排出形成的具有一定流速的流体[79-81],且其周围温度通常无明显变化[82]。在冷泉发育区,除麻坑、泥火山等流体逃逸地貌和甲烷气体羽状流现象外,还伴生有自生碳酸盐岩和海底生物群落等相关特征[7, 47, 59, 83]图2c-f)。

    冷泉活动已在世界许多地区发现并研究,例如南海[84]、墨西哥湾[85]、地中海[86]、黑海[87]、北海[88]、巴伦支海[59]、新西兰Hikurangi陆缘[89]、水合物脊[90]等。以甲烷为主要成分的气体通过断层、泥火山等运移通道进入海水后,形成海底冷泉羽状流[91],是活动冷泉的重要指示标志,而部分冷泉区通常与天然气水合物的分解密切相关,所以海底冷泉羽状流可以间接指示海底沉积层中可能有天然气水合物赋存[92-93]。地球化学数据可以指示甲烷气体的成因,包括不同的形成环境和成因背景。热成因气体主要是由于地下深部富甲烷流体在流体超压作用下通过运移通道到达海底形成的,且多与深部油气藏相关,而生物成因气是由富含有机质沉积物中的微生物活动产生,水合物气藏与其关系密切。

    在活动冷泉区,富甲烷流体会支持化学合成群落的发育和自生碳酸盐岩的形成。甲烷厌氧氧化(AOM)产生碳酸氢盐,从而导致自生碳酸盐沉淀,包括孤立的板状、层状、结壳状和结核状等,部分表面胶结大量贻贝等生物[94]。海底碳酸盐岩是海底冷泉流体活动和成岩演化过程的证据,同时也是海底冷泉生物和天然气水合物可能存在的重要指示标志[41, 95]。在海底冷泉喷口,通常存在致密而多样的微生物和动物群落,排放的含气流体使其衍生成独特的生态系统[82, 96],所以海底生物群落也可以指示其周围存在活跃的流体逃逸活动。

    海底流体逃逸活动在特提斯构造域相关海域强烈且广泛,这些海域中油气资源和非常规能源(如天然气水合物)储量丰富,迄今已发现大量大型或超大型油气田,一直以来是许多国际学者研究海底流体逃逸活动的重点区域。

    地中海位于非洲、欧亚和阿拉伯板块之间的相互作用带(图3),主要受非洲和欧亚板块之间的碰撞以及相关俯冲作用的影响[3]。泥火山、麻坑和冷泉羽状流等海底流体逃逸活动广泛分布于地中海边缘[53, 71]图3ab),尤其在地中海东部[52-53, 69, 86, 97]

    图  3  地中海及周边地区的构造背景和海底流体逃逸特征分布[52, 69-70, 103, 107]
    a. Zannone巨型麻坑[71],b. 喀山泥火山[53]
    Figure  3.  The tectonic setting and distribution of fluid escape-related features in the Mediterranean Sea and surrounding areas[52, 69-70, 103, 107]
    a. Zannone giant pockmark[71], b. Kazan mud volcano[53].

    20世纪70年代后期,Cita等[98]在地中海东部首次发现泥火山。此后的数十年内,地中海东部陆续发现大量泥火山,成为世界上泥火山发育最丰富的地区之一(超过200个)[50]。Camerlenghi和Pini[99]记录了多个地中海泥火山,包括在地中海东部海脊[61]、Anaximander山脉[53]、阿尔沃兰海[100]、西西里岛近海[101]、尼罗河三角洲[97]和爱奥尼亚海等地发现的泥火山[102]。东地中海的大多数泥火山发育受海底天然气水合物分解和构造运动引起的天然气超压控制,非洲板块推动欧亚板块,导致气体和部分泥火山的压实[103]。其中,Anaximander山脉自中新世以来,其泥火山分布和活动显著受控于走滑断裂和张应力作用[7, 104]。在地中海东部的麻坑多发育在活跃的泥火山、断层、大型海扇、增生楔体和海底塌陷等地质环境中,例如Anaximander山脉、Cobblestone地区、Florence隆起、Olimpi泥火山区域、United Nation隆起、Herodotus深海平原、Sirte深海平原、Eratosthenes海山、尼罗河深海扇等[69-70]。近年来,在地中海中部浅水区发现的巨型麻坑(如Zannone Giant Pockmark)喷发剧烈且持续性渗漏,证明地中海中部也存在较为活跃的流体逃逸活动[71]。研究分析认为麻坑可能受到边坡失稳(滑坡)、沉积物超压、高沉积速率、挤压构造以及孔隙压力升高等因素影响[69, 78, 97, 105]。在泥火山、麻坑和活动冷泉区通常发育大量碳酸盐岩,且与甲烷气体逸出有关[52, 86, 96, 106]。总体看来,在地中海,断层和泥火山是海底流体逃逸的主要运移通道[22, 78],而在尼罗河三角洲上坡,气烟囱是重要的运移通道[97]。此外,Bertoni等[3]认为墨西尼蒸发岩抑制了正常压实孔隙流体的释放,其分布和变形可能会影响流体运移通道。

    黑海起源于白垩纪,由被黑海中部高地隔开的东西子盆地组成,是世界上最大的缺氧海盆,在阿拉伯板块向北运动,安纳托利亚板块向西运动的作用下,目前正在经历挤压变形[108-112]图4)。黑海地区在浅水至深水环境中广泛发育泥火山、麻坑以及活动羽状流等海底流体逃逸活动特征[56, 87, 110]图4a-c),且被认为约有68%的区域适合天然气水合物的形成[23]

    图  4  黑海及周边地区的构造背景和海底流体逃逸特征分布[42, 66, 116]
    a. 泥火山[110],b. 海底逃逸的气体[56],c. 麻坑[87]
    Figure  4.  The tectonic setting and distribution of fluid escape-related features in the Black Sea and surrounding areas[42, 66, 116]
    a. mud volcano[110], b. the gas bubble escape from the gas vent[56], c. pockmark[87].

    迄今已探明的黑海泥火山约有60个,主要分布在黑海的中西部盆地和索罗金海槽,几乎所有泥火山都处于活跃状态[55]。Xing和Spiess[66]对黑海中部的6个泥火山调查研究发现,泥火山活动可能与不同时期的海平面下降有关,而这似乎是黑海中部泥火山爆发的主要原因之一。冷泉在黑海分布广泛,大多数发育在小于725 m(即高于天然气水合物稳定带(GHSZ))的水深中[87],且不是随机分布,而是集中在某一特定区域,主要包括第聂伯河古扇、索罗金海槽、多瑙河深海扇、巴统渗透区、刻赤渗透区、俄罗斯和土耳其陆架等海域[42]。地球化学研究表明,黑海活动冷泉区的甲烷气体主要来源于富含有机物的厚沉积层(尤其是在陆架边缘三角洲的沉积物)中的微生物降解[42],部分与天然气水合物失稳发生分解有关[113],目前缺乏充足的证据表明存在热成因气体[16]。黑海活动冷泉主要受断层的影响[56, 87],且天然气水合物稳定带或海底滑坡也会控制气体/流体的运移[16, 23],如在Vodianitskiy泥火山调查取得的回波图显示,羽状流在水体中上升超过1 300 m,主要原因是天然气水合物稳定带内的羽状流气泡在上升过程中形成了“水合物外衣”[114]。麻坑主要与甲烷气体渗漏活动有关,例如黑海西北部的第聂伯河古三角洲存在的2 778个气体逃逸活动较为活跃的渗漏点都是麻坑[87]。也有研究分析认为,在黑海东部土耳其陆架上发现的麻坑是由于地震活动引起的超压周期性变化产生的[115]。除断层、泥火山等流体运移通道外,气烟囱在黑海也很发育,与局部天然气供应的增加有关[23]

    波斯湾是NW-SE走向的狭长形海湾,介于伊朗高原和阿拉伯半岛之间,受扎格罗斯褶皱冲断带的影响[28, 117-118]图5)。波斯湾发育大量的碎屑岩、碳酸盐岩和盐类[117, 119]。与硅质碎屑岩储层不同,碳酸盐岩由于沉积环境和随后成岩作用的多样性而具有复杂的多尺度孔隙结构[120],因而在波斯湾发现的大型、特大型油气田主要分布储层是碳酸盐岩,例如,南帕尔斯气田发现于1990年,是世界上最大的气田,其气藏是上二叠统达兰和下三叠统康安碳酸盐岩[30]。在地质历史上,波斯湾处于气候温暖的浅海环境,动植物丰富,构造稳定,沉积发育,因而油气资源丰富[28]。虽然它是世界上碳氢化合物储量最丰富的地区之一,但其麻坑、气体渗漏等逃逸特征在现在海底并不特别发育[121]图5ab)。目前研究发现,逃逸的气体主要是热成因,但是也存在混合成因的可能[30]。距今最近的构造运动,包括与霍尔木兹盐塑性流动有关的垂直运动,继续使波斯湾的沉积体系复杂化[122]

    图  5  波斯湾及周边地区的构造背景和海底流体逃逸特征分布[118]
    a.气体逸出[121],b.麻坑[121]
    Figure  5.  The tectonic setting and distribution of fluid escape-related features in the Persian Gulf and surrounding areas[118]
    a. the gas bubble escape from the seabed[121], b. pockmark[121].

    南海位于欧亚板块、太平洋板块和印度—澳大利亚板块交界处, 是特提斯与太平洋构造域之间相互作用的关键区域[123],具有张裂、走滑与汇聚增生楔等不同陆缘地质背景(图6)。它是西太平洋面积最大的边缘海,最深处超过5 000 m[46]。南海海底流体逃逸活动广泛且活跃,海底冷泉、麻坑和泥火山等典型逃逸特征广泛发育[72, 124-125]图6a-c)。逃逸流体主要通过泥火山、泥底辟、断层和气烟囱等通道运移[41, 43],在海底形成大量流体逃逸特征地貌,指示潜在的油气和相关天然气水合物资源富集[126-127]。近些年来在台西南、东沙、神狐、西沙海槽、琼东南和南沙南部等海域都有发现冷泉活动[47]。其中,2015年在琼东南盆地发现的“海马冷泉”,其下伏地层赋存大量天然气水合物[45, 128]。由于不同性质陆缘构造地质背景,泥火山(底辟)和麻坑等海底流体逃逸地貌在南海不同区域,分布和规模也有所不同。陈江欣等[6]对南海北部和西部陆缘的泥火山、麻坑分布特征分析发现,麻坑、泥火山等流体逃逸地貌主要分布在构造活动较为活跃、沉积作用较为薄弱的近坡折带和大陆坡区域。在南海北部张裂大陆边缘,泥火山自东向西数量和规模逐渐变小,且主要集中在台西南盆地。而南海西部为走滑大陆边缘,构造活动活跃,流体逃逸特征分布较广,规模较大。中建南盆地的泥火山(底辟)的分布和类型与莺歌海盆地有明显不同,莺歌海盆地内部新近纪沉积层较厚,发育有大量的大型泥底辟[129],而中建南盆地新生代沉积层较薄,经历晚白垩世或古近纪—渐新世裂谷向新近纪—第四纪裂陷后热沉降的构造演化[57], 泥火山活动可能与周边区域地震有关[58]。中建南盆地也是世界上最大的巨型麻坑分布区,连片分布的麻坑形态各异,部分麻坑受到地层内部气烟囱、倾斜断层和沉积边界的显著影响[72],部分也受到深部底辟活动和南海西边界流底流的控制[125]。近期在南沙海域Andu海山附近发现大量巨型麻坑发育,推测其形成和演化与以活动断裂作为通道的流体逃逸活动有关[67]

    图  6  南海及周边地区的构造背景和海底流体逃逸特征分布[6, 47, 67, 130]
    据南海地质地球物理图系-地貌图。a. 海底生物和逃逸的气泡[124],b. 麻坑[72],c. 海底泥火山[125]
    Figure  6.  The tectonic setting and distribution of fluid escape-related features in the South China Sea and surrounding areas[6, 47, 67, 130]
    From the geomorphological map of the atlas of geology and geophysics of the South China Sea.a. the gas bubble and benthic organism[124], b. pockmark[72], c. submarine mud volcano[125].

    澳大利亚西北部近海位于被动大陆边缘[131],其区域应力状态受复杂构造活动影响[132]图7)。赤道边缘水温高于20 °C时,有机生产力较高,在澳大利亚西北大陆架海底流体逃逸活动集中的区域发育大量形成于新生代的碳酸盐岩[21, 133]。在这些碳酸盐岩台地上,流体逃逸特征通常与潜在的烃类聚集或深层油气藏的渗漏有关[134]图7bc),这会导致甲烷自生碳酸盐岩的沉积,促进碳酸盐建造的增长[135-136]。几十年来,在西北大陆架进行了多次渗漏调查,但仅在大陆架北部(Yampi陆架)发现了较为活跃的烃渗漏点,其受新近纪碳酸盐岩层序沉积和中新世晚期构造活动控制形成[74, 135, 137]。与在硅质碎屑或深水环境中观察到的渗流特征相比,Yampi陆架上的流体逃逸活动受碳酸盐沉积速率低和潮汐活动的影响,不利于泥火山、大型麻坑的形成[135]。同时自中新世以来,澳大利亚西北大陆架南部的碳酸盐台地上,陆源沉积物输入和沉积速率低,因而有学者分析认为南部麻坑的形成难以用海底流体逃逸活动解释,更可能与生物活动有关[74]。逃逸气体主要是热成因,但是Rollet等[134]对阿拉法拉海浅层天然气和流体运移的研究表明,其逃逸气体存在混合成因的可能。通常断层控制着地下单元碳氢化合物的运移[21, 137],但在部分地区,海平面变化是其沉积演化的主要控制因素,断层构造仅在局部影响中新世碳酸盐岩的堆积[138],除此之外还发现盐底辟会导致海底流体逃逸活动的集中发生[21]

    图  7  澳大利亚西北近海及周边地区的构造背景和海底流体逃逸特征分布[139-142]
    a. 研究参考区域,b. 泥丘[134],c. 麻坑[134]
    Figure  7.  The tectonic setting and distribution of fluid escape-related features in the offshore northwest Australia and surrounding areas[139-142]
    a. the reference region of research, b. mound[134], c. pockmark[134].

    基于对特提斯构造域主要海域研究结果的分析,对其海底流体逃逸活动特征、流体来源、运移通道及其地质控制作用总结如表1所示。总体上,特提斯构造域各海域海底流体逃逸活动广泛发育,但是活动机制复杂,难以用统一的地质模式进行解释,其一般规律和存在的科学问题,分析如下:

    表  1  特提斯构造域海底流体逃逸
    Table  1.  Seabed fluid escape in the Tethys tectonic domain
    研究区域构造背景主要逃逸特征流体来源运移通道地质控制作用主要参考文献
    波斯湾裂谷盆地碳酸盐岩热成因断层褶皱活动[121-122]
    地中海俯冲带、被动大陆边缘泥火山、麻坑、活动冷泉热成因、生物成因、
    天然气水合物分解
    断层、泥火山、气烟囱海底滑坡、沉积物超压、高沉积速率、挤压构造、孔隙压力升高[3,86,103]
    黑海弧后裂谷盆地泥火山、麻坑、活动冷泉生物成因、天然气水
    合物分解
    断层、泥火山、气烟囱海底滑坡、海平面升降、活动断层、海底峡谷、地震活动[16,114]
    南海主动、被动与走滑大陆边缘泥火山、麻坑、活动冷泉、碳酸盐岩生物成因、热成因、
    天然气水合物分解
    断层、泥火山、气烟囱地震活动、深部底辟运动、倾斜断层和沉积边界[44,47]
    澳大利亚西北近海被动大陆边缘碳酸盐岩热成因断层断层、海平面升降、潮汐活动[21]
    下载: 导出CSV 
    | 显示表格

    (1)即使在相同陆缘地质背景下,不同海域的流体逃逸活动特征仍然差异较大。在地中海边缘及相关弧后盆地发育大量冷泉羽状流、泥火山、麻坑以及冷泉碳酸盐岩等[7, 86, 104, 143]。黑海为弧后裂谷盆地,富含有机物的沉积物在陆架边缘以及三角洲沉积[42],广泛分布麻坑、泥火山和活动冷泉等海底流体逃逸地貌。南海具有多种陆缘地质背景,发育大量与冷泉流体活动相关的地貌特征(如麻坑、泥火山等)[6, 24, 41, 57]。与上述海域不同的是,澳大利亚西北部近海和波斯湾的泥火山、麻坑和冷泉活动特征不明显、不活跃[117, 121, 135],主要是碳酸盐岩发育。

    (2)海底流体逃逸活动需要充足气源,热成因、生物成因、混合成因或天然气水合物的分解均能提供充足的气源条件。在波斯湾和澳大利亚西北大陆架碳酸盐岩发育的地区,其气体主要是热成因气[30, 134]。而黑海的甲烷气体主要是由于含有机物的沉积物(尤其是在陆架边缘三角洲的沉积物)的快速沉积,以及随后的微生物降解产生[42]。地中海和南海甲烷气体来源广泛,包括生物成因、热成因与混合成因。天然气水合物失稳会导致流体渗漏,在南海、地中海及黑海已发现了大量与水合物生成和分解有关的流体逃逸活动,因而水合物分解也是逃逸气体的重要来源之一。

    (3)海底流体逃逸活动受构造变形、海底滑坡、地震活动和海平面变化等多种海洋与地质因素主导或控制,并主要发育在地中海、黑海和南海等快速沉积、构造活动显著活跃的海域,通过运移通道(如断层、泥火山和气烟囱等)向海底渗漏逸散。地中海具有复杂地质条件和独特构造背景,天然气水合物分解与活动构造导致大量流体逃逸特征的发育[78, 103]。黑海的流体逃逸活动主要受到活动断层、海平面升降、海底峡谷和海底滑坡等的控制[55, 66, 87, 109],部分地区也受地震活动的影响[115]。此外由于黑海为内海,故不同时期海平面变化会显著影响流体逃逸活动[66]。在南海发现的冷泉活动及与之相关的海底流体逃逸过程,与地震活动、深部底辟运动、活动断裂、倾斜断层和沉积边界等密切相关[58, 67, 72]。波斯湾沉积速率高,且受到扎格罗斯褶皱冲断带的影响[118],沉积层变形明显。断层被认为是澳大利亚西北部碳酸盐岩生长的关键控制因素[21, 137, 144],同时海平面变化、盐底辟构造或潮汐活动也会影响其形成和演化过程[21, 135, 138]

    (1)在特提斯构造域,各海域流体逃逸活动分布特征及活动特征差异较大。地中海、黑海和南海广泛发育活动冷泉及与之相关的麻坑、泥火山等逃逸地貌,而澳大利亚西北近海和波斯湾主要是碳酸盐岩发育。在不同海域,流体来源也不尽相同,大部分是热成因和生物成因,还有可能来源于天然气水合物的分解。

    (2)特提斯构造域海底流体逃逸活动是一个复杂的动态过程,取决于多种控制因素,主要包括活动断层、沉积物超压、边坡失稳、地震活动等地质因素,同时潮汐活动、海平面变化等海洋过程也会影响或部分控制海底流体逃逸活动的形成。

    (3)从研究和指示看,一方面特提斯构造域海底流体逃逸活动特征发育可能与油气田和天然气水合物分布密切,是油气及天然气水合物勘探研究的重要参考;另一方面流体逃逸活动释放的甲烷等温室气体,对全球气候变化的研究及资源与环境服务有重大意义。

    建议重视对特提斯构造域海底流体逃逸活动发育区的调查和探测,综合利用地球物理数据(尤其是多波束)、水体资料和地震海洋学资料,全面了解其流体逃逸特征发育位置和规模,探讨其特殊海域背景下的海洋与地质因素控制作用,总结建立其海底流体逃逸活动模式及相关理论,为后续海域天然气水合物和油气资源的精准勘探开发、全球气候变化、海底灾害等研究提供重要参考。

    致谢:感谢李昂博士、刘欣欣博士及李清高级工程师对本文提供的修改建议。

  • 图  1   中国东部陆架海冬季(A)与夏季(B)环流示意图(改绘自Guan, 1994[47]和苏纪兰等,2005[42]

    Figure  1.   General patterns of seasonal circulation system in the East China Seas: (A) winter; (B) summer (modified after Guan (1994)[47]and Su et al. (2005)[42]

    图  2   调查站位分布图(a. 春季航次,b. 夏季航次,c. 秋季航次,d. 冬季航次)

    Figure  2.   Map of survey stations(a. survey in spring, b. survey in summer, c. survey in autum, d. survey in winter)

    图  3   中国东部陆架海实测温盐与HYCOM温盐相关性分析

    Figure  3.   Correlation between in-situ temperature-salinity data and HYCOM temperature- salinity data

    图  4   中国东部陆架海表层流场分布图 (底图为流速大小;图中箭头方向表示余流的方向,箭头大小表示流速大小)

    Figure  4.   Distribution of surface velocity fields from HYCOM model (base map: current speed; direction of arrows: direction of current; size of arrows: current speed are shown)

    图  5   中国东部陆架海底层流场分布图 (底图为流速大小;图中箭头方向表示余流的方向,箭头大小表示流速大小)

    Figure  5.   Distribution of bottom velocity fields from HYCOM model (base map: current speed; direction of arrows: direction of current; size of arrows: current speed are shown)

    图  6   中国东部陆架海HYCOM表层温度锋面分布图

    Figure  6.   Horizontal gradient of surface temperature based on HYCOM surface temperature data

    图  7   中国东部陆架海HYCOM底层温度锋面分布图

    Figure  7.   Horizontal gradient of bottom temperature based on HYCOM bottom temperature data

    图  8   中国东部陆架海HYCOM表层盐度锋面分布图

    Figure  8.   Horizontal gradient of surface salinity based on HYCOM surface salinity data

    图  9   中国东部陆架海HYCOM底层盐度锋面分布图

    Figure  9.   Horizontal gradient of bottom salinity based on HYCOM bottom salinity data

    图  10   中国东部陆架海泥质区分布 (改绘自Saito 和 Yang, 1995[56]) 及全新世沉积物等厚度图 (单位:m,改绘自Yang 和 Liu, 2007[74];Liu 等, 2007[3]

    M1-渤海中部泥质区;M2-北黄海中部泥质区;M3-山东半岛沿岸泥质区;M4-南黄海中部泥质区;M5-黄海西南部 (废黄河口) 泥质区;M6-黄海东南部泥质区;M7-济州岛西南泥质区;M8-长江口泥质区;M9-浙闽沿岸泥质区。

    Figure  10.   Distribution of mud patches in the East China Seas (modified after Saito and Yang, 1995[56]) and isopach map of the Holocene mud (redrawing of Yang and Liu, 2007[74]and Liu et al., 2007[3]

    表  1   7个航次信息

    Table  1   Information of cruises

    航次类型起止日期站位数CTD型号
    春季航次渤黄海2014.4.28—2014.5.18(21 d)127Seabird 911 plus
    东海2016.3.7—2016.3.19(13 d)77Seabird 25和Seabird 37
    夏季航次渤黄海2016.6.29—2016.7.15(17 d)109Seabird 911 plus
    东海2016.7.4—2016.7.15(12 d)57Seabird 25
    秋季航次渤黄海2010.9.8—2010.9.21(14 d)90Seabird 911 plus
    东海2010.11.1—2010.11.10(10 d)44Seabird 19 plus
    冬季航次渤黄海2016.12.29—2017.1.13(16 d)112Seabird 911 plus
      注:冬季航次东海的数据缺失,故未能列出。
    下载: 导出CSV
  • [1]

    Yang Z S, Saito Y, Guo Z G, et al. Distal mud areas as a material sink in the East China Sea[C]//Proceedings of International Symposium on Global Fluxs of Carbon and Its Related Substances in the Coastal Sea-ocean Atmosphere System. Sapporo, Japan: Hokkaido University, 1994: 1-6.

    [2] 李广雪, 杨子赓, 刘勇. 中国东部海域海底沉积环境成因研究-中国东部海域海底沉积物成因环境图和中国东部海域海底沉积物类型图[M]. 北京: 科学出版社, 2005.

    LI Guangxue, YANG Zigeng, LIU Yong. Cause Study of Sedimentary Environment of Sea Bottom in the Eastern Sea of China[M]. Beijing: Science Press, 2005.

    [3]

    Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea [J]. Geomorphology, 2007, 85(3-4): 208-224. doi: 10.1016/j.geomorph.2006.03.023

    [4]

    Hao Y C, Guo Z G, Yang Z S, et al. Tracking historical lead pollution in the coastal area adjacent to the Yangtze River Estuary using lead isotopic compositions [J]. Environmental Pollution, 2008, 156(3): 1325-1331. doi: 10.1016/j.envpol.2008.02.023

    [5]

    Huang P, Li T G, Li A C, et al. Distribution, enrichment and sources of heavy metals in surface sediments of the North Yellow Sea [J]. Continental Shelf Research, 2014, 73: 1-13. doi: 10.1016/j.csr.2013.11.014

    [6] 郭志刚, 杨作升, 曲艳慧, 等. 东海中陆架泥质区及其周边表层沉积物碳的分布与固碳能力的研究[J]. 海洋与湖沼, 1999, 30(4):421-426. [GUO Zhigang, YANG Zuosheng, QU Yanhui, et al. Distribution pattern of carbon storage in the surficial sediments in the middle continental shelf mud area and its adjoining East China Sea areas [J]. Oceanologia et Limnologia Sinica, 1999, 30(4): 421-426. doi: 10.3321/j.issn:0029-814X.1999.04.012
    [7] 郭志刚, 杨作升, 陈致林, 等. 东海陆架泥质区沉积有机质的物源分析[J]. 地球化学, 2001, 30(5):416-424. [GUO Zhigang, YANG Zuosheng, CHEN Zhilin, et al. Source of sedimentary organic matter in the mud areas of the East China Sea shelf [J]. Geochimica, 2001, 30(5): 416-424. doi: 10.3321/j.issn:0379-1726.2001.05.002
    [8]

    Hu L M, Guo Z G, Feng J L, et al. Distributions and sources of bulk organic matter and aliphatic hydrocarbons in surface sediments of the Bohai Sea, China [J]. Marine Chemistry, 2009, 113(3-4): 197-211. doi: 10.1016/j.marchem.2009.02.001

    [9]

    Hu L M, Shi X F, Guo Z G, et al. Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea: The importance of depositional hydrodynamic forcing [J]. Marine Geology, 2013, 335: 52-63. doi: 10.1016/j.margeo.2012.10.008

    [10]

    Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea [J]. Marine Geology, 2004, 209(1-4): 45-67. doi: 10.1016/j.margeo.2004.06.009

    [11]

    Xiao S B, Li A C, Liu J P, et al. Coherence between solar activity and the East Asian winter monsoon variability in the past 8000 years from Yangtze River-derived mud in the East China Sea [J]. Palaeogeography, 2006, 237(2-4): 293-304. doi: 10.1016/j.palaeo.2005.12.003

    [12] 李铁刚, 江波, 孙荣涛, 等. 末次冰消期以来东黄海暖流系统的演化[J]. 第四纪研究, 2007, 27(6):945-954. [LI Tiegang, JIANG Bo, SUN Rongtao, et al. Evolution pattern of warm current system of the East China Sea and the Yellow Sea since the last deglaciation [J]. Quaternary Sciences, 2007, 27(6): 945-954. doi: 10.3321/j.issn:1001-7410.2007.06.009
    [13]

    Zheng Y, Kissel C, Zheng H B, et al. Sedimentation on the inner shelf of the East China Sea: Magnetic properties, diagenesis and paleoclimate implications [J]. Marine Geology, 2010, 268(1-4): 34-42. doi: 10.1016/j.margeo.2009.10.009

    [14] 赵保仁. 潮混合与潮生陆架锋研究[J]. 海洋科学消息, 1991(2):30-31. [ZHAO Baoren. The Study of tidal mixing and tidal-induced continental front [J]. Marine Science Information, 1991(2): 30-31.
    [15] 吴晓丹, 宋金明, 吴斌, 等. 黄海和东海海域溶解铋地球化学分布特征[J]. 环境科学, 2014, 35(1):100-107. [WU Xiaodan, SONG Jinming, WU Bin, et al. Geochemical distribution of dissolved bismuth in the Yellow Sea and East China Sea [J]. Environmental Science, 2014, 35(1): 100-107.
    [16] 孙效功, 方明, 黄伟. 黄、东海陆架区悬浮体输运的时空变化规律[J]. 海洋与湖沼, 2000, 31(6):581-587. [SUN Xiaogong, FANG Ming, HUANG Wei. Spatial and temporal variations in suspended particulate matter transport on the Yellow and East China Sea shelf [J]. Oceanologia et Limnologia Sinica, 2000, 31(6): 581-587. doi: 10.3321/j.issn:0029-814X.2000.06.001
    [17] 郭志刚, 杨作升, 张东奇, 等. 冬、夏季东海北部悬浮体分布及海流对悬浮体输运的阻隔作用[J]. 海洋学报, 2002, 24(5):71-80. [GUO Zhigang, YANG Zuosheng, ZHANG Dongqi, et al. Seasonal distribution of suspended matter in the northern East China Sea and barrier effect of current circulation on its transport [J]. Acta Oceanologica Sinica, 2002, 24(5): 71-80.
    [18] 刘升发, 石学法, 刘焱光, 等. 东海内陆架泥质区夏季悬浮体的分布特征及影响因素分析[J]. 海洋科学进展, 2011, 29(1):37-46. [LIU Shengfa, SHI Xuefa, LIU Yanguang, et al. Distributions of suspended matter in the inner shelf mud area of the East China Sea in summer and their influence factors [J]. Advances in Marine Science, 2011, 29(1): 37-46. doi: 10.3969/j.issn.1671-6647.2011.01.005
    [19] 刘希真, 李宏亮, 陈建芳, 等. 长江口跨越锋面颗粒磷季节分布变化特征及影响因素[J]. 海洋学研究, 2011, 29(3):88-98. [LIU Xizhen, LI Hongliang, CHEN Jianfang, et al. The seasonal variation and influence factors of particulate phosphorus across the frontal surface in Changjiang River estuary [J]. Journal of Marine Sciences, 2011, 29(3): 88-98. doi: 10.3969/j.issn.1001-909X.2011.03.011
    [20] 王勇智, 乔璐璐, 杨作升, 等. 夏、冬季山东半岛东北部沿岸悬浮物输送机制的初步研究[J]. 泥沙研究, 2012(5):49-57. [WANG Yongzhi, QIAO Lulu, YANG Zuosheng, et al. Research on suspended sediment transport mechanisms along northeast coast of Shandong Peninsula in summer and in winter [J]. Journal of Sediment Research, 2012(5): 49-57. doi: 10.3969/j.issn.0468-155X.2012.05.008
    [21] 王勇智, 乔璐璐, 杨作升, 等. 近岸强海流切变锋作用下悬浮沉积物的输送和沉积——以山东半岛东端外海为例[J]. 沉积学报, 2013, 31(3):486-496. [WANG Yongzhi, QIAO Lulu, YANG Zuosheng, et al. Suspended sediment transport and deposition due to strong regional shear current front: an example from the shelf waters off eastern Shandong Peninsula [J]. Acta Sedimentologica Sinica, 2013, 31(3): 486-496.
    [22] 肖合辉, 王厚杰, 毕乃双, 等. 渤黄海海域悬浮体季节性分布及主要运移路径[J]. 海洋地质与第四纪地质, 2015, 35(2):11-21. [XIAO Hehui, WANG Houjie, BI Naishuang, et al. Seasonal variation of suspended sediment in the Bohai and Yellow Sea and the pathway of sediment transport [J]. Marine Geology & Quaternary Geology, 2015, 35(2): 11-21.
    [23]

    Zang Z C, Xue Z G, Bi N S, et al. Seasonal and intra-seasonal variations of suspended-sediment distribution in the Yellow Sea [J]. Continental Shelf Research, 2017, 148: 116-129. doi: 10.1016/j.csr.2017.08.016

    [24]

    Mayer L M. Surface area control of organic carbon accumulation in continental shelf sediments [J]. Geochimica et Cosmochimica Acta, 1994, 58(4): 1271-1284. doi: 10.1016/0016-7037(94)90381-6

    [25]

    Turner A, Millward G E. Suspended particles: their role in estuarine biogeochemical cycles [J]. Estuarine, Coastal and Shelf Science, 2002, 55(6): 857-883. doi: 10.1006/ecss.2002.1033

    [26]

    McKee B A, Aller R C, Allison M A, et al. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: benthic boundary layer and seabed processes [J]. Continental Shelf Research, 2004, 24(7-8): 899-926. doi: 10.1016/j.csr.2004.02.009

    [27]

    Liu S M, Qi X H, Li X, et al. Nutrient dynamics from the Changjiang (Yangtze River) estuary to the East China Sea [J]. Journal of Marine Systems, 2016, 154: 15-27. doi: 10.1016/j.jmarsys.2015.05.010

    [28]

    Yanagi T, Inoue K I. A numerical experiment on the sedimentation processes in the Yellow Sea and the East China Sea [J]. Journal of Oceanography, 1995, 51(5): 537-552. doi: 10.1007/BF02270523

    [29]

    Pang C G, Yu W, Yang Y, et al. An improved method for evaluating the seasonal variability of total suspended sediment flux field in the Yellow and East China Seas [J]. International Journal of Sediment Research, 2011, 26(1): 1-14. doi: 10.1016/S1001-6279(11)60071-1

    [30]

    Warner J C, Sherwood C R, Signell R P, et al. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model [J]. Computers & Geosciences, 2008, 34(10): 1284-1306.

    [31] 刘建国, 李安春, 陈木宏, 等. 全新世渤海泥质沉积物地球化学特征[J]. 地球化学, 2007, 36(6):559-568. [LIU Jianguo, LI Anchun, CHEN Muhong, et al. Geochemical characteristics of sediments in the Bohai Sea mud area during Holocene [J]. Geochimica, 2007, 36(6): 559-568. doi: 10.3321/j.issn:0379-1726.2007.06.004
    [32] 王伟, 李安春, 徐方建, 等. 北黄海表层沉积物粒度分布特征及其沉积环境分析[J]. 海洋与湖沼, 2009, 40(5):525-531. [WANG Wei, LI Anchun, XU Fangjian, et al. Distribution of surface sediments and sedimentary environment in the North Yellow Sea [J]. Oceanologia et Limnologia Sinica, 2009, 40(5): 525-531. doi: 10.3321/j.issn:0029-814X.2009.05.001
    [33]

    Wang Y H, Wang S, Liu M. Magnetic properties indicate sediment provenance and distribution patterns in the Bohai and Yellow Seas, China [J]. Continental Shelf Research, 2017, 140: 84-95. doi: 10.1016/j.csr.2017.04.012

    [34] 程鹏, 高抒. 北黄海西部海底沉积物的粒度特征和净输运趋势[J]. 海洋与湖沼, 2000, 31(6):604-615. [CHENG Peng, GAO Shu. Net sediment transport patterns over the Northwestern Yellow Sea, based upon grain size trend analysis [J]. Oceanologia et Limnologia Sinica, 2000, 31(6): 604-615. doi: 10.3321/j.issn:0029-814X.2000.06.004
    [35]

    Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea [J]. Continental Shelf Research, 2006, 26(17-18): 2141-2156. doi: 10.1016/j.csr.2006.07.013

    [36]

    Liu J P, Xue Z, Ross K, et al. Fate of sediments delivered to the sea by Asian large rivers: Long-distance transport and formation of remote alongshore clinothems [J]. The Sedimentary Record, 2009, 7(4): 4-9. doi: 10.2110/sedred.2009.4.4

    [37]

    Zeng X M, He R Y, Xue Z, et al. River-derived sediment suspension and transport in the Bohai, Yellow, and East China Seas: A preliminary modeling study [J]. Continental Shelf Research, 2015, 111: 112-125. doi: 10.1016/j.csr.2015.08.015

    [38] 胡敦欣, 杨作升. 东海海洋通量关键过程[M]. 北京: 海洋出版社, 2001.

    HU Dunxin, YANG Zuosheng. The Key Process of Marine Fluxes in East China Sea[M]. Beijing: Ocean Press, 2001.

    [39] 秦蕴珊, 赵一阳, 陈丽蓉, 等. 黄海地质[M]. 北京: 海洋出版社, 1989.

    QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Geology of the Yellow Sea[M]. Beijing: Ocean Press, 1989.

    [40] 许东禹, 刘锡清, 张训华, 等. 中国近海地质[M]. 北京: 地质出版社, 1997.

    XU Dongyu, LIU Xiqing, ZHANG Xunhua, et al. China Offshore Geology[M]. Beijing: Geology Press, 1997.

    [41] 秦蕴珊, 赵一阳, 陈丽蓉, 等. 东海地质[M]. 北京: 科学出版社, 1987.

    QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Geology of the East China Sea[M]. Beijing: Science Press, 1987

    [42] 苏纪兰, 袁立业. 中国近海水文[M]. 北京: 海洋出版社, 2005.

    SU Jilan, YUAN Liye. Hydrology of China Offshore Area[M]. Beijing: Ocean Press, 2005.

    [43] 郭炳火. 中国近海及邻近海域海洋环境[M]. 北京: 海洋出版社, 2004.

    GUO Binghuo. Marine Environment in the Chinese Offshore Waters and Adjacent Sea Areas[M]. Beijing: Ocean Press, 2004.

    [44] 孙湘平. 中国近海区域海洋[M]. 北京: 海洋出版社, 2006.

    SUN Xiangping. Regional Marine in China Seas[M]. Beijing: Ocean Press, 2006.

    [45] 石学法, 刘焱光, 李西双, 等. 中国近海海洋—海洋底质[M]. 北京: 海洋出版社, 2014.

    SHI Xuefa, LIU Yanguang, LI Xishuang, et al. The Bottom Sediments in the Coastal China Sea[M]. Beijing: Ocean Press, 2014.

    [46] 冯士筰, 李凤岐, 李少箐. 海洋科学导论[M]. 北京: 高等教育出版社, 1999.

    FENG Shizuo, LI Fengqi, LI Shaojing. An Introduction to Marine Science[M]. Beijing: Higher Education Press, 1999.

    [47]

    Guan B X. Patterns and structures of the currents in Bohai, Huanghai and East China Seas[C]//Oceanology of China Seas. Springer Netherlands: Kluwer Academic Publishers, 1994: 17-26.

    [48] 苏纪兰. 中国近海的环流动力机制研究[J]. 海洋学报, 2001, 23(4):1-16. [SU Jilan. A review of circulation dynamics of the coastal oceans near China [J]. Acta Oceanologica Sinica, 2001, 23(4): 1-16.
    [49]

    Ichikawa H, Beardsley R C. The current system in the yellow and East China Seas [J]. Journal of Oceanography, 2002, 58(1): 77-92. doi: 10.1023/A:1015876701363

    [50]

    Yuan D L, Hsueh Y. Dynamics of the cross-shelf circulation in the Yellow and East China Seas in winter [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(19-20): 1745-1761. doi: 10.1016/j.dsr2.2010.04.002

    [51]

    Gao S, Lv X Q, Wang H T. Sea surface temperature simulation of tropical and north pacific basins using a hybrid coordinate ocean model (HYCOM) [J]. Marine Science Bulletin, 2008, 10(1): 1-14.

    [52] 赵保仁. 黄海冷水团锋面与潮混合[J]. 海洋与湖沼, 1985, 16(6):451-460. [ZHAO Baoren. The fronts of the Huanghai Sea Cold Water Mass induced by tidal mixing [J]. Oceanologia et Limnologia Sinica, 1985, 16(6): 451-460.
    [53] 汤毓祥, 郑义芳. 关于黄、东海海洋锋的研究[J]. 海洋通报, 1990, 9(5):89-96. [TANG Yuxiang, ZHENG Yifang. Research on fronts in East China Sea [J]. Marine Science Bulletin, 1990, 9(5): 89-96.
    [54]

    Lü X G, Qiao F L, Xia C H, et al. Upwelling and surface cold patches in the Yellow Sea in summer: Effects of tidal mixing on the vertical circulation [J]. Continental Shelf Research, 2010, 30(6): 620-632. doi: 10.1016/j.csr.2009.09.002

    [55]

    Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans [J]. The Journal of Geology, 1983, 91(1): 1-21. doi: 10.1086/628741

    [56]

    Saito Y, Yang Z S. Historical change of the Huanghe (Yellow River) and its impact on the sediment budget of the East China Sea[M]//Tsunogai S, Iseki K, Koike I, et al. Global Fluxes of Carbon and Its Realted Substances in the Coastal Sea-Ocean-Atmosphere System. Sapporo, Japan: Hokkaido University, 1995: 7-12.

    [57] 海洋图集编委会. 渤海 黄海 东海海洋图集-地质、地球物理[M]. 北京: 海洋出版社, 1990.

    Editorial Board of Atlas of the Sea. Marine atlas of Bohai Sea, Yellow Sea and East China Sea-Geology and Geophysics[M]. Beijing: Ocean Press, 1990.

    [58]

    Huh C A, Su C C. Sedimentation dynamics in the East China Sea elucidated from 210Pb, 137Cs and 239, 240Pu [J]. Marine Geology, 1999, 160(1-2): 183-196. doi: 10.1016/S0025-3227(99)00020-1

    [59]

    Lin S, Hsieh I, Huang K M, et al. Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments [J]. Chemical Geology, 2002, 182(2-4): 377-394. doi: 10.1016/S0009-2541(01)00331-X

    [60]

    Su C C, Huh C A. 210Pb, 137Cs and 239, 240Pu in East China Sea sediments: sources, pathways and budgets of sediments and radionuclides [J]. Marine Geology, 2002, 183(1-4): 163-178. doi: 10.1016/S0025-3227(02)00165-2

    [61]

    Hu D X. Upwelling and sedimentation dynamics I. the role of upwelling in sedimentation in the Huanghai Sea and East China Sea-A description of general features [J]. Chinese Journal of Oceanology and Limnology, 1984, 2(1): 12-19. doi: 10.1007/BF02888388

    [62] 杨作升, 郭志刚, 王兆祥, 等. 黄东海陆架悬浮体向其东部深海区输送的宏观格局[J]. 海洋学报, 1992, 14(2):81-90. [YANG Zuosheng, GUO Zhigang, WANG Zhaoxiang, et al. Basic pattern of transport of suspended matter from the Yellow Sea and East China Sea to the eastern deep seas [J]. Acta Oceanologica Sinica, 1992, 14(2): 81-90.
    [63] 郭志刚, 杨作升, 范德江, 等. 长江口泥质区的季节性沉积效应[J]. 地理学报, 2003, 58(4):591-597. [GUO Zhigang, YANG Zuosheng, FAN Dejiang, et al. Seasonal sedimentary effect on Changjing Estuary mud area [J]. Acta Geographica Sinica, 2003, 58(4): 591-597. doi: 10.3321/j.issn:0375-5444.2003.04.014
    [64]

    Dong L X, Guan W B, Chen Q, et al. Sediment transport in the Yellow Sea and East China Sea [J]. Estuarine, Coastal and Shelf Science, 2011, 93(3): 248-258. doi: 10.1016/j.ecss.2011.04.003

    [65]

    Li Y H, Qiao L, Wang A J, et al. Seasonal variation of water column structure and sediment transport in a mud depo-center off the Zhejiang-Fujian coast in China [J]. Ocean Dynamics, 2013, 63(6): 679-690. doi: 10.1007/s10236-013-0620-6

    [66]

    Lü X G, Qiao F L, Xia C S, et al. Upwelling off Yangtze River estuary in summer [J]. Journal of Geophysical Research: Oceans, 2006, 111(C11): C11S08.

    [67]

    Qiao F L, Yang Y Z, Lü X G, et al. Coastal upwelling in the East China Sea in winter [J]. Journal of Geophysical Research: Oceans, 2006, 111(C11): C11S06.

    [68]

    Chen C T A. Chemical and physical fronts in the Bohai, Yellow and East China seas [J]. Journal of Marine Systems, 2009, 78(3): 394-410. doi: 10.1016/j.jmarsys.2008.11.016

    [69] 潘玉球, 徐端蓉, 许建平. 浙江沿岸上升流区的锋面结构、变化及其原因[J]. 海洋学报, 1985, 7(4):401-411. [PAN Yuqiu, XU Duanrong, XU Jianping. Front structure, change and its causes of Zhejiang coastal upwelling [J]. Acta Oceanologica Sinica, 1985, 7(4): 401-411.
    [70]

    Liang X S, Su J L. A two-layers model for the summer circulation of the East China Sea [J]. Acta Oceanologica Sinica, 1994, 13(3): 325-344.

    [71] 于非, 张志欣, 刁新源, 等. 黄海冷水团演变过程及其与邻近水团关系的分析[J]. 海洋学报, 2006, 28(5):26-34. [YU Fei, ZHANG Zhixin, DIAO Xinyuan, et al. Analysis of evolution of the Huanghai Sea Cold Water Mass and its relationship with adjacent water masses [J]. Acta Oceanologica Sinica, 2006, 28(5): 26-34.
    [72]

    Zhou C Y, Dong P, Li G X. A numerical study on the density driven circulation in the Yellow Sea Cold Water Mass [J]. Journal of Ocean University of China, 2015, 14(3): 457-463. doi: 10.1007/s11802-015-2759-x

    [73] 董礼先, 苏纪兰, 王康墡. 黄渤海潮流场及其与沉积物搬运的关系[J]. 海洋学报, 1989, 11(1):102-114. [DONG Lixian, SU Jilan, WANG Kangshan. Tidal current field in the Bohai Sea and Yellow Sea and its relationship with sediment transport [J]. Acta Oceanologica Sinica, 1989, 11(1): 102-114.
    [74]

    Yang Z S, Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea [J]. Marine Geology, 2007, 240(1-4): 169-176. doi: 10.1016/j.margeo.2007.02.008

    [75] 赵一阳, 李凤业, 秦朝阳, 等. 试论南黄海中部泥的物源及成因[J]. 地球化学, 1991(2):112-117. [ZHAO Yiyang, LI Fengye, QIN Zhaoyang, et al. Source and genesis of mud in the central part of the South Yellow Sea in special reference to geochemical data [J]. Geochimica, 1991(2): 112-117. doi: 10.3321/j.issn:0379-1726.1991.02.002
    [76]

    Park S C, Lee G H, Lee H S, et al. Evolution of late Quaternary mud deposits and recent sediment budget in the southeastern Yellow Sea [J]. Marine Geology, 2000, 170(3-4): 271-288. doi: 10.1016/S0025-3227(00)00099-2

    [77] 石学法, 陈春峰, 刘焱光, 等. 南黄海中部沉积物粒径趋势分析及搬运作用[J]. 科学通报, 2002, 47(14):1202-1207. [SHI Xuefa, CHEN Chunfeng, LIU Yanguang, et al. Trend analysis of sediment grain size and sedimentary process in the central south Yellow Sea [J]. Chinese Science Bulletin, 2002, 47(14): 1202-1207.
图(10)  /  表(1)
计量
  • 文章访问数:  2796
  • HTML全文浏览量:  564
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-05
  • 修回日期:  2019-05-20
  • 网络出版日期:  2020-04-25
  • 刊出日期:  2020-05-31

目录

/

返回文章
返回