Preliminary study on Oligo-Miocene hydrological changes in Southeast Asia and their driving mechanisms
-
摘要:
新生代印尼海道的启闭对印度-太平洋暖池演化和大气环流模式变迁有重大影响。然而,受限于构造和古环境重建资料的缺乏,这三者之间的逻辑关系和驱动机制还缺乏清晰的图景。本文梳理了孢粉记录、煤层沉积、浅海碳酸盐沉积和生物地理演化等方面的证据,提出东南亚水文气候在渐新世与中新世之交发生重大调整的认识,即从渐新世的相对干旱条件转型为贯穿整个中新世的持续湿润状态。结合最近的模拟研究,认为东南亚水文气候演变同时受到全球因素和区域构造要素的影响。渐新世与中新世之交和中中新世晚期至晚中新世早期,印尼海道的持续关闭可以通过限制太平洋-印度洋次表层水的交换,进而扩大太平洋一侧的温跃层深度以及经纬向的海表温度梯度,进一步增强沃克环流,最终可能促使东南亚在渐新世与中新世之交发生了干湿格局的转换,并抵消了中中新世晚期至晚中新世全球降温对区域水文气候的影响。目前的研究仍存在不确定性,未来亟需更多的地质记录和模拟研究来准确厘定海道关闭-暖池演化-大气环流之间的联系。
Abstract:The closure of the Indonesian Seaway played a key role in the evolution of the Indo-Pacific Warm Pool and associated atmospheric circulation during the Cenozoic. However, the relationship between the closure of the seaway, the evolution of the warm pool, and the shift in atmospheric circulation remains unclear due to poor constraints in tectonic and paleoenvironmental reconstructions. This study reviews the historical literature, including evidence from pollen records, coal deposits, shallow marine carbonate deposits, and biogeographic evolution. The results show that the hydroclimate in Southeast Asia underwent significant changes during the Oligo-Miocene transition, shifting from relatively dry conditions in the Oligocene to persistently wet conditions throughout the Miocene. Combined with recent simulation studies, it was concluded that the hydrological changes in Southeast Asia were influenced by both global and regional factors. The narrowing and closure of the seaway may have increased the gradient between the east-west thermocline depth and the east-west sea surface temperature in the Pacific Ocean, limiting the exchange of subsurface water between the Pacific and Indian Oceans. This in turn led to a strengthening of the Walker Circulation, which subsequently induced hydrological changes in Southeast Asia after the Oligo-Miocene boundary and mitigated the effects of global cooling over the Late Miocene. Uncertainties remain in current studies, and more geological records and simulation studies in the future would help to accurately characterize the relationship between seaway closure, warm pool evolution, and atmospheric circulation in the Oligo–Miocene.
-
海底冷泉是广泛存在于大陆边缘海底的一种地质现象,它不断从海底沉积界面之下以喷溢、渗漏等方式向海水中注入以水、天然气、细粒沉积物等为主的流体。自1983年在墨西哥湾佛罗里达陡崖3200 m深的海底发现冷泉以来[1],冷泉活动一直是国际研究热点,这是因为它是现代海底极端环境系统的重要组成部分,也是物质从岩石圈向外部圈层(生物圈、水圈和大气圈)进行转移和交换的重要途径甚至中枢环节[2],是地球物质循环的基本过程[3],对全球海洋物质循环[2]、生命活动[4-5]和天然气水合物形成[6-7]均有重要意义,是当前深海探测及相关科学研究的前沿领域之一。研究海底冷泉对于海洋工程安全、天然气水合物开发、海洋油气勘探、全球气候变化、碳循环和极端生物群落等方面具有重要意义。
1. 冷泉系统基本特征与探测技术
研究海底冷泉首先要解决茫茫海洋中的探测问题,因此科学、高效的探测技术尤为重要。目前,海底冷泉探测方法主要有多波束探测、海底原位观测、地质取样、多道地震探测、浅地层剖面探测和走航式声学遥感探测等。利用这些方法可以获取海底冷泉发育的直接或间接证据,如天然气水合物、碳酸盐岩、生物群落、麻坑、泥火山、丘状体、羽状流等(表1)。随着各学科对冷泉系统研究的不断深入,冷泉探测技术正在向多手段、立体化探测方向发展。
表 1 冷泉基本特征与探测方法Table 1. Basic characteristics and detecting method of cold seep位置 特征 描述 探测手段 探测方法 沉积层 泥火山 在正常沉积物表面由喷溢气体驱动形成的具有火山构造的泥质沉积 多波束、浅剖、多道地震 地球物理 泥底辟、泥海岭 由比泥火山小的气上升形成的正向隆起的海底沉积 碳酸盐丘 与石化冷泉有关的可高达300 m的沉积体 气烟囱 底部与顶部分别与底辟和麻坑相连,流体自深部向浅部渗漏和逸散 沉积物烃类异常 以甲烷为主的富烃类流体向海底运移过程会使还原沉积物中的硫酸盐浓度变低,钙、镁等离子也会出现异常[8] 地质取样(拖网、箱式取样、拖网取样、多管取样、重力柱状取样、海底钻探);海底原位探测 地球化学 天然气水合物 浅表层富含由水和甲烷气组成的结晶状似冰状化合物 海底 麻坑 由于天然气、水等流体在海底表面逸散,带走部分沉积物颗粒而形成的海底凹坑 多波束、浅剖、多道地震 地球物理 冷泉碳酸盐结壳 海底的甲烷渗漏过程中, 向海底运移的富甲烷流体与上层海水扩散到沉积物中的硫酸盐发生甲烷厌氧氧化,生成甲烷成因自生碳酸盐岩 地质取样(拖网、箱式取样、拖网取样、多管取样、重力柱状取样、海底钻探);海底原位探测 地球化学 生物礁 与浅层气或冷泉存在有关的似珊瑚的岩群 深水珊瑚礁 石化冷泉口,经常与碳酸盐丘共存 冷泉生物群落 海底菌席等微生物、双壳类、多毛类、虾蟹类、冷水珊瑚等组成的生态系统 水体 天然气渗漏/冷泉羽状流 肉眼可见从海底排溢出气体,这些气体通过泥火山、断层、裂隙等运移通道进入海水以气泡的形式上升运移,形成气泡羽流[9-10] 多波束、浅剖、多道地震 地球物理 近底层海水甲烷高浓度异常 由于沉积物下部甲烷渗漏活动造成的底层水甲烷高浓度异常[11] 吹扫-捕集法;海底原位探测 地球化学 海面 海面增温异常 近海临震前卫星热红外增温异常,指示临震前导致的油气渗漏和(或)水合物因断裂减压或受热分解的烃类气体沿着构造裂隙不断逸出、上升至海面[12] 热红外 卫星遥感 海面浮油 海底渗漏的烃类物质以气泡或油滴的形式垂直迁移进入水体,部分气体到达水面进入大气,而油则在水面扩散成薄且非常细长的可凝聚的油膜 合成孔径雷达 1.1 海底原位探测技术
海底冷泉泄漏产生的一系列物理、化学和生物作用,引发了复杂的海洋生物地球化学变化,现场原位观测可以直接反映海底冷泉的活动过程,利用搭载于深潜器(ROV 和 AUV)的高清摄像系统和集成多种传感器深海观测站可以获得冷泉区高清影像资料和近海底水体原位观测数据,是研究冷泉区海底表征、化学场特征及流体通量的重要方法。
原位观测方法主要通过在锚系、浮标、ROV和AUV等设备上搭载高清摄像系统和多种传感器,来获得海底冷泉活动区的高清视像资料和近海底水体原位观测数据,进而获得冷泉活动区海底表征、化学场特征及流体通量等,大大提高了原位观测的精度、时间和分辨率,但其原位观测时长、传感器搭载等存在局限性,仅能提供较少时间段的现象观测。近年来,低成本、可移动、长时序、多参数和可拓展的坐底式海底环境原位观测系统发展迅速,已成为当前海底冷泉原位监测的重要技术手段和发展趋势[13]。海底环境原位观测系统一般由搭载平台子系统、传感器子系统、数据采集子系统、多通路供电子系统、数据通讯子系统、释放与回收装置及其他附属设备组成[14],通过搭载温度、盐度、CO2、CH4、pH、溶解氧等反映原位环境参数的传感器,可对海底冷泉活动区进行长时间序列的、可靠的近海底水体、沉积物环境参数的观测,可以获取海底边界层的物理、化学和环境等参数的变化特征,能够为深入研究海底冷泉活动的生物地球化学过程及其环境效应提供宝贵的数据资料[15-19]。
1.2 海洋底质取样技术
冷泉碳酸盐岩是冷泉渗漏的产物,是判断冷泉是否存在的重要标志。中国在南海、东海等地区通过底质取样获得了大量的海底冷泉碳酸盐岩样品[19]。海洋底质取样技术具有作业成本低、作业效率高和船舶适应性强等优点[20],是开展海底冷泉研究不可缺少的技术手段。目前,海洋底质取样技术包括箱式取样、拖网取样、多管取样、重力柱状取样和海底钻探等[20-21]。其中,箱式取样和多管取样以获取海底冷泉表层松软物质样品为目的;海底拖网在获取海底较大面积的块状碳酸盐岩样品中应用较广;重力柱状取样主要依靠自身重力可钻获海底冷泉表层数米厚的样品;海底钻探可以在数千米水深内获取连续厚度的海底冷泉碳酸盐岩样品。近些年来,随着海洋探测方法和装备技术的不断提升,海底取样设备也在不断更新和改进,海底冷泉底质取样技术正向着可视化、可控化、动力化、智能化和多样化发展,在常规海洋底质取样设备的基础上,随着电视抓斗、重力活塞式保真取样器、深水海底钻机等取样设备投入使用,为海底冷泉的探测与研究提供了更丰富的技术手段[21-25]。
1.3 多道地震探测技术
冷泉活动一般与泥底辟、流体管道、断层和裂隙、气烟囱、海底麻坑和泥火山等流体逸散结构相关,通过对高质量地震数据的处理和分析,可以揭示冷泉系统的深部结构特征。近年来,国内外学者开始利用地震海洋学方法对海水层进行成像,基于羽状流与背景海水的反射地震特征差异分析冷泉系统在多道反射地震剖面上的活动特征[26]。徐华宁等利用广州海洋地质调查局“奋斗四号”调查船在南海北部神狐海域采集的多道反射地震数据[27],发现了羽状流、声波速度反转、溢出口、海底下陷和浅部BSR等地质现象,推测为甲烷气体沿运移通道进入近海底沉积物中形成了天然气水合物或溢出至海水中所致(图1)。
多道地震方法获得的数据信息丰富,有利于浅层地质信息的综合分析,通过多道地震数据的水体成像特征可以初步确定甲烷气体渗漏的异常反射区域,将这些异常区与下伏的沉积地层构造特征进行综合解释,可以圈定活动冷泉流体发育位置,进而探寻天然气水合物成藏的相关科学问题。
1.4 浅地层剖面探测技术
浅地层剖面探测以其高效率采集过程和浅表层高分辨率的特点被国内外学者广泛应用于天然气水合物调查、冷泉探测等领域,并取得了一系列丰硕的成果[28]。与冷泉系统相关的海底异常特征包括浅层气聚集、海底流体运移、泥火山和气体渗漏,这种地质现象在浅地层剖面上的地震反射特征响应主要表现为浊反射、帘式反射、增强反射、声学空白带和声学羽流等[29]。例如,Roy等[30]在挪威斯匹次卑尔根海域的浅地层剖面上发现增强反射、声学空白带、羽状流等异常(图2)。郑红波等在南海北部东沙西南海域发现深部的天然气水合物分解后通过断层运移到浅层中形成了浅层含气带[28],其证据为浅层剖面上发现浅层含气带以及泄露点喷射到海水中形成的气体泄露现象。
高分辨率浅地层剖面不仅能清晰地揭示海底浅表层的地层结构,而且还可以反映海底浅地层中含气带以及发生的气体泄露现象,是探测海底冷泉系统的有效方法。但常规的浅地层剖面探测无法避开侧反射干扰,解释存在多解性,因此,需要综合其他调查手段来证实浅地层剖面上观测到的关于海底冷泉的异常现象,且相对于声呐探测,其分辨率较低,难以探测小气泡的海底羽状流。
1.5 走航式声学遥感探测技术
走航式声学遥感探测具有简单、快捷、方便等特点,适合冷泉发育区大面积快速普查。声呐系统具有较高的工作频率,在冷泉羽状流探测中得到广泛应用,目前被广泛使用的声呐类型有单波束声呐系统、分裂波束声呐系统、侧扫声呐系统和多波束声呐系统[30-34]。在早期,声学探测设备主要以单频单波束、双频单波束以及分裂波束系统为主。Sassen等利用单波束回声探测系统对墨西哥湾进行探测,在该区域 Green Canyon(GC)Block 185 的海底圆丘发现从海底向上一直延伸至接近海水表面位置的海底冷泉羽状流[35];大洋钻探机构(ODP)在墨西哥湾利用单波束回声探测器探测到从海底喷溢口逸出的甲烷羽状流,证明了此处富含天然气水合物(图3);Greinert等利用Kongsberg公司分裂波束声呐系统Simrad EK500[36],在黑海发现了高达900 m的甲烷羽状流(图4)。
1.6 多波束水体声学探测技术
对于单波束和分裂波束声呐来说,其脚印面积随着水深的增加而增大,声学图像的分辨率也随之降低。多波束声呐系统因为具有较小的波束宽度和更大的波束开角,同等水深下,其声学图像分辨率较高,覆盖宽度也较大[36]。国内外学者已经利用多波束声呐系统获得反向散射强度信号来识别和定位海底甲烷气泡羽状流。2011 年,美国国家海洋和大气管理局(NOAA)利用多波束水体影像在墨西哥湾北部比洛克西穹隆发现并标定了大量海底冷泉羽状流;刘斌等通过“海洋六号”科考船上Kongsberg EM122 多波束声呐采集的水体影像[37]探测到南海西北部陆坡琼东南海域的海底冷泉羽状流(图5)。
中国地质调查局青岛海洋地质研究所利用Kongsberg EM122多波束系统在中国某海域开展了针对海底冷泉泄漏活动的多波束测深及水体声学探测,发现多处海底气泡羽状流显示(图6)。通过和多波束系统获取的地形地貌资料对比发现,该区域羽状流与发源于泥火山和麻坑等特殊地貌的冷泉喷溢活动密切相关。探测到的最高羽状流自海底至顶部高约578 m,其形态呈弯曲炊烟状。通过ROV原位探测结果验证(图7),并与国内外类似研究对比,确认该巨型羽流为泥火山成因的冷泉气体渗漏的典型结果。
图 7 海底冷泉羽状流及ROV原位探测左图:活动冷泉喷出的高浊度流体,右图:在海底960 m水深冷泉喷口原位合成天然气水合物。Figure 7. Plumes of sea cold seep and in-situ detect by ROVLeft figure is high turbidity fluid ejected from active plumes of sea cold seep, right figure is in-situ synthesis of natural gas hydrate in the cold spring vent at 960 m depth.目前深海冷泉最常用的探测方法是基于声学的地球物理和地质地球化学及可视化手段,但多道地震、单道地震、地球化学、地质微生物、海底摄像等手段探测海底冷泉,通常难以兼顾作业效率和探测精度,如何高效探测海底冷泉是世界性难题。随着海底冷泉探测和研究的深入发展,传统的探测技术难以满足海底冷泉大规模探测需求,多波束水体数据相对于海底声呐图像与海底地形数据,携带有更丰富、更全面的采样信息,具有大规模、高精度、高效率的探测优势,通过多波束系统水体扫描的类似火焰的羽状流声学反射图像可以较好地识别海底冷泉,进而实现冷泉的大范围、全水深精确探测。
2. 冷泉羽状流多波束水体数据处理与特征反演方法
随着多波束水体声学技术在冷泉羽状流探测中的不断应用,国内外学者开始有针对性地开展多波束数据处理和数值模拟工作,在提高多波束水体数据信噪比[38-39]、水体目标物自动提取[40-42],以及冷泉动力学特征反演方面[43-45]取得重要进展。
由于旁瓣干扰、船舶噪音等影响,多波束水体数据中存在大量干扰。在利用多波束水体数据探测冷泉羽状流时,往往只能采用中央波束数据,或者采用最小倾斜距离(MSR)以内数据,这些数据处理手段,极大地弱化了多波束设备覆盖宽度大的优点,限制了多波束水体数据的应用[46-47]。汪诗奇等提出了基于强度分布规律的异常“弧圈”检测与消除方法和基于图像交集和差集运算的背景噪声削弱方法(图8),实现了水体影像中噪声的综合抑制,保留目标的同时改善了水体影像的质量[48]。权永峥等提出了一种适用于平坦海底的多波束水体数据处理方法,提升了识别水体数据中目标的能力[49]。
为实现对水体目标(海洋内波、鱼群、沉船、气泡、油气泄漏)的高效探测和准确分析,国内外学者开始探索多波束水体数据的自动化处理方法[50-51]。龙睿捷等通过研究羽状流声反射回波强度阈值,设计一种基于 3D搜索单元的羽流气泡三维滤波器,实现了墨西哥湾三维羽流数据的提取[51]。李东辉等提出一种基于单帧水体影像自动提取沉船目标的算法,通过分析接收旁瓣干扰特性,综合噪声抑制、形态学边缘检测,有效地解决了水体数据不易处理、难以分辨等问题,且该算法在提取过程中并非针对特定沉船形态,对冷泉羽状流自动精准提取具有借鉴意义[52]。
利用声学资料对冷泉气泡的粒径分布、上升速率、溢出通量等特征要素进行反演, 近年来成为国内外学者研究的热点。Artemov等使用Simrad EK500声呐系统对黑海第聂伯河古三角洲海域进行了全面的探测,借鉴声呐探测鱼群密度的相关理论,对2200多处甲烷羽状流的气体运移通量进行测算[53]。Douglas等利用Teledyne-Reson7125多波束系统对北海海域巨型海底冷泉羽状流上升过程进行了精细刻画[54](图9);Urban等基于多波束水体数据实现了冷泉羽状流的动检测, 并尝试进行定量的气体释放评估[44]。华志励等在前人计算模型的基础上,考虑船航向与冷泉水体流向的差异会对声学探测结果产生影响,改进了冷泉气泡上升、溶解速率的定量反演方法,综合运用单波束测深数据和冷泉水体流场数据,对鄂霍次克海(the Okhotsk Sea)千岛盆地(the Kurile Basin)西部陆坡区的冷泉气体溢出、溶解通量以及冷泉水体的甲烷浓度进行了估算[55]。但由于现场流场数据不足, 且缺乏冷泉羽状流原位探测数据支撑,使得该方法目前更适合进行较大范围的统计分析, 在局部计算结果的精度方面还存在较大局限。
3. 结论与建议
利用多波束水体数据进行冷泉羽状流的探测正受到广大学者的关注,国内外在声学羽状流探测方面开展了一些研究,确定了多波束水体数据提取冷泉羽状流的可行性,但相关的研究大多都还处在起步阶段,关于探测成功率、自动化处理、气体定量分析等方面的研究较少,相关难题的解决仍面临巨大挑战。
多波束水体影像对深海冷泉羽状流的立体探测与特征反演技术取得了快速的进步,但仍缺乏系统的理论与方法支撑,主要存在的问题有:
(1)深海环境中,声信号旅行时增加、噪声信号强、水体影像分辨率低,导致图像质量下降,对目标识别产生严重干扰。
(2)多波束水体影像目标识别以人工判读为主,严重影响目标提取精度和可靠性,同时通过二维剖面影像来分析水体中的三维目标物,增加了人工识别目标的难度。
(3)水体含气量一般通过声学反向散射强度进行估计,但两者之间关系模型尚未进行深入研究,羽状流气体通量反演的精度有待提高。
(4)由于受到气泡之间的“遮蔽效应”或海底强回波的影响,气泡渗漏源从影像中难以发觉。
-
图 1 印太暖池现代海流与本文研究所引用的站位资料
a:印太暖池分布范围及其表层洋流,其中橙色实线代表暖流,蓝色实线代表寒流,绿色实线代表季风淡水输入(修改自文献[37–38]);b:东南亚代表性钻井孢粉剖面(黑色圆点, 修改自文献[39–43])和主要含煤盆地分布(陆上褐色区域, 修改自文献[44–45]),华莱士生物区及其界限(白色虚线, 修改自文献[46])。
Figure 1. Modern oceanography in the Indo-Pacific Warm Pool and sites cited in this study
a: Distribution of the Indo-Pacific Warm Pool (black lines) and surface oceanic circulation in the region. Warm currents (orange lines), cold currents (blue lines), and monsoonal freshwater plumes (green lines) are presented (modified after references [37–38]); b: location of palynological profiles from representative wells (black dots, modified after references [39–43]) and main coal-bearing basins of Southeast Asia (brown patches on land, modified after references [44–45]), the Wallace’s zoogeographical region and its boundaries are denoted (white dashed lines, modified after reference [46]).
图 2 全球气候变化和印尼海道构造演变
a:全球深海底栖有孔虫δ18O[30];b:全球平均地表温度相对变化[31];c:全球海平面相对变化[32];d:大气CO2浓度[31];e:基于TEX86重建的全球SST,红色代表中低纬度地区,蓝色代表高纬地区[33];f:印尼海道构造演变重建(修改自文献[34,38])。
Figure 2. Global climate change and tectonic evolution of the Indonesian Seaway
a: Global deep-sea benthic foraminiferal δ18O[30]; b: variation in global mean surface temperature relative to the present estimated from benthic δ18O[31]; c: variation of sea level relative to the present estimated from benthic δ18O[32]; d: atmospheric CO2 estimate[31]; e: global SST estimated from TEX86, where red line represents middle-low latitude region and blue line represents high latitude region[33]; f: tectonic reconstruction of the Indonesian Seaway (modified after references [34,38]).
图 6 渐新世至中新世东南亚水文气候变化与浅海碳酸盐沉积发育情况对比
a:基于孢粉组合重建的水文气候变化,b:赤道不同碳酸盐生物相的相对面积,c:赤道不同碳酸盐生物相相对面积的相对比例,d:碳酸盐台地数量,e:碳酸盐浅滩和建隆数量,f:格架礁的发育情况(修改自文献[47,84])。
Figure 6. Comparison of hydrological changes in the Oligocene to Miocene with the development of shallow-marine carbonate formations in Southeast Asia
a: Reconstructed hydrological changes based on palynological assemblages, b: the relative areas of equatorial carbonate of different carbonate biofacies, c: the relative proportion of the relative areas of equatorial carbonate to different carbonate biofacies, d: numbers of carbonate platforms, e: numbers of carbonate shoals/buildups, f: development of framework reefs(modified after Refs. [47,84]).
图 7 渐新世至中新世东南亚与其他区域的水文气候对比
a:基于孢粉组合[84]和模拟[46]重建的东南亚水文气候变化;b:印尼海道演变历史[38,34];c:全球深海底栖有孔虫δ18O[30];d:全球平均地表温度相对变化[31]和海平面相对变化[32];e:大气CO2浓度[31];f:基于TEX86重建的全球SST,红色为中低纬地区,蓝色为高纬地区[33];g:巴基斯坦大型食草哺乳动物牙釉质δ18O和δ13C[48];h:亚洲内陆旱生植物占比,其中绿色散点为Ephedra + Nitraria + Chenopodiaceae + Artemisia之和[49,108],橙色柱状为干草甸和沙漠景观植被占比之和[50];i:非洲叶蜡烷烃δ13C[51–52];j:全球晚中新世C4植被扩张开始时间[51];k:澳大利亚西北部IODP U1464钾元素含量,大于0.3为湿润,小于0.2为干旱[53]。
Figure 7. Comparison of hydrological changes in the Oligocene to Miocene in Southeast Asia with other regions
a: Reconstructed hydrological changes based on the palynological assemblages[84]and model stimulation[46]; b: the evolution history of the Indonesian Seaway[38,34]; c: global deep-sea benthic foraminiferal δ18O[30]; d: global mean surface temperature[31] and sea level change[32] relative to the present estimated from benthic δ18O; e: atmospheric CO2 estimate[31]; f: global SST estimated from TEX86, where red line represents middle-low latitude region and blue line represents high latitude region[33]; g: δ18O and δ13C of tooth enamel bioapatite for large herbivorous mammal in Pakistan[48]; h: xerophytic vegetation changes in Central Asia, where green dots represent the sum of Ephedra + Nitraria + Chenopodiaceae + Artemisia[49,108], and orange bars represent the sum of steppe and desert vegetation[50]; i: compilation of δ13C for plant wax n-alkanes in Africa[51–52]; j: the onset of C4 vegetation expansion in the Late Miocene across the globe[51]; k: potassium content of the IODP U1464 located in the northwestern Australia, with wet and dry conditions being represented by >0.3 and <0.2, respectively[53].
表 1 主要引用资料基本信息
Table 1 Basic information of main references cited for this study
站位名称 地点 替代性指标 气候指示意义 覆盖时间 地层方法 参考文献 Well C 东南亚越南南部 孢粉组合相对丰度 植被类型干湿变化 24.2~28.2 Ma 生物地层 [42] Well E 东南亚越南南部 孢粉组合相对丰度 植被类型干湿变化 20.9~23.4 Ma 生物地层 [42] Belut-3 东南亚马来半岛东部 孢粉组合相对丰度 植被类型干湿变化 33.7~34.8 Ma 生物地层 [39] Kambing-1 东南亚马来半岛东部 孢粉组合相对丰度 植被类型干湿变化 27.5~29.4 Ma 生物地层 [39] Kambing-1? 东南亚马来半岛东部 孢粉组合相对丰度 植被类型干湿变化 23.8~27.5 Ma 生物地层 [39] Kadal-1 东南亚马来半岛东部 孢粉组合相对丰度 植被类型干湿变化 21.2~23.8 Ma 生物地层 [39] Bergading Deep-3 东南亚马来半岛东部 孢粉组合相对丰度 植被类型干湿变化 7.7~16.9 Ma 生物地层 [43] Dengkis-1 东南亚婆罗洲北部 孢粉组合相对丰度 植被类型干湿变化 6.6~14.2 Ma 生物地层 [43] Kuda Laut-1 东南亚婆罗洲北部 孢粉组合相对丰度 植被类型干湿变化 3.5~23.1 Ma 生物地层 [43] Bukoh-1 东南亚婆罗洲北部 孢粉组合相对丰度 植被类型干湿变化 20.2~28.2 Ma 生物地层 [43] Well A 东南亚婆罗洲东部 孢粉组合相对丰度 植被类型干湿变化 0~8.5 Ma 生物地层 [40] Well B 东南亚婆罗洲东部 孢粉组合相对丰度 植被类型干湿变化 0~9.4 Ma 生物地层 [40] Well X 东南亚爪哇海东部 孢粉组合相对丰度 植被类型干湿变化 23~30 Ma 生物地层 [41] Well Y 东南亚爪哇海东部 孢粉组合相对丰度 植被类型干湿变化 23~30 Ma 生物地层 [41] 东南亚 煤层分布 降雨强度干湿变化 新生代 [44–45] 东南亚 浅海碳酸盐生物相相对面积 降雨强度干湿变化 新生代 [47] 东南亚 浅海碳酸盐生物相面积相对占比 降雨强度干湿变化 新生代 [47] 东南亚 浅海碳酸盐台地数量 降雨强度干湿变化 新生代 [47] 东南亚 浅海碳酸盐浅滩/建隆数量 降雨强度干湿变化 新生代 [47] 东南亚 浅海碳酸盐格架礁分布 降雨强度干湿变化 新生代 [47] 东南亚 降水量数值模拟 降雨强度干湿变化 0~30 Ma [46] 巴基斯坦 食草动物牙釉质碳同位素 植被类型干湿变化 0~33 Ma [48] 巴基斯坦 食草动物牙釉质氧同位素 降雨强度干湿变化 0~33 Ma [48] 中国西北 孢粉组合相对丰度 植被类型干湿变化 0~45 Ma [49] 中国西北 孢粉组合相对丰度 植被类型干湿变化 0~39 Ma [50] 非洲东西沿海 有机质叶蜡烷烃碳同位素 植被类型干湿变化 0~23 Ma [51] 非洲埃塞俄比亚 有机质叶蜡烷烃碳同位素 植被类型干湿变化 渐新世-早中新世 [52] IODP U1464 澳大利亚西北 沉积物钾元素含量 降雨强度干湿变化 5~15 Ma 生物地层 [53] 全球 底栖有孔虫氧同位素 全球冰量底层海水温度 新生代 [30] 全球 底栖有孔虫氧同位素 全球平均温度 新生代 [31] 全球 多指标(例如浮游植物长链不饱和酮类
碳同位素、硼同位素等)大气CO2浓度 新生代 [31] 全球 底栖有孔虫氧同位素 全球海平面 0~40 Ma [32] 全球 有机质TEX86 SST 新生代 [33] -
[1] De Deckker P. The Indo-Pacific Warm Pool: critical to world oceanography and world climate[J]. Geoscience Letters, 2016, 3(1):20. doi: 10.1186/s40562-016-0054-3
[2] Webster P J. The role of hydrological processes in ocean‐atmosphere interactions[J]. Reviews of Geophysics, 1994, 32(4):427-476. doi: 10.1029/94RG01873
[3] Oppo D W, Rosenthal Y. The great Indo-Pacific communicator[J]. Science, 2010, 328(5985):1492-1494. doi: 10.1126/science.1187273
[4] Rodgers K B, Latif M, Legutke S. Sensitivity of equatorial Pacific and Indian Ocean watermasses to the position of the Indonesian Throughflow[J]. Geophysical Research Letters, 2000, 27(18):2941-2944. doi: 10.1029/1999GL002372
[5] Cane M A, Molnar P. Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago[J]. Nature, 2001, 411(6834):157-162. doi: 10.1038/35075500
[6] Karas C, Nürnberg D, Gupta A K, et al. Mid-Pliocene climate change amplified by a switch in Indonesian subsurface throughflow[J]. Nature Geoscience, 2009, 2(6):434-438. doi: 10.1038/ngeo520
[7] Karas C, Nürnberg D, Tiedemann R, et al. Pliocene climate change of the Southwest Pacific and the impact of ocean gateways[J]. Earth and Planetary Science Letters, 2011, 301(1-2):117-124. doi: 10.1016/j.jpgl.2010.10.028
[8] Bali H, Gupta A K, Mohan K, et al. Evolution of the oligotrophic West Pacific Warm Pool during the Pliocene‐Pleistocene boundary[J]. Paleoceanography and Paleoclimatology, 2020, 35(11):e2020PA003875. doi: 10.1029/2020PA003875
[9] Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20(4):353-431. doi: 10.1016/S1367-9120(01)00069-4
[10] Kuhnt W, Holbourn A, Hall R, et al. Neogene history of the Indonesian Throughflow[M]//Clift P, Kuhnt W, Wang P, et al. Continent-Ocean Interactions within East Asian Marginal Seas. Washington: American Geophysical Union, 2004: 299-320.
[11] Li Q Y, Jian Z M, Su X. Late Oligocene rapid transformations in the South China Sea[J]. Marine Micropaleontology, 2005, 54(1-2):5-25. doi: 10.1016/j.marmicro.2004.09.008
[12] Woodruff F, Savin S M. Miocene deepwater oceanography[J]. Paleoceanography, 1989, 4(1):87-140. doi: 10.1029/PA004i001p00087
[13] Von Der Heydt A S, Dijkstra H A. The impact of ocean gateways on ENSO variability in the Miocene[M]//Hall R, Cottam M A, Wilson M E J. The SE Asian Gateway: History and Tectonics of the Australia-Asia Collision. London: Geological Society of London, 2011: 305-318.
[14] Li Q Y, Li B H, Zhong G F, et al. Late Miocene development of the western Pacific warm pool: planktonic foraminifer and oxygen isotopic evidence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237(2-4):465-482. doi: 10.1016/j.palaeo.2005.12.019
[15] Jian Z M, Yu Y Q, Li B H, et al. Phased evolution of the south–north hydrographic gradient in the South China Sea since the middle Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 230(3-4):251-263. doi: 10.1016/j.palaeo.2005.07.018
[16] Nathan S A, Leckie R M. Early history of the Western Pacific Warm Pool during the middle to late Miocene (~13.2–5.8 Ma): role of sea-level change and implications for equatorial circulation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 274(3-4):140-159. doi: 10.1016/j.palaeo.2009.01.007
[17] Gourlan A T, Meynadier L, Allègre C J. Tectonically driven changes in the Indian Ocean circulation over the last 25 Ma: neodymium isotope evidence[J]. Earth and Planetary Science Letters, 2008, 267(1-2):353-364. doi: 10.1016/j.jpgl.2007.11.054
[18] Sosdian S M, Lear C H. Initiation of the western Pacific warm pool at the middle Miocene climate transition?[J]. Paleoceanography and Paleoclimatology, 2020, 35(12):e2020PA003920. doi: 10.1029/2020PA003920
[19] Sato K, Oda M, Chiyonobu S, et al. Establishment of the western Pacific warm pool during the Pliocene: evidence from planktic foraminifera, oxygen isotopes, and Mg/Ca ratios[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 265(1-2):140-147. doi: 10.1016/j.palaeo.2008.05.003
[20] Auer G, De Vleeschouwer D, Smith R A, et al. Timing and pacing of Indonesian Throughflow restriction and its connection to Late Pliocene Climate Shifts[J]. Paleoceanography and Paleoclimatology, 2019, 34(4):635-657. doi: 10.1029/2018PA003512
[21] 周祖翼, 金性春, 王嘹亮, 等. 印尼海道的两度关闭与西太平洋暖池的形成和兴衰[J]. 海洋地质与第四纪地质, 2004, 24(1):7-14 ZHOU Zuyi, JIN Xinchun, WANG Liaoliang, et al. Two closures of the Indonesian seaway and its relationship to the formation and evolution of the western Pacific warm pool[J]. Marine Geology & Quaternary Geology, 2004, 24(1):7-14.]
[22] Bayon G, Patriat M, Godderis Y, et al. Accelerated mafic weathering in Southeast Asia linked to late Neogene cooling[J]. Science Advances, 2023, 9(13):eadf3141. doi: 10.1126/sciadv.adf3141
[23] Tan N, Li H, Zhang Z S, et al. Closure of tropical seaways favors the climate and vegetation in tropical Africa and South America approaching their present conditions[J]. Global and Planetary Change, 2024, 233:104351. doi: 10.1016/j.gloplacha.2023.104351
[24] Brierley C M, Fedorov A V. Relative importance of meridional and zonal sea surface temperature gradients for the onset of the ice ages and Pliocene-Pleistocene climate evolution[J]. Paleoceanography, 2010, 25(2):PA2214.
[25] Fedorov A V, Burls N J, Lawrence K T, et al. Tightly linked zonal and meridional sea surface temperature gradients over the past five million years[J]. Nature Geoscience, 2015, 8(12):975-980. doi: 10.1038/ngeo2577
[26] Su Q D, Nie J S, Meng Q Q, et al. Central Asian drying at 3.3 Ma linked to tropical forcing?[J]. Geophysical Research Letters, 2019, 46(17-18):10561-10567. doi: 10.1029/2019GL084648
[27] 谭宁, 张仲石, 郭正堂, 等. 上新世热带海道变化影响东亚气候的模拟研究[J]. 地学前缘, 2022, 29(5):310-321 TAN Ning, ZHANG Zhongshi, GUO Zhengtang, et al. Modeling study of the impact of tropical seaway changes on East Asian climate[J]. Earth Science Frontiers, 2022, 29(5):310-321.]
[28] Krebs U, Park W, Schneider B. Pliocene aridification of Australia caused by tectonically induced weakening of the Indonesian throughflow[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309(1-2):111-117. doi: 10.1016/j.palaeo.2011.06.002
[29] Christensen B A, Renema W, Henderiks J, et al. Indonesian throughflow drove Australian climate from humid Pliocene to arid Pleistocene[J]. Geophysical Research Letters, 2017, 44(13):6914-6925. doi: 10.1002/2017GL072977
[30] Westerhold T, Marwan N, Drury A J, et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6509):1383-1387. doi: 10.1126/science.aba6853
[31] The Cenozoic CO2 Proxy Integration Project (CenCO2PIP) Consortium. Toward a Cenozoic history of atmospheric CO2[J]. Science, 2023, 382(6675):eadi5177.
[32] Rohling E J, Yu J M, Heslop D, et al. Sea level and deep-sea temperature reconstructions suggest quasi-stable states and critical transitions over the past 40 million years[J]. Science Advances, 2021, 7(26):eabf5326. doi: 10.1126/sciadv.abf5326
[33] Auderset A, Moretti S, Taphorn B, et al. Enhanced ocean oxygenation during Cenozoic warm periods[J]. Nature, 2022, 609(7925):77-82. doi: 10.1038/s41586-022-05017-0
[34] Hall R. Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean[J]. Tectonophysics, 2012, 570-571:1-41. doi: 10.1016/j.tecto.2012.04.021
[35] Gaina C, Müller D. Cenozoic tectonic and depth/age evolution of the Indonesian gateway and associated back-arc basins[J]. Earth-Science Reviews, 2007, 83(3-4):177-203. doi: 10.1016/j.earscirev.2007.04.004
[36] Hall R. Australia–SE Asia collision: plate tectonics and crustal flow[M]//Hall R, Cottam M A, Wilson M E J. The SE Asian Gateway: History and Tectonics of the Australia-Asia Collision. London: Geological Society of London, 2011: 75-109.
[37] Petrick B, Martínez-García A, Auer G, et al. Glacial Indonesian throughflow weakening across the mid-Pleistocene climatic transition[J]. Scientific Reports, 2019, 9(1):16995. doi: 10.1038/s41598-019-53382-0
[38] Gallagher S J, Auer G, Brierley C M, et al. Cenozoic history of the Indonesian gateway[J]. Annual Review of Earth and Planetary Sciences, 2024, 52:581-604. doi: 10.1146/annurev-earth-040722-111322
[39] Morley R J, Morley H P, Restrepo-Pace P. Unravelling the tectonically controlled stratigraphy of the West Natuna Basin by means of palaeo-derived Mid Tertiary climate changes[C]//Proceedings of the 29th Annual Convention Proceedings. AAPG, 2003: 1-24.
[40] Morley R J, Morley H P. Neogene climate history of the Makassar Straits, with emphasis on the Attaka Region, East Kalimantan, Indonesia[C]//Proceedings of the 34th Annual Convention Proceedings. AAPG, 2010.
[41] Lelono E B, Morley R J. Oligocene palynological zonation scheme from East Java Sea[J]. Scientific Contributions Oil & Gas, 2011, 34(2):95-104.
[42] Morley R J, Dung B V, Tung N T, et al. High-resolution Palaeogene sequence stratigraphic framework for the Cuu Long Basin, offshore Vietnam, driven by climate change and tectonics, established from sequence biostratigraphy[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 530:113-135. doi: 10.1016/j.palaeo.2019.05.010
[43] Morley R J, Hasan S S, Morley H P, et al. Sequence biostratigraphic framework for the Oligocene to Pliocene of Malaysia: high-frequency depositional cycles driven by polar glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 561:110058. doi: 10.1016/j.palaeo.2020.110058
[44] Davis R C, Noon S W, Harrington J. The petroleum potential of Tertiary coals from Western Indonesia: relationship to mire type and sequence stratigraphic setting[J]. International Journal of Coal Geology, 2007, 70(1-3):35-52. doi: 10.1016/j.coal.2006.02.008
[45] Friederich M C, Moore T A, Flores R M. A regional review and new insights into SE Asian Cenozoic coal-bearing sediments: why does Indonesia have such extensive coal deposits?[J]. International Journal of Coal Geology, 2016, 166:2-35. doi: 10.1016/j.coal.2016.06.013
[46] Skeels A, Boschman L M, Mcfadden I R, et al. Paleoenvironments shaped the exchange of terrestrial vertebrates across Wallace’s Line[J]. Science, 2023, 381(6653):86-92. doi: 10.1126/science.adf7122
[47] Wilson M E J. Global and regional influences on equatorial shallow-marine carbonates during the Cenozoic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 265(3-4):262-274. doi: 10.1016/j.palaeo.2008.05.012
[48] Martin C, Bentaleb I, Antoine P O. Pakistan mammal tooth stable isotopes show paleoclimatic and paleoenvironmental changes since the early Oligocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 311(1-2):19-29. doi: 10.1016/j.palaeo.2011.07.010
[49] Barbolini N, Woutersen A, Dupont-Nivet G, et al. Cenozoic evolution of the steppe-desert biome in Central Asia[J]. Science Advances, 2020, 6(41):eabb8227. doi: 10.1126/sciadv.abb8227
[50] Jia Y X, Wu H B, Zhu S Y, et al. Cenozoic aridification in Northwest China evidenced by paleovegetation evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 557:109907. doi: 10.1016/j.palaeo.2020.109907
[51] Polissar P J, Rose C, Uno K T, et al. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification[J]. Nature Geoscience, 2019, 12(8):657-660. doi: 10.1038/s41561-019-0399-2
[52] Krawielicki J. Coupled climate, ecosystem and landscape development in the Afro-Mediterranean region since the Oligocene[D]. Doctor Dissertation of ETH Zürich, 2019.
[53] Groeneveld J, Henderiks J, Renema W, et al. Australian shelf sediments reveal shifts in Miocene Southern Hemisphere westerlies[J]. Science Advances, 2017, 3(5):e1602567. doi: 10.1126/sciadv.1602567
[54] Sia S G, Abdullah W H, Konjing Z, et al. The age, palaeoclimate, palaeovegetation, coal seam architecture/mire types, paleodepositional environments and thermal maturity of syn-collision paralic coal from Mukah, Sarawak, Malaysia[J]. Journal of Asian Earth Sciences, 2014, 81:1-19. doi: 10.1016/j.jseaes.2013.11.014
[55] Sia S G, Abdullah W H, Konjing Z, et al. Floristic and climatic changes at the Balingian Province of the Sarawak Basin, Malaysia, in response to Neogene global cooling, aridification and grassland expansion[J]. CATENA, 2019, 173:445-455. doi: 10.1016/j.catena.2018.10.044
[56] Konjing Z, Abd Rahman A H, Ismail M S, et al. Late Oligocene-Early Miocene palynological succession from marginal marine deposits, Nyalau Formation, Bintulu Sarawak: palynostratigraphy, paleovegetation and paleoclimate significance[J]. Bulletin of the Geological Society of Malaysia, 2022, 74:17-41. doi: 10.7186/bgsm74202202
[57] Lelono E B. Pollen records from the Oligocene of western Indonesia as the evidences of climate changes[J]. Scientific Contributions Oil & Gas, 2017, 40(3):107-115.
[58] Bao X J, Hu Y Y, Scotese C R, et al. Quantifying climate conditions for the formation of coals and evaporites[J]. National Science Review, 2023, 10(6):nwad051. doi: 10.1093/nsr/nwad051
[59] Flores R M. Origin of coal as gas source and reservoir rocks[M]//Flores R M. Coal and Coalbed Gas. Amsterdam: Elsevier, 2014: 97-165.
[60] 陈槐, 吴宁, 王艳芬, 等. 泥炭沼泽湿地研究的若干基本问题与研究简史[J]. 中国科学: 地球科学, 2021, 51(1):15-26 doi: 10.1360/SSTe-2020-0073 CHEN Huai, WU Ning, WANG Yanfen, et al. A historical overview about basic issues and studies of mires[J]. Scientia Sinica Terrae, 2021, 51(1):15-26.] doi: 10.1360/SSTe-2020-0073
[61] Stock A T, Littke R, Lücke A, et al. Miocene depositional environment and climate in western Europe: the lignite deposits of the Lower Rhine Basin, Germany[J]. International Journal of Coal Geology, 2016, 157:2-18. doi: 10.1016/j.coal.2015.06.009
[62] Guo Q L, Littke R, Zieger L. Petrographical and geochemical characterization of sub-bituminous coals from mines in the Cesar-Ranchería Basin, Colombia[J]. International Journal of Coal Geology, 2018, 191:66-79. doi: 10.1016/j.coal.2018.03.008
[63] Petersen H I, Andersen C, Anh P H, et al. Petroleum potential of Oligocene lacustrine mudstones and coals at Dong Ho, Vietnam: an outcrop analogue to terrestrial source rocks in the greater Song Hong Basin[J]. Journal of Asian Earth Sciences, 2001, 19(1-2):135-154. doi: 10.1016/S1367-9120(00)00022-5
[64] Susilawati R. Minerals and inorganic matter in coals of the Bukit Asam Coalfield, South Sumatra Basin, Indonesia[D]. Master Dissertation of University of New South Wales, 2004.
[65] Petersen H I, Foopatthanakamol A, Ratanasthien B. Petroleum potential, thermal maturity and the oil window of oil shales and coals in Cenozoic rift basins, central and Northern Thailand[J]. Journal of Petroleum Geology, 2006, 29(4):337-360. doi: 10.1111/j.1747-5457.2006.00337.x
[66] Petersen H I, Lindström S, Nytoft H P, et al. Composition, peat-forming vegetation and kerogen paraffinicity of Cenozoic coals: relationship to variations in the petroleum generation potential (Hydrogen Index)[J]. International Journal of Coal Geology, 2009, 78(2):119-134. doi: 10.1016/j.coal.2008.11.003
[67] Singh P K, Singh M P, Singh A K, et al. Petrographic characteristics of coal from the Lati Formation, Tarakan basin, East Kalimantan, Indonesia[J]. International Journal of Coal Geology, 2010, 81(2):109-116. doi: 10.1016/j.coal.2009.11.006
[68] Widodo S, Oschmann W, Bechtel A, et al. Distribution of sulfur and pyrite in coal seams from Kutai Basin (East Kalimantan, Indonesia): implications for paleoenvironmental conditions[J]. International Journal of Coal Geology, 2010, 81(3):151-162. doi: 10.1016/j.coal.2009.12.003
[69] Alias F L, Abdullah W H, Hakimi M H, et al. Organic geochemical characteristics and depositional environment of the Tertiary Tanjong Formation coals in the Pinangah area, onshore Sabah, Malaysia[J]. International Journal of Coal Geology, 2012, 104:9-21. doi: 10.1016/j.coal.2012.09.005
[70] Hakimi M H, Abdullah W H, Alias F L, et al. Organic petrographic characteristics of Tertiary (Oligocene–Miocene) coals from eastern Malaysia: rank and evidence for petroleum generation[J]. International Journal of Coal Geology, 2013, 120:71-81. doi: 10.1016/j.coal.2013.10.003
[71] Chaiseanwang P, Chenrai P. Organic geochemical characteristics of Mae Teep coal deposits, Thailand[J]. ScienceAsia, 2020, 46S:102-109. doi: 10.2306/scienceasia1513-1874.2020.S015
[72] Sattraburut T, Ratanasthien B, Thasod Y. Palaeovegetation and palaeoclimate of tertiary sediments from Hongsa Coalfield, Xayabouly province, Lao PDR: implication from palynofloras[J]. Songklanakarin Journal of Science and Technology, 2021, 43(3):648-659.
[73] Fikri H N, Sachsenhofer R F, Bechtel A, et al. Organic geochemistry and petrography in Miocene coals in the Barito Basin (Tutupan Mine, Indonesia): evidence for astronomic forcing in kerapah type peats[J]. International Journal of Coal Geology, 2022, 256:103997. doi: 10.1016/j.coal.2022.103997
[74] Petersen H I, Fyhn M B W, Nytoft H P, et al. Miocene coals in the Hanoi Trough, onshore northern Vietnam: depositional environment, vegetation, maturity, and source rock quality[J]. International Journal of Coal Geology, 2022, 253:103953. doi: 10.1016/j.coal.2022.103953
[75] Patria A A, Suhendra R, Anggara F, et al. Association and textural-compositional evolution of pyrite-organic matter in coals of the Tarakan, Barito, and Pasir Basins, Kalimantan, Indonesia[J]. International Journal of Coal Geology, 2024, 282:104442. doi: 10.1016/j.coal.2023.104442
[76] Dai S F, Bechtel A, Eble C F, et al. Recognition of peat depositional environments in coal: a review[J]. International Journal of Coal Geology, 2020, 219:103383. doi: 10.1016/j.coal.2019.103383
[77] Sun Y Z. Review and update on the applications of inertinite macerals in coal geology, paleoclimatology, and paleoecology[J]. Palaeoworld, 2024.
[78] Ruan Y, Mohtadi M, Dupont L M, et al. Interaction of fire, vegetation, and climate in tropical ecosystems: a multiproxy study over the past 22, 000 years[J]. Global Biogeochemical Cycles, 2020, 34(11):e2020GB006677. doi: 10.1029/2020GB006677
[79] Sen S, Naskar S, Das S. Discussion on the concepts in paleoenvironmental reconstruction from coal macerals and petrographic indices[J]. Marine and Petroleum Geology, 2016, 73:371-391. doi: 10.1016/j.marpetgeo.2016.03.015
[80] Wilson M E J, Vecsei A. The apparent paradox of abundant foramol facies in low latitudes: their environmental significance and effect on platform development[J]. Earth-Science Reviews, 2005, 69(1-2):133-168. doi: 10.1016/j.earscirev.2004.08.003
[81] Wilson M E J. Equatorial carbonates: an earth systems approach[J]. Sedimentology, 2012, 59(1):1-31. doi: 10.1111/j.1365-3091.2011.01293.x
[82] Reijmer J J G. Marine carbonate factories: review and update[J]. Sedimentology, 2021, 68(5):1729-1796. doi: 10.1111/sed.12878
[83] Wilson M E J. Cenozoic carbonates in Southeast Asia: implications for equatorial carbonate development[J]. Sedimentary Geology, 2002, 147(3-4):295-428. doi: 10.1016/S0037-0738(01)00228-7
[84] Morley R J. Assembly and division of the South and South-East Asian flora in relation to tectonics and climate change[J]. Journal of Tropical Ecology, 2018, 34(4):209-234. doi: 10.1017/S0266467418000202
[85] Morley R J. Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests[M]//Bush M, Flenley J, Gosling W. Tropical Rainforest Responses to Climatic Change. Berlin: Springer, 2011: 1-34.
[86] Bansal M, Morley R J, Nagaraju S, et al. Southeast Asian Dipterocarp origin and diversification driven by Africa-India floristic interchange[J]. Science, 2022, 375(6579):455-460. doi: 10.1126/science.abk2177
[87] Klaus S, Morley R J, Plath M, et al. Biotic interchange between the Indian subcontinent and mainland Asia through time[J]. Nature Communications, 2016, 7(1):12132. doi: 10.1038/ncomms12132
[88] Joyce E M, Thiele K R, Slik J W F, et al. Plants will cross the lines: climate and available land mass are the major determinants of phytogeographical patterns in the Sunda–Sahul Convergence Zone[J]. Biological Journal of the Linnean Society, 2021, 132(2):374-387. doi: 10.1093/biolinnean/blaa194
[89] Li J T, Li Y, Klaus S, et al. Diversification of rhacophorid frogs provides evidence for accelerated faunal exchange between India and Eurasia during the Oligocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9):3441-3446.
[90] Chen J M, Prendini E, Wu Y H, et al. An integrative phylogenomic approach illuminates the evolutionary history of Old World tree frogs (Anura: Rhacophoridae)[J]. Molecular Phylogenetics and Evolution, 2020, 145:106724. doi: 10.1016/j.ympev.2019.106724
[91] Yuan L M, Deng X L, Jiang D C, et al. Geographical range evolution of the genus Polypedates (Anura: Rhacophoridae) from the Oligocene to present[J]. Zoological Research, 2021, 42(1):116-123. doi: 10.24272/j.issn.2095-8137.2020.246
[92] Zhu R X, Wang H J, Wang H J, et al. Multi-spherical interactions and mechanisms of hydrocarbon enrichment in the Southeast Asian archipelagic tectonic system[J]. Science China Earth Sciences, 2024, 67(2):566-583. doi: 10.1007/s11430-023-1254-4
[93] Sun X J, Wang P X. How old is the Asian monsoon system? palaeobotanical records from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222(3-4):181-222. doi: 10.1016/j.palaeo.2005.03.005
[94] Guo Z T, Sun B, Zhang Z S, et al. A major reorganization of Asian climate by the early Miocene[J]. Climate of the Past, 2008, 4(3):153-174. doi: 10.5194/cp-4-153-2008
[95] Rea D K, Leinen M, Janecek T R. Geologic approach to the long-term history of atmospheric circulation[J]. Science, 1985, 227(4688):721-725. doi: 10.1126/science.227.4688.721
[96] Rea D K, Snoeckx H, Joseph L H. Late Cenozoic Eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere[J]. Paleoceanography, 1998, 13(3):215-224. doi: 10.1029/98PA00123
[97] Dupont L M, Rommerskirchen F, Mollenhauer G, et al. Miocene to Pliocene changes in South African hydrology and vegetation in relation to the expansion of C4 plants[J]. Earth and Planetary Science Letters, 2013, 375:408-417. doi: 10.1016/j.jpgl.2013.06.005
[98] Polissar P J, Uno K T, Phelps S R, et al. Hydrologic changes drove the Late Miocene expansion of C4 grasslands on the Northern Indian subcontinent[J]. Paleoceanography and Paleoclimatology, 2021, 36(4):e2020PA004108. doi: 10.1029/2020PA004108
[99] Shen X Y, Wan S M, Colin C, et al. Increased seasonality and aridity drove the C4 plant expansion in Central Asia since the Miocene–Pliocene boundary[J]. Earth and Planetary Science Letters, 2018, 502:74-83. doi: 10.1016/j.jpgl.2018.08.056
[100] Li M J, Wan S M, Colin C, et al. Expansion of C4 plants in South China and evolution of East Asian monsoon since 35 Ma: black carbon records in the northern South China Sea[J]. Global and Planetary Change, 2023, 223:104079. doi: 10.1016/j.gloplacha.2023.104079
[101] Carrapa B, Clementz M, Feng R. Ecological and hydroclimate responses to strengthening of the Hadley circulation in South America during the Late Miocene cooling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(20):9747-9752.
[102] Latorre C, Quade J, McIntosh W C. The expansion of C4 grasses and global change in the late Miocene: stable isotope evidence from the Americas[J]. Earth and Planetary Science Letters, 1997, 146(1-2):83-96. doi: 10.1016/S0012-821X(96)00231-2
[103] Hyland E G, Sheldon N D, Smith S Y, et al. Late Miocene rise and fall of C4 grasses in the western United States linked to aridification and uplift[J]. GSA Bulletin, 2019, 131(1-2):224-234. doi: 10.1130/B32009.1
[104] Andrae J W, McInerney F A, Polissar P J, et al. Initial expansion of C4 vegetation in Australia during the Late Pliocene[J]. Geophysical Research Letters, 2018, 45(10):4831-4840. doi: 10.1029/2018GL077833
[105] Zhang R, Liu Z H, Jiang D B, et al. Cenozoic Indo-Pacific warm pool controlled by both atmospheric CO2 and paleogeography[J]. Science Bulletin, 2024, 69(9):1323-1331. doi: 10.1016/j.scib.2024.02.028
[106] Scotese C R. Atlas of Earth History: Volume 1, Paleogeography[M]. Arlington: PALEOMAP Project, 2001.
[107] Yan Q, Korty R, Zhang Z S, et al. Large shift of the Pacific Walker Circulation across the Cenozoic[J]. National Science Review, 2021, 8(5):nwaa101. doi: 10.1093/nsr/nwaa101
[108] Wu F, Fang X M, Yang Y B, et al. Reorganization of Asian climate in relation to Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment, 2022, 3(10):684-700.
[109] Matsui H, Nishi H, Kuroyanagi A, et al. Vertical thermal gradient history in the eastern equatorial Pacific during the early to middle Miocene: implications for the equatorial thermocline development[J]. Paleoceanography, 2017, 32(7):729-743. doi: 10.1002/2016PA003058
[110] Dayem K E, Noone D C, Molnar P. Tropical western Pacific warm pool and maritime continent precipitation rates and their contrasting relationships with the Walker Circulation[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D6):D06101.
[111] Molnar P, Cronin T W. Growth of the Maritime Continent and its possible contribution to recurring Ice Ages[J]. Paleoceanography, 2015, 30(3):196-225. doi: 10.1002/2014PA002752