华北克拉通破坏动力学机制:数值模拟的启示

王永明, 李三忠, 李玺瑶, 戴黎明

王永明, 李三忠, 李玺瑶, 戴黎明. 华北克拉通破坏动力学机制:数值模拟的启示[J]. 海洋地质与第四纪地质, 2017, 37(4): 137-150. DOI: 10.16562/j.cnki.0256-1492.2017.04.009
引用本文: 王永明, 李三忠, 李玺瑶, 戴黎明. 华北克拉通破坏动力学机制:数值模拟的启示[J]. 海洋地质与第四纪地质, 2017, 37(4): 137-150. DOI: 10.16562/j.cnki.0256-1492.2017.04.009
WANG Yongming, LI Sanzhong, LI Xiyao, DAI Liming. DESTRUCTION MECHANISMS OF THE NORTH CHINA CRATON: A REVIEW FROM NUMERICAL SIMULATIONS[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 137-150. DOI: 10.16562/j.cnki.0256-1492.2017.04.009
Citation: WANG Yongming, LI Sanzhong, LI Xiyao, DAI Liming. DESTRUCTION MECHANISMS OF THE NORTH CHINA CRATON: A REVIEW FROM NUMERICAL SIMULATIONS[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 137-150. DOI: 10.16562/j.cnki.0256-1492.2017.04.009

华北克拉通破坏动力学机制:数值模拟的启示

基金项目: 

国家重点研发计划项目 2017YFC0601400-1

国家重点研发计划项目 2016YFC0601002

泰山学者特聘教授项目 

大地测量与地球动力学国家重点实验室开放基金 SKLGED2016-2-1-E

国家杰出青年基金 41325009

鳌山卓越科学家计划 2015ASTP-0S10

中国博士后科学基金 2016M602193

详细信息
    作者简介:

    王永明(1986—), 男, 博士, 从事地球动力学研究, E-mail: ymwang@ouc.edu.cn

    通讯作者:

    李三忠(1968—), 男, 教授, 博导, 从事构造地质学研究, E-mail: sanzhong@ouc.edu.cn

  • 中图分类号: P542

DESTRUCTION MECHANISMS OF THE NORTH CHINA CRATON: A REVIEW FROM NUMERICAL SIMULATIONS

  • 摘要: 华北克拉通是古老克拉通遭到破坏的一个典型例子。近几十年的地球物理、地球化学以及地质学等多学科研究都证实了华北克拉通东部自中生代以来遭受了强烈的改造和破坏, 表现出大规模的岩浆活动、构造变形以及岩石圈减薄。华北克拉通破坏的动力学过程一直以来都是地球科学领域关心的热点问题, 也存在很多争论, 而数值模拟手段也逐渐成为研究华北克拉通破坏动力学机制的重要手段之一。前人利用数值模拟手段从拆沉、热侵蚀、俯冲脱水、化学交代等不同角度开展了一系列研究工作, 为很多地球物理、地球化学以及地质学观测提供了一定的动力学模型支持, 为理解华北克拉通破坏的动力学成因机制奠定了坚实基础。但是需要指出的是, 克拉通破坏是一个非常复杂的过程, 目前的数值模型还存在很大的局限性, 要更加深入透彻地理解华北克拉通破坏的动力学成因机制, 在未来还需要从以下几个方面开展进一步深入细致的研究:(1)从二维粗略模型向三维精细模型的过渡; (2)考虑更为实际的岩石流变学特性、相变过程; (3)利用板块重建等技术为数值模型提供板块运动历史等运动学约束; (4)拆沉、热-化学侵蚀、俯冲脱水等作用相互耦合的动力学模拟。
    Abstract: The North China Craton (NCC) is a typical destroyed craton in China. In the past decades, a number of evidence from geophysical, geochemical and geological studies have proved that the eastern part of the NCC had been significantly destroyed or reactivated in Mesozoic and Cenozoic, indicated by extensive magmatic activities, large-scale tectonic deformation and lithospheric thinning. The dynamic process of the destruction of the NCC has been a hot issue in earth sciences and still remained in debate. Meantime, numerical simulaton has become a powerful mean to reveal the mechanism of the destruction of the NCC. Numerical simulations of NCC destruction have been carried out from the perspectives of delamination, thermal-chemical erosion, subduction dehydration and metasomatism, that have provide model support to various geophysical, geochemical or geological interpretations and helps to understand better of the mechanism of the NCC destruction. However, it has to be pointed out that the destruction of the NCC is quite complicated and the current models are mostly too simplified to sutisfy researchers because of too many limitations. To fully unsderstand the destruction mechanism and dynamic processes of the NCC, some of the following perspectives need to be taken into account: (1) turn the simulation from 2-D to 3-D models, (2) take more realistic rheologic properties of mantle rocks into accont, (3) geological constraints such as plate history be fully considered in plate reconstructions, (4) dynamic couplings of delamination, thermal-chemcial erosion and subduction dehydration be undertaken.
  • 西湖凹陷是东海陆架盆地东部坳陷带中北部的一个新生代含油气凹陷,属陆缘裂谷盆地,呈北北东向展布,面积约5.9×104 km2。西湖凹陷自西向东可划分为保俶斜坡带、三潭深凹、中央背斜带、白堤深凹及天屏断阶带5个次级构造单元[1]图1)。新生代西湖凹陷经历了古新世—始新世断陷期、渐新世—中新世拗陷期及上新世以来的区域沉降3个构造演化阶段,自下而上沉积了古新统(Tg-T40),始新统宝石组(T40-T34)、平湖组(T34-T30),渐新统花港组(T30-T24),中新统(龙井组、玉泉组、柳浪组)(T24-T20),T20以上为上新统三潭组和第四系东海群[2]图1)。拗陷期在北西向挤压应力场的作用下,经历了玉泉、花港及龙井3次构造反转运动后,形成了由多个大型反转背斜构造组成的中央背斜带[3]

    图  1  西湖凹陷中央背斜带位置图及地层柱状图
    Figure  1.  The structural location of central anticlinal belt and the integrated stratigraphic column of Xihu Sag

    目前,中央背斜带已发现多个大中型油气田及含油气构造,主要目的层为渐新统花港组,具有纵向上含气层数多、含气面积大的特征。其中,花港组上段的H3砂层组为拗陷期大型辫状河三角洲沉积[4],储层厚度大,分布稳定,多口钻井测试获得工业气流。前人对中央背斜带的油气成藏条件从不同的角度进行了分析,谢月芳等通过对中南部晚期剪切断层的分析认为油气藏的形成规律就是晚期剪切断层对油藏的破坏规律[5];熊斌辉等认为花港组及以上地层缺少区域性盖层,保存条件是油气勘探首先要考虑的因素[6];钟韬等通过对储层致密化过程与油气成藏关系的分析,认为花港组深层储层“先致密后成藏”是造成含气饱和度普遍较低的重要原因[7]。目前,对于花港组成藏主控因素的研究主要集中于背斜带南部,对北部研究涉及较少,本文通过中央背斜带几个典型油气藏解剖对比认为,有利的油气运移通道是控制油气藏形成的主要因素,而晚期油气藏的保存条件对油气的富集程度起关键控制作用。

    作为一个新生代断坳叠合盆地,西湖凹陷新生代发育了巨厚的碎屑岩沉积。其中,始新世断陷期,西湖凹陷在渔山隆起附近与海相通,形成半封闭海湾的沉积环境,发育了宝石组及平湖组含煤地层,特别是中始新世亚热带气候为浮游生物和高等植物的繁盛提供了良好的环境,具有较高的有机质产率,加之水体性质为还原—弱还原、咸性—弱咸性,弱水动力使平湖组具备发育广覆式烃源岩的条件[8-10]。这套海湾型含煤地层具有厚度大、有机质含量高、成熟度高的特征。始新统西湖凹陷地层厚度为200~1 500 m,中央背斜带平湖组泥质烃源岩厚度超过1 000 m,煤系烃源岩最厚处接近50 m;有机质类型为Ⅱ2-Ⅲ型,生气为主,生油次之,煤层TOC平均为61.84%;暗色泥岩TOC均值为1.31%,有机碳均值为0.77%~4.13%,生烃潜量为0.74~10.37 mg/g,为较好—好烃源岩[11-13]。单井烃源岩成熟史模拟表明,中央背斜带宝石组及平湖组烃源岩分别于始新世(约45 Ma)和早渐新世(约35~32 Ma)开始进入成熟阶段,并于中新世末进入排烃高峰[14-15]

    根据 Prinzhofer等的研究,具有气源关系的气源岩干酪根碳同位素比天然气丁烷重约1‰[16]。西湖凹陷天然气δ13C4 平均值约为−25.7‰,平湖组烃源岩干酪根的δ13C4平均值为−25.4‰(表1),稍重于天然气丁烷。同时,天然气C5-7系列化合物中,大多数样品C5-7的正构烷烃相对含量为26%~31%(图2),指示天然气成因类型偏煤型气[17-18]。并且中央背斜带天然气成熟度多大于1.2%,为高熟—过熟天然气(图3),而花港组烃源岩成熟度基本小于1%,只有平湖组及其以下烃源岩的成熟度达到1%以上,表明天然气应主要来源于始新统优质烃源岩层,中央背斜带具备优越的烃源条件,为大—中型油气藏的发育奠定了坚实的物质基础。

    表  1  中央背斜带天然气、烃源岩碳同位素值
    Table  1.  Statistical table of carbon isotope value of natural gas and source rock in central anticlinal belt
    碳同位素值/‰(样品数)
    丁烷花港组泥花港组煤平湖组泥平湖组煤
    G构造−27.3(8)−26.7(5)−26.4(2)
    H构造−23.7(3)−25.6(3)−24.5(1)
    C构造−24.0(1)−26.2(19)−25.7(2)
    A构造−27.1(9)
    B构造−27.0(6)−26.4(4)−25.8(7)−25.7(2)
    下载: 导出CSV 
    | 显示表格
    图  2  中央背斜带天然气C5-7系列化合物三角图
    Figure  2.  C5-7 components of natural gas of the central anticlinal belt
    图  3  中央背斜带天然气甲烷含量与重烃含量关系图
    Figure  3.  The relationship between CH4 and heavy hydrocarbon in natural gas of central anticlinal belt

    中央背斜带勘探的主要目的层为渐新统花港组,此时,西湖凹陷进入拗陷期,内部地形平缓,具有东北部长轴及东部短轴双物源体系,A/S比低,发育中—大型辫状河三角洲沉积[19-21],储集砂岩类型以辫状河三角洲平原分支河道砂、前缘水下分流河道砂、河口坝砂为主。H3砂层组位于花港组上部(图1),发育低位域厚层灰色砂岩,在凹陷内连片分布,厚度为56.5~212.9 m,砂岩百分含量为42%~78%,由南向北砂岩厚度增大,砂地比增高(图4表2)。受埋深差异影响,南部储集空间以溶孔—粒间孔为主,孔隙度基本大于10%,渗透率大于1 mD,多为中孔—中渗储层;北部由于压实作用强烈,孔隙类型多为溶蚀孔,储层物性受溶蚀作用的规模、强度影响,非均质性强,孔隙度为2%~20%,渗透率为0.02~79.3 mD,为中低孔—中低渗储层。

    表  2  H1-H3砂层组地层岩性统计
    Table  2.  The statistical table of lithology form sand group H1 to H3
    A1B1C1D1E1F1G1
    H1H2H3H1H2H3H1H2H3H1H2H3H1H2H3H1H2H3H1H2H3
    地层厚度/m173110135195.5126.7143.5143.5152.6193257131185267254255254271265188.5280.5256
    砂岩厚度(粉砂及以上)/m2527.556.564.530.546630.51284874013971120.59890651794884.5191.5
    砂岩百分含量/%14254233244621843343175274738352468253075
    泥岩厚度/m140.56261.512812872.593.5107.588168813715010712212914375130.5171.558.5
    泥岩百分含量/%815646656051657046656220564248515328696123
    下载: 导出CSV 
    | 显示表格
    图  4  中央背斜带H1-H3砂层组储盖组合配置关系剖面图
    Figure  4.  Profile of reservoir-cap combination in H1-H3 sand groups of central anticlinal belt

    H1-H2砂层组为水侵—高位域沉积,以厚层泥岩夹薄层砂岩或频繁的砂泥岩互层为主,泥岩分布稳定,单层厚度为2.7~35 m,累计最大可达103 m,泥质含量可达60%以上,突破压力为6.2~26.7 MPa,可以作为良好的区域盖层,与H3砂层组形成了有利的储盖组合配置关系(图4)。

    西湖凹陷在构造演化过程中发育早、中、晚3期断裂系统,相应地形成了构造上“三层复合叠加”的特征[22]图5),古—始新世断陷期,形成NE-NNE向雁行排列的正断层系统,发育了与断层走向相同的潜山披覆构造群,为下构造层;拗陷期,在玉泉运动挤压应力作用下,早期构造受到继承性改造,形成挤压背斜构造带的雏形,中新世末龙井运动,在强烈水平挤压作用下,发生地层反转、褶皱、抬升及剥蚀,伴随北-北东向逆断层形成,定型成大型反转构造带,为中构造层;上新世末至更新世在冲绳海槽运动的剪切应力场作用下,上新统以下地层中发育了一系列近东西向剪切张性正断层,将背斜构造复杂化,同时形成了披盖式沉积,为上构造层。因此,中央背斜带的构造圈闭是潜山背景下受到后期挤压应力作用下形成的背斜或半背斜的圈闭,具有规模大,“凹中隆”的特征(图1),发育位置及圈闭形态十分优越。

    图  5  西湖凹陷中央背斜带南-北地震剖面图(测线位置见图1
    Figure  5.  Seismic profile through central anticlinal belt from south to north(The line position is shown in Fig 1

    生排烃史研究表明:中央背斜带平湖组烃源岩于渐新世中期(29.7 Ma)开始生烃,于中中新世、晚中新世和现今具有较高的生烃速率;并于早—中新世(33.6~29.1 Ma)开始有烃类排出,中新世末开始大规模排烃(图6)。因此,圈闭定型期与烃源岩大规模排烃期基本一致,具有较好的圈源时空配置关系。

    图  6  中央背斜带平湖组含油气系统事件图(测线位置见图1
    Figure  6.  The oil and gas system events of Pinghu Formation of central anticlinal belt

    在良好的烃源、储盖组合及圈源时空配置条件下,中央背斜带发现了多个大型含油气构造,但每个含油气构造的圈闭充满度及气柱高度差异较大。通过对中央背斜带B、C、D、F四个典型油气藏的解剖及对比分析认为,有效的输导体系是油气成藏的主要控制因素,良好的后期保存条件则是油气富集的重要因素。

    B、C、D、F 四个构造均是中—大型的背斜或断背斜构造,B构造位于最南部,是一个沿北北东方向展布的“S”形大型挤压反转背斜,纵向上含气层位多,H3气藏为块状底水气藏,充满度低,只有35.7%;中南部的C构造是一个近南北走向形态较完整的低幅背斜构造,钻井揭示H3砂层为水层,而之下的多个砂层钻遇了油气层,且越向深部,油气丰度越高;中部的D构造是中新世末定型的断背斜构造,该构造的H3砂层组为含气水层,油气显示较差;北部的F构造为一个北北东走向的宽缓背斜,H3砂层组圈闭幅度约232 m,H3砂层组共发现H3a、H3b及H3c 3套气层,其中H3b储层,烃柱高度232 m,圈闭充满度为100%(图7表3),为中央背斜带充满度最高、含油气性最好的构造。

    表  3  中央背斜带典型构造油气藏参数
    Table  3.  Statistical table of carbon isotope value of natural gas and source rock in central anticlinal belt
    构造名称圈闭面积/km2圈闭幅度/m气水界面深度/m综合解释结论含气面积/km2气柱高度/m充满度/%气水关系气藏类型
    B 32.0 140 −2781 气层 11.42 50 35.7 层状底水 构造气藏
    C 23.6 50 水层
    D 12.4 20 含气水层
    F 42.65 232 −3812.2 气层 42.65 232 100 层状边水 构造气藏
    下载: 导出CSV 
    | 显示表格
    图  7  中央背斜带典型构造油气成藏模式示意图(测线位置见图1
    Figure  7.  An abridged general view of hydrocarbon accumulation model for four typical cases in central anticlinal belt(The line position is shown in Fig 1

    输导体系是连接烃源岩与圈闭的油气运移通道的空间组合体,其静态要素主要包括断层(含裂缝)、骨架砂体(储集层)和不整合面(层序界面)[23]。中央背斜带花港组的主要输导体系为断层及骨架砂体。断层纵向上沟通烃源岩与储集层,而油气的横向运移主要依赖辫状河三角洲形成的大规模连续厚层砂岩。前已述及,在凹陷构造演化过程中发育了早、中、晚3期断裂系统,断陷期,NW-SE向的拉张应力场下形成了NE-SW向的拉张正断层体系,此时期的正断层具有“形成时间早、活动时间长、断穿层位深、断层断距大”的特征,向下可以沟通始新统烃源岩,为良好的沟源断层;拗陷期,在挤压应力的作用下形成了NE-SW向的逆断层,同时使早期正断层断距减小,少数早期正断层甚至发生反转,断层活动期与中新世末大规模排烃期一致,也是油气运移的主要通道,活动期结束后对油气藏起封堵和保存的作用。区域沉降期,发育了一定数量的E-W向剪切断层,虽然断层规模较小(图7),但多个油气田均显示了剪切断裂对原生油气藏起到了破坏作用。

    3期断裂体系在4个构造上均有体现,但每一期断层数量、断层规模及断穿层位在4个构造上具有不同的特点。B构造3期断层均有发育,早期断层数量较少,向下断至基底,上至花港组中部,中期挤压断层数量多,下至平湖组下段,上至中新世龙井组之上,配合早期断层可以形成有效的纵向输导体系;晚期断层向下多切穿T25界面,向上断层断至T20界面之上。C构造早期断层发育数量多,向上断穿层位在H3砂层组之下T25界面附近,但中期断层基本不发育,垂向上,油气难以运移至H3砂层组成藏,因此,B1井H3砂层组为水层。D构造早期及中期断层发育,晚期断层基本不发育,早期及中期断层形成纵向上输导体系,因此,在H3砂层组见到油气显示。F构造早期及中期断层发育较好,在花港组下段衔接,形成优越的垂向输导体系,晚期断层基本不发育(图7)。从4个构造3期断层发育情况对比来看,B、D、F 三个构造早期、中期断层发育,匹配关系良好,可以形成有效的纵向输导体系,在3个构造H3砂层组均有油气发现;而C构造早期断层向上断至层位深,中期断层不发育,导致H3砂层缺少沟源断层,为水层,而其下伏的H4-H6砂层组发育沟源断层均有油气发现。综上所述:有效的输导体系是中央背斜带油气成藏的主控因素。

    具备输导体系的B、D、F 三个构造中H3砂层组虽然均具有油气显示,但三者含油气性差异大。B构造为块状底水气藏,圈闭充满度为37.5%,H3之上砂层组圈闭充满度只有20%~30%,对其晚期断层分析发现,B构造晚期近东西向剪切正断层发育,向下可断至H3砂层组之下的T25界面附近,断距约为30 m,向上可延伸至第四系(图7),在气藏形成之后的断层活动期破坏了早期背斜油气藏,导致油气沿断层面向浅层逸散,造成了原始油气藏的规模减小,油气充满度降低,含气层增多、变浅,或直接逸散至海底散失。D构造H3砂层组为含气水层,对该构造解剖认为D构造主要受两条早期大断层控制,西侧主控断层在H3砂层组附近断距小,只有10~30 m,H3砂层组钻遇的两套厚储层厚度分别为41和103 m,造成断层两盘地层砂-砂对接(图7),而表征断层封堵性的SGR值只有0.2,显示封堵性较差(图8),油气向更高部位运移,该层具有一定的测、录井显示也是地史时期油气运移的一种表现。相比之下,F构造主体部位晚期剪切断层基本不发育(图7),在气藏形成之后未对气藏产生破坏作用,花港组上段只发育逆断层,具有较好的封堵性,使得充满度高的原生油气藏得以保存完整。因此,良好的后期保存条件是影响油气藏丰度的重要因素。

    图  8  D构造西侧主控断层SGR图
    Figure  8.  The SGR diagram of controlling fault in the west of D structure

    (1)西湖凹陷中央背斜带烃源充足,圈闭形态好,圈源时空配置关系有利,储层厚度大、分布广,储层物性较好,为中低孔—中低渗储层,为油气成藏奠定了良好的基础石油地质条件。

    (2)中央背斜带在构造演化过程中主要发育3期断裂系统,早期及中期断裂系统组合形成纵向油气运移输导体系,是油气成藏的主控因素。而主控断层的封堵性及晚期剪切正断层破坏原生气藏,造成油气在浅部聚集或逸散,是控制气藏丰度的重要因素。

    (3)中央背斜带天然气勘探成功的关键因素在油源断裂和油气藏后期保存条件两方面,在中央背斜带下步勘探中要寻找早—中期断层发育、晚期剪切断层不发育、主控断层封堵性好的构造。

  • 图  1   华北克拉通及其邻近大地构造单元划分简图

    (据文献[10]修改)

    Figure  1.   Tectonic map of the North China Craton and its adjacent areas

    (revised after reference [10])

    图  2   华北克拉通岩石圈厚度等值线图

    (据文献[44])

    Figure  2.   Contour map of the lithospheric thickness of the North China Craton

    (from reference [44])

    图  3   华北克拉通破坏与古太平洋板块俯冲

    (据文献[62])

    Figure  3.   Dynamic couplings between the destruction of the North China Craton and the subduction of the Paleo-Pacific plate

    (from reference [62])

    图  4   克拉通岩石圈在非牛顿流变条件下重力失稳过程的动力学演化特征

    (据文献[86])

    Figure  4.   Dynamic characteristics of gravitational instabilities of the cratonic lithosphere with non-Newtonian rheology

    (from reference [86])

    图  5   不同控制参数下加厚克拉通岩石圈的对流减薄过程

    (据文献[90])

    Figure  5.   Convective thinning process of thickened cratonic lithosphere with different controlling parameters

    (from reference [90])

    图  6   大地幔楔内对流侵蚀引起的克拉通岩石圈减薄

    (据文献[91])

    Figure  6.   Lithospheric thinning due to convective erosion in a big mantle wedge

    (from reference [91])

    图  7   板块俯冲引起地幔转换带脱水造成岩石圈减薄

    (据文献[92])

    Figure  7.   Lithospheric thinning induced by subduction-triggered dehydration of mantle transition zone

    (from reference [92])

  • [1]

    Artemieva I M, Mooney W D. Thermal thickness and evolution of Precambrian lithosphere: a global study[J]. Journal of Geophysical Research, 2001, 106(B8): 16387-16414. doi: 10.1029/2000JB900439

    [2]

    Nyblade A A, Pollack H N. A global analysis of heat flow from precambrian terrains: implications for the thermal structure of archean and proterozoic lithosphere[J]. Journal of Geophysical Research, 1993, 98(B7): 12207-12218. doi: 10.1029/93JB00521

    [3]

    James D E, Fouch M J, VanDecar J C, et al. Tectospheric structure beneath southern Africa[J]. Geophysical Research Letters, 2001, 28(13): 2485-2488. doi: 10.1029/2000GL012578

    [4]

    Lee C T A. Geochemical/petrologic constraints on the origin of cratonic mantle[M]//Benn K, Mareschal J C, Condie K C. Archean Geodynamics and Environments. Washington, DC: American Geophysical Union, 2006: 89-114.

    [5]

    Pollack H N, Hurter S J, Johnson J R. Heat flow from the Earth's interior: analysis of the global data set[J]. Reviews of Geophysics, 1993, 31(3): 267-280. doi: 10.1029/93RG01249

    [6]

    Carlson R W, Pearson D G, James D E. Physical, chemical, and chronological characteristics of continental mantle[J]. Reviews of Geophysics, 2005, 43(1), doi: 10.1029/2004RG000156.

    [7]

    Lee C T A, Luffi P, Chin E J. Building and destroying continental mantle[J]. Annual Review of Earth and Planetary Sciences, 2011, 39(1): 59-90. doi: 10.1146/annurev-earth-040610-133505

    [8]

    Liu D Y, Nutman A P, Compston W, et al. Remnants of ≥3 800 Ma crust in the Chinese part of the sino-korean craton[J]. Geology, 1992, 20(4): 339-342. doi: 10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2

    [9]

    Menzies M, Xu Y G, Zhang H F, et al. Integration of geology, geophysics and geochemistry: a key to understanding the North China Craton[J]. Lithos, 2007, 96(1-2): 1-21. doi: 10.1016/j.lithos.2006.09.008

    [10]

    Li S Z, Zhao S J, Liu X, et al. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth-Science Reviews, 2017, doi: 10.1016/j.earscirev.2017.01.011.

    [11]

    Liu Y S, Gao S, Yuan H L, et al. U-Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton: insights on evolution of lower continental crust[J]. Chemical Geology, 2004, 211(1-2): 87-109. doi: 10.1016/j.chemgeo.2004.06.023

    [12]

    Qiu Y M, Gao S, McNaughton N J, et al. First evidence of >3.2 Ga continental crust in the Yangtze craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics[J]. Geology, 2000, 28(1): 11-14. http://cn.bing.com/academic/profile?id=ff67583ad225da203e4164555c6600b7&encoded=0&v=paper_preview&mkt=zh-cn

    [13]

    Gao S, Rudnick R L, Carlson R W, et al. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton[J]. Earth and Planetary Science Letters, 2002, 198(3-4): 307-322. doi: 10.1016/S0012-821X(02)00489-2

    [14]

    Wu F Y, Walker R J, Yang Y H, et al. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton[J]. Geochimica et Cosmochimica Acta, 2006, 70(19): 5013-5034. doi: 10.1016/j.gca.2006.07.014

    [15]

    Zhang H F, Goldstein S L, Zhou X H, et al. Evolution of subcontinental lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts[J]. Contributions to Mineralogy and Petrology, 2008, 155(3): 271-293. doi: 10.1007/s00410-007-0241-5

    [16]

    Wu F Y, Walker R J, Ren X W, et al. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China[J]. Chemical Geology, 2003, 196(1-4): 107-129. doi: 10.1016/S0009-2541(02)00409-6

    [17]

    Griffin W L, Andi Z, O'Reilly S Y, et al. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton[M]//Flower M F J, Chung S L, Lo C H, et al. Mantle Dynamics and Plate Interactions in East Asia. Washington, DC: American Geophysical Union, 1998: 107-126.

    [18] 郑建平, 路凤香.胶辽半岛金伯利岩中地幔捕虏体岩石学特征:古生代岩石圈地幔及其不均一性[J].岩石学报, 1999, 15(1): 65-74. http://d.old.wanfangdata.com.cn/Periodical/ysxb98199901007

    ZHENG Jianping, LU Fengxiang. Mantle xenoliths from kimberlites, Shandong and Liaoning: paleozoic mantle character and its heterogeneity[J]. Acta Petrologica Sinica, 1999, 15(1): 65-74. http://d.old.wanfangdata.com.cn/Periodical/ysxb98199901007

    [19]

    Fan Q C, Hooper P R. The mineral chemistry of ultramafic xenoliths of Eastern China: implications for upper mantle composition and the paleogeotherms[J]. Journal of Petrology, 1989, 30(5): 1117-1158. doi: 10.1093/petrology/30.5.1117

    [20]

    Fan W M, Zhang H F, Baker J, et al. On and off the North China craton: where is the Archaean keel?[J]. Journal of Petrology, 2000, 41(7): 933-950. doi: 10.1093/petrology/41.7.933

    [21]

    Zheng J P, Griffin W L, O'Reilly S Y, et al. A refractory mantle protolith in younger continental crust, east-central China: age and composition of zircon in the Sulu ultrahigh-pressure peridotite[J]. Geology, 2006, 34(9): 705-708. doi: 10.1130/G22569.1

    [22]

    Zheng J P, Sun M, Griffin W L, et al. Age and geochemistry of contrasting peridotite types in the Dabie UHP belt, eastern China: petrogenetic and geodynamic implications[J]. Chemical Geology, 2008, 247(1-2): 282-304. doi: 10.1016/j.chemgeo.2007.10.023

    [23] 吴福元, 葛文春, 孙德有, 等.中国东部岩石圈减薄研究中的几个问题[J].地学前缘, 2003, 10(3): 51-60. doi: 10.3321/j.issn:1005-2321.2003.03.004

    WU Fuyuan, GE Wenchun, SUN Deyou, et al. Discussions on the lithospheric thinning in eastern China[J]. Earth Science Frontiers, 2003, 10(3): 51-60. doi: 10.3321/j.issn:1005-2321.2003.03.004

    [24] 郑建平, 路凤香, 余淳梅, 等.华北东部橄榄岩岩石化学特征及其岩石圈地幔演化意义[J].地球科学-中国地质大学学报, 2006, 31(1): 49-56. doi: 10.3321/j.issn:1000-2383.2006.01.007

    ZHENG Jianping, LU Fengxiang, YU Chunmei, et al. Peridotitic petrochemistry of the eastern North China: significance for lithospheric mantle evolution[J]. Earth Science-Journal of China University of Geosciences, 2006, 31(1): 49-56. doi: 10.3321/j.issn:1000-2383.2006.01.007

    [25]

    Xu Y G. Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-Korean craton in China: evidence, timing and mechanism[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(9-10): 747-757. doi: 10.1016/S1464-1895(01)00124-7

    [26]

    Menzies M A, Xu Y G. Geodynamics of the North China craton[M]//Flower M F J, Chung S L, Lo C H, et al. Mantle Dynamics and Plate Interactions in East Asia. Washington, DC: American Geophysical Union, 1998: 155-165.

    [27]

    Chen L. Lithospheric structure variations between the eastern and central North China Craton from S- and P-receiver function migration[J]. Physics of the Earth and Planetary Interiors, 2009, 173(3-4): 216-227. doi: 10.1016/j.pepi.2008.11.011

    [28]

    Chen L. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications[J]. Lithos, 2010, 120(1-2): 96-115. doi: 10.1016/j.lithos.2009.12.007

    [29]

    Chen L, Tao W, Zhao L, et al. Distinct lateral variation of lithospheric thickness in the northeastern North China Craton[J]. Earth and Planetary Science Letters, 2008, 267(1-2): 56-68. doi: 10.1016/j.epsl.2007.11.024

    [30]

    Zheng T Y, Chen L, Zhao L, et al. Crust-mantle structure difference across the gravity gradient zone in North China Craton: seismic image of the thinned continental crust[J]. Physics of the Earth and Planetary Interiors, 2006, 159(1-2): 43-58. doi: 10.1016/j.pepi.2006.05.004

    [31]

    Zheng T Y, Chen L, Zhao L, et al. Crustal structure across the Yanshan belt at the northern margin of the North China Craton[J]. Physics of the Earth and Planetary Interiors, 2007, 161(1-2): 36-49. doi: 10.1016/j.pepi.2007.01.004

    [32]

    Zheng T Y, Zhao L, Xu W W, et al. Insight into modification of North China Craton from seismological study in the Shandong Province[J]. Geophysical Research Letters, 2008, 35(22), doi: 10.1029/2008GL035661.

    [33]

    Zheng T Y, Zhao L, Zhu R X. Insight into the geodynamics of cratonic reactivation from seismic analysis of the crust-mantle boundary[J]. Geophysical Research Letters, 2008, 35(8), doi: 10.1029/2008GL033439.

    [34]

    Huang J L, Zhao D P. Seismic imaging of the crust and upper mantle under Beijing and surrounding regions[J]. Physics of the Earth and Planetary Interiors, 2009, 173(3-4): 330-348. doi: 10.1016/j.pepi.2009.01.015

    [35]

    Xu P F, Zhao D P. Upper-mantle velocity structure beneath the North China Craton: implications for lithospheric thinning[J]. Geophysical Journal International, 2009, 177(3): 1279-1283. doi: 10.1111/j.1365-246X.2009.04120.x

    [36]

    Zhu G, Liu G S, Niu M L, et al. Syn-collisional transform faulting of the Tan-Lu fault zone, East China[J]. International Journal of Earth Sciences, 2009, 98(1): 135-155. doi: 10.1007/s00531-007-0225-8

    [37]

    Zhu G, Niu M L, Xie C L, et al. Sinistral to normal faulting along the Tan-Lu fault zone: evidence for geodynamic switching of the East China continental margin[J]. The Journal of Geology, 2010, 118(3): 277-293. doi: 10.1086-651540/

    [38]

    Zhu G, Wang Y S, Liu G S, et al. 40Ar/39 Ar dating of strike-slip motion on the Tan-Lu fault zone, East China[J]. Journal of Structural Geology, 2005, 27(8): 1379-1398. doi: 10.1016/j.jsg.2005.04.007

    [39]

    Li S Z, Zhao G C, Dai L M, et al. Mesozoic basins in eastern China and their bearing on the deconstruction of the North China Craton[J]. Journal of Asian Earth Sciences, 2012, 47: 64-79. doi: 10.1016/j.jseaes.2011.06.008

    [40]

    Li S Z, Zhao G C, Dai L M, et al. Cenozoic faulting of the Bohai Bay Basin and its bearing on the destruction of the eastern North China Craton[J]. Journal of Asian Earth Sciences, 2012, 47: 80-93. doi: 10.1016/j.jseaes.2011.06.011

    [41] 刘俊来, 关会梅, 纪沫, 等.华北晚中生代变质核杂岩构造及其对岩石圈减薄机制的约束[J].自然科学进展, 2006, 16(1): 21-26. doi: 10.3321/j.issn:1002-008X.2006.01.004

    LIU Junlai, GUAN Huimei, JI Mo, et al. Tectonic structures of the Late Mesozoic metamorphic core complex in North China and its constraints on mechanisms of lithospheric thinning[J]. Progress in Natural Science, 2006, 16(1): 21-26. doi: 10.3321/j.issn:1002-008X.2006.01.004

    [42] 李三忠, 张国伟, 周立宏, 等.中、新生代超级汇聚背景下的陆内差异变形:华北伸展裂解和华南挤压逆冲[J].地学前缘, 2011, 18(3): 79-107. http://d.old.wanfangdata.com.cn/Periodical/dxqy201103009

    LI Sanzhong, ZHANG Guowei, ZHOU Lihong, et al. The opposite Meso-Cenozoic intracontinental deformations under the super-convergence: rifting and extension in the North China Craton and shortening and thrusting in the South China Craton[J]. Earth Science Frontiers, 2011, 18(3): 79-107. http://d.old.wanfangdata.com.cn/Periodical/dxqy201103009

    [43] 李三忠, 索艳慧, 戴黎明, 等.渤海湾盆地形成与华北克拉通破坏[J].地学前缘, 2010, 17(4): 64-89. http://d.old.wanfangdata.com.cn/Periodical/dxqy201004006

    LI Sanzhong, SUO Yanhui, DAI Liming, et al. Development of the Bohai Bay Basin and destruction of the North China Craton[J]. Earth Science Frontiers, 2010, 17(4): 64-89. http://d.old.wanfangdata.com.cn/Periodical/dxqy201004006

    [44] 朱日祥, 徐义刚, 朱光, 等.华北克拉通破坏[J].中国科学:地球科学, 2012, 42(8): 1135-1159. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx200804016

    ZHU Rixiang, XU Yigang, ZHU Guang, et al. Destruction of the North China craton[J]. Science China Earth Sciences, 2012, 55(10): 1565-1587. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx200804016

    [45] 吴福元, 徐义刚, 高山, 等.华北岩石圈减薄与克拉通破坏研究的主要学术争论[J].岩石学报, 2008, 26(6): 1145-1174. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200806001

    WU Fuyuan, XU Yigang, GAO Shan, et al. Lithospheric thinning and destruction of the North China Craton[J]. Acta Petrologica Sinica, 2008, 24(6): 1145-1174. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200806001

    [46] 高山, 金振民.拆沉作用(delamination)及其壳-幔演化动力学意义[J].地质科技情报, 1997, 16(1): 1-9. http://www.cqvip.com/Main/Detail.aspx?id=2527909

    GAO Shan, JIN Zhenmin. Delamination and its geodynamical significance for the crust-mantle evolution[J]. Geological Science and Technology Information, 1997, 16(1): 1-9. http://www.cqvip.com/Main/Detail.aspx?id=2527909

    [47] 高山, 章军锋, 许文良, 等.拆沉作用与华北克拉通破坏[J].科学通报, 2009, 54(14): 1962-1973. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200914004

    GAO Shan, ZHANG Junfeng, XU Wenliang, et al. Delamination and destruction of the North China Craton[J]. Chinese Science Bulletin, 2009, 54(19): 3367-3378. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200914004

    [48] 徐义刚.岩石圈的热-机械侵蚀和化学侵蚀与岩石圈减薄[J].矿物岩石地球化学通报, 1999, 18(1): 1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900418950

    XU Yigang. Roles of thermo-mechanic and chemical erosion in continental lithospheric thinning[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1999, 18(1): 1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900418950

    [49]

    Gao S, Luo T C, Zhang B R, et al. Chemical composition of the continental crust as revealed by studies in East China[J]. Geochimica et Cosmochimica Acta, 1998, 62(11): 1959-1975. doi: 10.1016/S0016-7037(98)00121-5

    [50] 高山, Rudnick R L, Carlson R W, 等.华北克拉通岩石圈地幔置换作用和壳幔生长耦合的Re-Os同位素证据[J].地学前缘, 2003, 10(3): 61-67. doi: 10.3321/j.issn:1005-2321.2003.03.005

    GAO Shan, Rudnick R L, Carlson R W, et al. Removal of lithospheric mantle in the North China Craton: Re-Os isotopic evidence for coupled crust-mantle growth[J]. Earth Science Frontiers, 2003, 10(3): 61-67. doi: 10.3321/j.issn:1005-2321.2003.03.005

    [51]

    Gao S, Rudnick R L, Xu W L, et al. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton[J]. Earth and Planetary Science Letters, 2008, 270(1-2): 41-53. doi: 10.1016/j.epsl.2008.03.008

    [52]

    Wu F Y, Lin J Q, Wilde S A, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters, 2005, 233(1-2): 103-119. doi: 10.1016/j.epsl.2005.02.019

    [53]

    Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton[J]. Nature, 2004, 432(7019): 892-897. doi: 10.1038/nature03162

    [54] 张宏福.橄榄岩-熔体相互作用:克拉通型岩石圈地幔能够被破坏之关键[J].科学通报, 2009, 54(14): 2008-2026. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200811001

    ZHANG Hongfu. Peridotite-melt interaction: a key point for the destruction of cratonic lithospheric mantle[J]. Chinese Science Bulletin, 2009, 54(19): 3417-3437. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200811001

    [55]

    Xia Q K, Liu J, Liu S C, et al. High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere[J]. Earth and Planetary Science Letters, 2013, 361: 85-97. doi: 10.1016/j.epsl.2012.11.024

    [56]

    Niu Y L. Generation and evolution of basaltic magmas: some basic concepts and a new view on the origin of mesozoic-cenozoic basaltic volcanism in Eastern China[J]. Geological Journal of China Universities, 2005, 11(1): 9-46. http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX200501001.htm

    [57]

    Ames L, Tilton G R, Zhou G Z. Timing of collision of the sino-Korean and Yangtse cratons: U-Pb zircon dating of coesite-bearing eclogites[J]. Geology, 1993, 21(4): 339-342. doi: 10.1130/0091-7613(1993)021<0339:TOCOTS>2.3.CO;2

    [58]

    Li S G, Xiao Y L, Liou D L, et al. Collision of the North China and Yangtse blocks and formation of coesite-bearing eclogites: timing and processes[J]. Chemical Geology, 1993, 109(1-4): 89-111. doi: 10.1016/0009-2541(93)90063-O

    [59]

    Kusky T M, Windley B F, Zhai M G. Tectonic evolution of the North China Block: from orogen to craton to orogen[M]//Zhai M G, Windley B F, Kusky T M, et al. Mesozoic Sub-Continental Lithospheric Thinning under Eastern Asia. London: Geological Society, Special Publication, 2007, 280: 1-34.

    [60]

    Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6), doi: 10. 1029/2002TC001484.

    [61]

    Seton M, Müller R D, Zahirovic S, et al. Global continental and ocean basin reconstructions since 200 Ma[J]. Earth-Science Reviews, 2012, 113(3-4): 212-270. doi: 10.1016/j.earscirev.2012.03.002

    [62] 朱日祥, 陈凌, 吴福元, 等.华北克拉通破坏的时间、范围与机制[J].中国科学:地球科学, 2011, 41(5): 583-592. http://www.cqvip.com/QK/98491A/20115/38045850.html

    ZHU Rixiang, CHEN Ling, WU Fuyuan, et al. Timing, scale and mechanism of the destruction of the North China Craton[J]. Science China Earth Sciences, 2011, 54(6): 789-797. http://www.cqvip.com/QK/98491A/20115/38045850.html

    [63] 朱日祥, 郑天愉.华北克拉通破坏机制与古元古代板块构造体系[J].科学通报, 2009, 54(14): 1950-1961. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200914003

    ZHU Rixiang, ZHENG Tianyu. Destruction geodynamics of the North China Craton and its Paleoproterozoic plate tectonics[J]. Chinese Science Bulletin, 2009, 54(19): 3354-3366. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200914003

    [64]

    Bartolini A, Larson R L. Pacific microplate and the Pangea supercontinent in the Early to Middle Jurassic[J]. Geology, 2001, 29(8): 735-738. doi: 10.1130/0091-7613(2001)029<0735:PMATPS>2.0.CO;2

    [65]

    Northrup C J, Royden L H, Burchfiel B C. Motion of the pacific plate relative to Eurasia and its potential relation to cenozoic extension along the eastern margin of Eurasia[J]. Geology, 1995, 23(8): 719-722. doi: 10.1130/0091-7613(1995)023<0719:MOTPPR>2.3.CO;2

    [66]

    Yang J H, Wu F Y, Chung S L, et al. Rapid exhumation and cooling of the Liaonan metamorphic core complex: inferences from 40Ar/39 Ar thermochronology and implications for Late Mesozoic extension in the eastern North China Craton[J]. Geological Society of America Bulletin, 2007, 119(11-12): 1405-1414. doi: 10.1130/B26085.1

    [67]

    Liu J L, Davis G A, Lin Z Y, et al. The Liaonan metamorphic core complex, Southeastern Liaoning Province, North China: a likely contributor to Cretaceous rotation of Eastern Liaoning, Korea and contiguous areas[J]. Tectonophysics, 2005, 407(1-2): 65-80. doi: 10.1016/j.tecto.2005.07.001

    [68]

    Ren J Y, Tamaki K, Li S T, et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas[J]. Tectonophysics, 2002, 344(3-4): 175-205. doi: 10.1016/S0040-1951(01)00271-2

    [69]

    Sun W D, Ding X, Hu Y H, et al. The golden transformation of the Cretaceous plate subduction in the west Pacific[J]. Earth and Planetary Science Letters, 2007, 262(3-4): 533-542. doi: 10.1016/j.epsl.2007.08.021

    [70]

    Yang J H, Wu F Y, Wilde S A. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: an association with lithospheric thinning[J]. Ore Geology Reviews, 2003, 23(3-4): 125-152. doi: 10.1016/S0169-1368(03)00033-7

    [71]

    Huang J L, Zhao D P. High-resolution mantle tomography of China and surrounding regions[J]. Journal of Geophysical Research, 2006, 111(B9), doi: 10.1029/2005JB004066.

    [72]

    Zhang J J, Zheng Y F, Zhao Z F. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China[J]. Lithos, 2009, 110(1-4): 305-326. doi: 10.1016/j.lithos.2009.01.006

    [73]

    Wang Y, Zhao Z F, Zheng Y F, et al. Geochemical constraints on the nature of mantle source for Cenozoic continental basalts in east-central China[J]. Lithos, 2011, 125(3-4): 940-955. doi: 10.1016/j.lithos.2011.05.007

    [74]

    Xu Z, Zhao Z F, Zheng Y F. Slab-mantle interaction for thinning of cratonic lithospheric mantle in North China: geochemical evidence from Cenozoic continental basalts in central Shandong[J]. Lithos, 2012, 146-147: 202-217. doi: 10.1016/j.lithos.2012.05.019

    [75]

    Zhu G, Jiang D Z, Zhang B L, et al. Destruction of the eastern North China Craton in a backarc setting: evidence from crustal deformation kinematics[J]. Gondwana Research, 2012, 22(1): 86-103. doi: 10.1016/j.gr.2011.08.005

    [76]

    Jordan T H. Composition and development of the continental tectosphere[J]. Nature, 1978, 274(5671): 544-548. doi: 10.1038/274544a0

    [77]

    Jordan T H. Structure and formation of the continental tectosphere[J]. Journal of Petrology, 1988, S(1): 11-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000005699380

    [78]

    Lenardic A, Moresi L N. Some thoughts on the stability of cratonic lithosphere: effects of buoyancy and viscosity[J]. Journal of Geophysical Research, 1999, 104(B6): 12747-12758. doi: 10.1029/1999JB900035

    [79]

    Lenardic A, Moresi L N, Mühlhaus H. Longevity and stability of cratonic lithosphere: insights from numerical simulations of coupled mantle convection and continental tectonics[J]. Journal of Geophysical Research, 2003, 108(B6), doi: 10.1029/2002JB001859.

    [80]

    Doin M P, Fleitout L, Christensen U. Mantle convection and stability of depleted and undepleted continental lithosphere[J]. Journal of Geophysical Research, 1997, 102(B2): 2771-2787. doi: 10.1029/96JB03271

    [81]

    Shapiro S S, Hager B H, Jordan T H. Stability and dynamics of the continental tectosphere[J]. Lithos, 1999, 48(1-4): 115-133. doi: 10.1016/S0024-4937(99)00025-0

    [82]

    Sleep N H. Survival of Archean cratonal lithosphere[J]. Journal of Geophysical Research, 2003, 108(B6), doi: 10.1029/2001JB000169.

    [83]

    Beuchert M J, Podladchikov Y Y, Simon N S C, et al. Modeling of craton stability using a viscoelastic rheology[J]. Journal of Geophysical Research, 2010, 115(B11), doi: 10.1029/2009JB006482.

    [84] 乔彦超, 郭子祺, 石耀霖.数值模拟华北克拉通岩石圈减薄的一种可能机制———下地壳榴辉岩重力失稳引起的拆沉[J].地球物理学报, 2012, 55(12): 4249-4256. doi: 10.6038/j.issn.0001-5733.2012.12.036

    QIAO Yanchao, GUO Ziqi, SHI Yaolin. Numerical simulation of a possible thinning mechanism of the North China Craton-Gravitational instability delamination induced by lower crust eclogite[J]. Chinese Journal of Geophysics, 2012, 55(12): 4249-4256. doi: 10.6038/j.issn.0001-5733.2012.12.036

    [85] 程华冬, 黄金水.榴辉岩下地壳拆沉的数值模拟[J].中国科学:地球科学, 2017, 47(1): 82-94. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201212036

    CHENG Huadong, HUANG Jinshui. Numerical simulation on the detachement of eclogitic lower crust[J]. Science China: Earth Sciences, 2017, 47(1): 82-94. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201212036

    [86]

    Wang Y M, Huang J S, Zhong S J. Episodic and multistaged gravitational instability of cratonic lithosphere and its implications for reactivation of the North China Craton[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(3): 815-833. doi: 10.1002/2014GC005681

    [87]

    Zheng J P, O'Reilly S Y, Griffin W L, et al. Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution[J]. Lithos, 2001, 57(1): 43-66. http://www.sciencedirect.com/science/article/pii/S0024493700000736

    [88]

    Wang Y M, Huang J S, Zhong S J, et al. Heat flux and topography constraints on thermochemical structure below North China Craton regions and implications for evolution of cratonic lithosphere[J]. Journal of Geophysical Research, 2016, 121(4): 3081-3098. doi: 10.1002/2015JB012540/pdf

    [89] 乔彦超, 郭子祺, 石耀霖.数值模拟华北克拉通岩石圈热对流侵蚀减薄机制[J].中国科学:地球科学, 2013, 43(4): 642-652. http://d.old.wanfangdata.com.cn/Conference/7627810

    QIAO Yanchao, GUO Ziqi, SHI Yaolin. Thermal convection thinning of the North China Craton: numerical simulation[J]. Science China: Earth Sciences, 2013, 56(5): 773-782. http://d.old.wanfangdata.com.cn/Conference/7627810

    [90] 程华冬, 黄金水, 傅容珊.克拉通岩石圈对流减薄的数值模拟[J].地球物理学报, 2016, 59(4): 1293-1308. http://d.old.wanfangdata.com.cn/Conference/7627810

    CHENG Huadong, HUANG Jinshui, FU Rongshan. Numerical simulation on convective thinning of the cratonic lithosphere[J]. Chinese Journal of Geophysics, 59(4): 1293-1308. http://d.old.wanfangdata.com.cn/Conference/7627810

    [91]

    He L J. Numerical modeling of convective erosion and peridotite-melt interaction in big mantle wedge: implications for the destruction of the North China Craton[J]. Journal of Geophysical Research, 2014, 119(4): 3662-3677. http://onlinelibrary.wiley.com/resolve/doi?DOI=10.1002/2013JB010657

    [92]

    Wang Z S, Kusky T M, Capitanio F A. Lithosphere thinning induced by slab penetration into a hydrous mantle transition zone[J]. Geophysical Research Letters, 2016, 43(22): 11567-11577. doi: 10.1002/2016GL071186

    [93]

    Yang J F, Zhao L, Kaus B J P, et al. Slab-triggered wet upwellings produce large volumes of melt: Insights into the destruction of the North China Craton[J]. Tectonophysics, 2017, doi: 10.1016/j.tecto.2017.04.009.

    [94]

    Liu M, Cui X J, Liu F T. Cenozoic rifting and volcanism in eastern China: a mantle dynamic link to the Indo-Asian collision?[J]. Tectonophysics, 2004, 393(1-4): 29-42. doi: 10.1016/j.tecto.2004.07.029

    [95] 吕刚, 赵亮, 郑天愉, 等.变质核杂岩形成的关键条件及其对华北克拉通破坏过程的约束:数值模拟研究[J].中国科学:地球科学, 2016, 46(9): 1278-1290. doi: 10.1360/N072015-00407

    LV Gang, ZHAO Liang, ZHENG Tianyu, et al. Determining the key conditions for the formation of metamorphic core complexes by geodynamic modeling and insights into the destruction of North China Craton[J]. Science China: Earth Sciences, 2016, 59(9): 1873-1884. doi: 10.1360/N072015-00407

    [96]

    Wang Y H, Houseman G A, Lin G, et al. Mesozoic lithospheric deformation in the North China block: numerical simulation of evolution from orogenic belt to extensional basin system[J]. Tectonophysics, 2005, 405(1-4): 47-63. doi: 10.1016/j.tecto.2005.05.012

    [97]

    Schellart W P, Stegman D R, Farrington R J, et al. Influence of lateral slab edge distance on plate velocity, trench velocity, and subduction partitioning[J]. Journal of Geophysical Research, 2011, 116(B10), doi: 10.1029/2011JB008535.

    [98]

    Kincaid C, Griffiths R W. Variability in flow and temperatures within mantle subduction zones[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(6), doi: 10.1029/2003GC000666.

    [99]

    Kincaid C, Griffiths R W. Laboratory models of the thermal evolution of the mantle during rollback subduction[J]. Nature, 2003, 425(6953): 58-62. doi: 10.1038/nature01923

    [100]

    Karato S I, Wu P. Rheology of the upper mantle: a synthesis[J]. Science, 1993, 260(5109): 771-778. doi: 10.1126/science.260.5109.771

    [101]

    Zhang S Q, Karato S I. Lattice preferred orientation of olivine aggregates deformed in simple shear[J]. Nature, 1995, 375(6534): 774-777. doi: 10.1038/375774a0

    [102]

    Hirth G, Kohlstedt D. Rheology of the upper mantle and the mantle wedge: a view from the experimentalists[M]//Eiler J. Inside the Subduction Factory. Washington, DC: American Geophysical Union, 2004: 83-105.

    [103]

    van den berg A P, van Keken P E, Yuen D A. The effects of a composite non-newtonian and newtonian rheology on mantle convection[J]. Geophysical Journal International, 1993, 115(1): 62-78. doi: 10.1111/j.1365-246X.1993.tb05588.x

    [104]

    Zhong S J, Gurnis M. Interaction of weak faults and non-newtonian rheology produces plate tectonics in a 3D model of mantle flow[J]. Nature, 1996, 383(6597): 245-247. doi: 10.1038/383245a0

    [105]

    Zhong S J, Gurnis M, Moresi L. Role of faults, nonlinear rheology, and viscosity structure in generating plates from instantaneous mantle flow models[J]. Journal of Geophysical Research, 1998, 103(B7): 15255-15268. doi: 10.1029/98JB00605

    [106]

    van Keken P E, Kiefer B, Peacock S M. High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(10), doi: 10.1029/2001GC000256.

    [107]

    Sharples W, Jadamec M A, Moresi L N, et al. Overriding plate controls on subduction evolution[J]. Journal of Geophysical Research, 2014, 119(8): 6684-6704. doi: 10.1002/2014JB011163/pdf

    [108] 余珊, 李三忠, 索艳慧, 等.全球三维古地理重建及其地质意义[J].海洋地质与第四纪地质, 2013, 33(6): 147-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201306017

    YU Shan, LI Sanzhong, SUO Yanhui, et al. Global 3D paleogeographic reconstruction and its geological implications[J]. Marine Geology and Quaternary Geology, 2013, 33(6): 147-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201306017

  • 期刊类型引用(7)

    1. 李宣玥. 西湖凹陷中央背斜带中南部区带油气成藏主控因素与勘探方向. 能源与环保. 2024(03): 144-154 . 百度学术
    2. 刘舒,左一苇,方沛杰,孙莉,阴国锋,徐晨,张彦霞. 东海西湖凹陷C油田花港组H3沉积微相研究. 海洋石油. 2024(02): 7-14 . 百度学术
    3. 严涛,万丽芬,李昆,陈琳琳. 西湖凹陷中央背斜带中北部花港组下段粗碎屑沉积体系成因探讨. 海洋石油. 2024(03): 17-24 . 百度学术
    4. 丁飞,邹玮,刘金水,刁慧,张武,赵洪,于仲坤. 东海西湖凹陷中南部HY区天然气碳同位素分布控制因素及充注模式. 天然气地球科学. 2024(11): 2029-2039 . 百度学术
    5. 张晓庆,廖计华,李峰,赵洪,王军. 东海盆地反转背斜断裂特征及其控藏作用——以西湖凹陷G构造为例. 天然气地球科学. 2023(12): 2136-2150 . 百度学术
    6. 朱茂林,刘震,张枝焕,刘畅,杨鹏程,李佳阳,崔凤珍. 西湖凹陷平北地区平湖组下段烃源岩分布地震预测. 海洋地质与第四纪地质. 2022(01): 170-183 . 本站查看
    7. 李文俊,段冬平,蒋云鹏,王伟,潘威,张伯成. 西湖凹陷黄岩区深层低渗天然气藏差异聚集规律及成因浅析. 西安石油大学学报(自然科学版). 2022(02): 9-15+72 . 百度学术

    其他类型引用(1)

图(7)
计量
  • 文章访问数:  3435
  • HTML全文浏览量:  739
  • PDF下载量:  76
  • 被引次数: 8
出版历程
  • 收稿日期:  2017-05-30
  • 修回日期:  2017-06-18
  • 刊出日期:  2017-08-27

目录

/

返回文章
返回