Holocene extreme flood events in the Yangtze River Basin: Research progress and implications
-
摘要:
随着全球气候变暖和人类活动加剧,全球洪水事件的发生频率与强度正在快速变化,揭示洪水发生规律及其驱动机制是当前古洪水水文学和全球变化研究的热点问题。长江流域作为中国洪涝灾害最为严重的区域之一,其洪水活动近年来呈现快速异常变化,较短的现代器测记录已不能满足未来洪水灾害风险预测的需求,迫切需要通过各种长时间尺度记录揭示过去时期长江流域洪水事件与气候变化之间的关系。本文通过综述各种极端洪水事件的地质记录和历史记录,确定全新世以来极端洪水事件的频发期,并与区域关键气候代用指标进行对比,发现洪水事件频发期主要跟气候的急剧突变和强烈的人类活动有关。然而准确预测长江流域洪水事件未来演化趋势,需不断加强各种代用记录的综合研究,进一步探索洪水发生机制与气候变化和人类活动耦合关系,并加强有关数值模拟方面的研究,以便于为未来长江流域的洪涝灾害防御、城乡规划优化布局、资源合理开发利用提供科学依据和决策支持。
Abstract:With global warming and the intensification of human activities, the frequency and magnitude of large river flood events are increasing in recent years. To reveal the regularity of flood occurrence and its driving mechanism is a hot issue in the study of paleoflood hydrology and global change. As one of the regions with the most severe flood disasters in China, the Yangtze River Basin has shown rapid and abnormal changes in flood activities in recent years. Short modern measurement records can no longer meet the needs of future flood disaster risk prediction, and it is urgent to reveal the relationship between flood events and climate change in the Yangtze River Basin in the past through various long-term records. By summarizing the geological and historical records of various extreme flood events, the frequent periods of extreme flood events since the Holocene were determined and compared with key regional climate proxies. However, to accurately predict the future evolution trend of flood events in the Yangtze River Basin, it is necessary to strengthen continuously the comprehensive research of various proxy records, to further explore the coupling relationship of flood occurrence mechanisms to climate changes and human activities, and to strengthen research on numerical simulation. This study provided a scientific basis and decision support for future flood disaster prevention, urban and rural planning optimization layout, and rational resource development and utilization in the Yangtze River Basin.
-
Keywords:
- paleoflood events /
- sedimentary record /
- global warming /
- human activities /
- the Yangtze River
-
高温状态的早期地球经历了岩浆海与地幔反转等特殊地质过程[1-3],随后太古宙发生了大规模的岩浆活动[4-10]。该时期水平地应力较弱,构造运动以垂向运动为主,这与现今的板块构造体制有较大差异[8, 11-15]。太古宙的岩浆活动及同时期的垂向构造运动不仅反映了该时期地球的热力学状态,还与诸多矿产资源的形成有着密切关联,如BIF型铁矿[16-22]、钻石矿[23-29]、硫化物矿床等[30]。前人认为太古宙地球主要通过热管(Heat-Pipe)释放热量,其表现形式为岩石圈内部分布有多个岩浆通道与软流圈地幔相互沟通[31-32]。因此,岩浆通道不但是物质垂向增生和热量释放的通道,也是太古宙壳-幔间相互作用的关键纽带,具有重要的研究意义。岩浆活动是太古宙时期的重要地质过程,当前研究缺乏对岩浆活动所引发岩石圈变形的关注,未能将其与地表资料充分联系。一般调查手段主要着力于浅部构造变形样式和形成过程的分析[33-36],而难以恢复岩浆的侵入过程以及岩石圈的深浅部耦合过程。为了解决这一问题,Fischer与Gerya[35]构建了以超级地幔柱为主导的单岩浆通道模型,并以此模拟了玄武质岩浆的地表扩散过程和中、下地壳熔融的湿盖子构造。Sizova等[37-38]则模拟了TTG岩浆的演化过程,但该研究简化了熔体的运动过程,并没有考虑热管作用。因此,在大规模岩浆活动背景下,多个岩浆通道所产生的动力学效应还尚未明确。
为了充分研究太古宙岩浆活动,特别是在多岩浆通道背景下所引发的动力学过程,本文将基于二维有限差分方法,通过对太古宙多通道岩浆条件的设置,来模拟岩浆的侵入过程与岩石圈构造变形响应,并进一步结合前人研究成果,讨论岩浆作用与穹脊构造之间的密切联系。
1. 实验原理
本研究基于I2VIS代码开展实验[39-48]。该代码基于有限差分方法,将模拟区域按照网格进行划分,通过“以直代曲的方法”化微分方程组为差分方程组并利用计算机求解,并在此基础上结合了标记点-网格方法(Marker-in-cell Method)。它将岩石信息存储在均匀随机分布的标记点中,随后通过插值的方式,实现与差分网格的信息交换,是一种欧拉点与拉格朗日点结合的方法。
数值模型受连续性方程、N-S方程(纳维叶-斯托克斯方程)、热守恒方程共同约束。三种约束条件组成的方程组如下所示:
$$\left\{ {\begin{array}{*{20}{l}} {\nabla v = 0}\\ {\eta \Delta {v_i} = \dfrac{{\partial P}}{{\partial {x_i}}} - \rho {g_i}}\\ {\rho {C_P}\dfrac{{DT}}{{Dt}} = \nabla q + {H_{\rm{r}}} + {H_{\rm{s}}} + {H_{\rm{L}}} + {H_{\rm{a}}}} \end{array}} \right.$$ (1) 其中,
$\nabla $ 为散度,v为速度矢量,η为有效黏度,Δ为拉普拉斯算子,vi为速度矢量的方向分量,P为压力,ρ为岩石密度,gi为重力加速度的方向分量,其在垂直方向上为9.8 m/s2,在其他方向为零,CP为热容,T为温度,t表示地质时间,q代表热通量,Hr+Hs+HL+Ha代表放射热、摩擦热、相变生热和绝热产热之和。二维模型中,i包括水平方向x和垂直方向z。连续性方程的右侧为零,代表模型为不可压缩模型。有效粘度的计算方法如下:$$ \eta =\frac{1}{\dfrac{1}{{\eta }_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}}+\dfrac{1}{{\eta }_{\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{l}}}} $$ (2) 式中,ηdiff为扩散蠕变的等效黏度,ηdisl为位错蠕变的等效黏度。
当前应力σ若达到屈服应力σyield时,则有效粘度为:
$$\eta = \frac{{{\sigma _{{\rm{yield}}}}}}{{2{{\dot \epsilon }_{II}}}}$$ (3) 式中,
${{{\dot \epsilon }_{II}}}$ 是应变率第二不变量,屈服应力σyield与压力线性相关。岩石在固相线之下时为固态,熔融比例M为0;在液相线之上时为液态,熔融比例M为100%。而在固液相线之间时,岩石的部分熔融程度用下列式表示:
$$ M=\frac{T-{T}_{\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{d}\mathrm{u}\mathrm{s}}}{{T}_{\mathrm{l}\mathrm{i}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{d}\mathrm{u}\mathrm{s}}-{T}_{\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{d}\mathrm{u}\mathrm{s}}}\times 100{\text{%}}$$ (4) 其中,M为熔融比例,T为岩石所处的温度,Tsolidus是实验测得的固相线,Tliquidus则为液相线。
2. 实验条件设置
本研究的模拟区域为879 km×400 km。欧拉网格为不均匀网格,模型中部的横向网格分辨率可达0.4 km,模型顶部的垂向分辨率可达1 km。模拟材料的性质参考了前人的研究结果[49],主要包括固态和熔融状态下的参考密度、热容、固液相线和流变学性质等,具体所采用的流变学参数见表1与表2。初始模型的圈层结构设置如下:顶部具有10 km厚的自由空气层,绿岩带及沉积盖层厚3 km,地壳厚35 km(上下地壳的厚度比例为3∶4),剩余部分为地幔(图1)。前人[4-10]相关研究揭示太古宙发育了大规模的岩浆活动,因此,本文在圈层结构的基础上,增设了数个岩浆通道作为岩浆侵入条件和热量释放条件。依据地幔柱的相关研究[50-52],岩石圈的岩浆活动乃至TTG的形成都可能与之相关,因此,岩浆通道的正下方设置有地幔柱。实验假定岩浆通道横向排列呈等间距分布。岩浆通道模型分为密集排布和稀疏排布两种,用于对比岩浆通道间距及岩浆活动规模对岩石圈变形的影响。前者岩浆通道的间距约50 km,后者的间距为前者的一倍。岩浆通道内充满花岗质岩浆,初始状态下熔融比例为100%,其材料性质等同于上地壳。
表 1 材料参数设置(据Ranalli and Donald[49])Table 1. Material properties setting物质 状态 ρ0/
kg·m−3Cp/
J·kg−1·K−1K a/
W·m−1·K−1Tsolidusb/K Tliquidusb/K Hr/
μ·W·m−3α/
K−1β/
MPa粘滞性流变
参数c塑性性质
sin(φeff)空气 - 1 100 20 - - 0 0 0 A* 0 水 - 1000 3330 20 - - 0 0 0 A* 0 沉积物 固态
熔融2700
25001000 K1 TS1 TL1 2 3 × 10−5 1 × 10−5 B*
G*0.15
0.06上陆壳 固态
熔融2700
25001000 K1 TS1 TL1 2 3 × 10−5 1 × 10−5 B*
G*0.15
0.06下陆壳 固态
熔融3000
25001000 K2 TS 2TL2 0.5 3 × 10−5 1 × 10−5 C*
G*0.15
0.06绿岩带 固态
熔融3300
29001000 K2 TS2 TL 20.25 3 × 10−5 1 × 10−5 D*
H*0.15
0.06地幔 固态
熔融3300
27001000 K3 - - 0.022 3×10−5 1×10−5 E* 0.6
0.06a. K1 = [0.64+807/(TK + 77)]exp(0.00004P); K2 = [1.18+474/(TK + 77)]exp(0.00004P); K3 = [0.73+1293/(TK+77)]exp(0.00004P)
b. P < 1200 MPa, TS1=889+17900/(P + 54)+20200/(P + 54)2; P >1200 MPa, TS1=831+0.06P, TL1=1262+0.09P
P < 1600 MPa, TS2=973–70400/(P + 354)+778×105/(P + 354)2; P >1600 MPa, TS2=935+0.0035P+0.0000062P2, TL2=1423+0.105P
c. 类型A-H的具体参数详见表2。图 1 初始模型1. 空气,2. 水,3. 沉积物,4. 绿岩带,5. 上地壳,6. 下地壳,7. 岩石圈地幔,8. 软流圈地幔,9. 绿岩带熔体,10. 地壳熔体,11. 地幔柱,12. 岩石圈的热管。Figure 1. The initial model1. Air,2. Water,3. Sediment,4. Greenstone,5. Upper Crust,6. Lower Crust,7. Lithospheric Mantle,8. Asthenosphere Mantle,9. Melt Greenstone,10. Melt Crust,11. Mantle Plume,12. Heat Pipe.表 2 流变学参数设置(据Ranalli and Donald[49])Table 2. Rheological parameter setting类别 流变性质 E/KJ·mol−1 V/J·MPa−1·mol−1 n AD/MPa−n·s−1 η0a/Pa·s A* 空气/水 0 0 1.0 1.0×10−12 1×1018 B* 湿石英 154 0 2.3 3.2×10−6 1.97×1019 C* An75 238 0 3.2 3.3×10−6 4.80×1024 D* An75 238 0 3.2 3.3×10−4 4.80×1022 E* 无水橄榄岩 532 8 3.5 2.5×104 3.98×1016 F*b 湿橄榄岩 470 8 4.0 2.0×103 5.01×1020 G*b 长英质熔体 0 0 1.0 2.0×10−9 5.00×1014 H 铁镁质熔体 0 0 1.0 1.0×10−7 1.00×1013 a η0表示为有效粘滞系数, 计算公式为:η0 = (1/AD)×106n;
b 熔融的长英质熔体 ,F* 表示熔融的沉积物和地壳。前人相关研究[33]表明,太古宙岩石圈的平均温度要比现今状态高约200 °C,因此,本模型的岩石圈底部温度被设置为近1500 °C,初始莫霍面温度被设置为900 °C,地表温度恒为0 °C。此外,假设岩浆通道与地幔柱的温度比背景温度高200 °C,模型不与外界发生物质交换和动量交换。各边界均为自由滑移边界,以此来减少模型的边界效应。左右热边界维持热平衡,顶底部热边界温度恒定。
3. 实验结果
3.1 物质场及地形演化过程
在多个岩浆通道作用下的岩石圈变形结果如图2所示。初始时刻时,岩石圈尚未发生变形,地形线水平。上地壳下部温度为500 °C,莫霍面温度为900 °C。密集多岩浆通道的初始状态见图2a。由于温度较高,岩浆通道内的岩浆均发生了部分熔融,且表现出低密度和低黏度特征,因此具有明显的向上侵入的趋势。随后岩浆沿岩浆通道向上侵入,地壳受岩浆驱动而产生弯曲。岩浆通道上方的地壳减薄剧烈,岩浆通道之间的地壳发生水平挤压,从而形成坳陷,岩浆通道上方产生正地形,如图2b所示,岩浆受阻后聚集,形成近半球状岩浆房。岩浆的侵入导致局部地温梯度显著上升,这加剧了热传导效应。与此同时,少量的地幔柱物质可沿着岩浆通道快速向上侵入,并最终保留在岩石圈地壳之中。如果考虑岩石圈的拆沉过程和地幔柱对流过程,这一模拟结果很可能解释了太古宙钻石的形成机制。
图 2 岩石圈演化结果初始莫霍面温度为900 °C。图a至d为密集多岩浆通道的演化结果,e至h为稀疏多岩浆通道的演化结果。子图显示了粘度的对数。Figure 2. Lithosphere evolution resultsThe initial temperature in Moho is 900 °C. (a) -(d)A series of time-dependent results of dense magmatic vents. (e)-(h)A series of time-dependent results of sparse magmatic vents. The sub figures show viscosity which has been processed by log10.图2c至图2d显示了岩浆穿透地表并逐渐冷却结晶的过程。岩浆逐步向上侵入,最终穿透地表形成穹窿,穹窿与正地形一一对应。绿岩带与古老地壳产生显著变形,在穹窿之间形成坳陷。由于存在水平密度差,较轻的岩浆向四周延伸,随后逐渐冷却。较重的地壳则向下拆沉,这些拆沉物质伴随温度的升高,最终发生熔融。该过程导致绿岩带不断下沉,并在剖面图上呈现出马蹄状的特征。由此,岩浆穹窿与绿岩带共同组成穹脊构造。最后,岩浆结晶完毕,地表不断冷却并逐渐稳定。值得注意的是,在该段时期内,地幔柱沿岩石圈底部发生水平扩张,能够造成岩石圈地幔失稳,并最终导致其发生拆离。从地形演化上看,在穹窿形成之初地形起伏最为剧烈,绿岩带坳陷中心产生了明显的沟谷,随后沟谷的面积随着时间演化而不断缩小,最终收缩成线状,见图3d。
图2右侧为稀疏的多岩浆通道的模拟结果,该模型共包含3个岩浆通道,岩浆通道的间距是左侧结果的两倍。模拟结果显示出,岩浆通道的间隔较大,岩石圈变形作用并不显著,岩浆在穿透地表时引发变形的范围较为局限。绿岩带的剪切变形不明显且不发生拆离。在岩浆冷却结晶过程中,虽然穹窿的出露面积变大并导致绿岩带水平缩短,但未能使绿岩带形成“钱袋子”构造。从地形上看,岩浆侵入区形成构造地形的高正值区。而在岩浆通道之间亦表现出构造地形的正值,但明显小于岩浆侵入区。这是由于远距离岩浆侵入过程中水平挤压作用只能导致地壳水平缩短抬升,并不能形成坳陷。与密集的多岩浆通道模型类似,该模型的岩石圈地幔在岩浆通道和地幔柱联合作用下,同样能够发生失稳并拆沉。
从地形演化过程的对比结果来看(图3),两种模型的不同之处在于密集模型中岩浆通道周围地区的负地形持续存在约5百万年,而在稀疏模型中负地形持续时间较短,约3百万年。此外,稀疏模型的周围地形变化比密集模型地形变化平缓,影响范围更广。密集模型中负地形所占面积要明显大于稀疏模型。
3.2 偏应变率第二不变量的演化过程
第二应变率不变量代表了剪切应变的强度,它主要取决于应力与有效粘度。该值在模型中的变化范围较大,因此对模拟结果取对数进行展示。地壳乃至岩石圈的第二应变率在岩浆侵入时显著升高,在岩浆结晶后逐渐降低。这意味着岩浆作用为构造变形提供直接驱动力,也意味着变形过程随岩浆侵入事件的结束而消失,地壳表层不发生失稳。
在密集岩浆通道模型中,剪切变形最为剧烈的区域是岩浆通道及其四周,该区域在图4a至图4c呈红色至橘红色,代表了在岩浆沿着岩浆通道快速侵入过程中所产生的高剪切应变环境。通道内岩浆的粘度显著低于围岩,岩浆的侵入还提升了地温梯度,两种因素共同造成了岩石圈的局部弱化,并明显降低岩石圈强度,增大了岩石圈的剪切。因此,该区域变形最为剧烈。在各岩浆通道之间的绿岩带的第二应变率相比其周缘来说明显偏低,代表其处于低剪切应变状态。对比图4b与图4c可知,在侵入过程岩浆未穿透地表时,初期绿岩带变形更为剧烈。而在岩浆穿透地表阶段,穹脊构造已经产生,此时绿岩带相对稳定。
对深部而言,软流圈地幔的第二应变率值维持较高水平,这一结果的产生原因是密度相对较低的地幔柱物质引发了垂向运动。在地幔柱活动减弱后,软流圈的剪切应变有所减小。随着岩石圈地幔受地幔柱扰动最终发生重力失稳,软流圈的第二应变率不变量再一次升高。这表明重力失稳重新加剧了软流圈的垂向运动,但对地壳的影响较小。
稀疏模型的初期演化结果与密集模型结果相似。应变主要集中在岩浆通道处。在岩浆通道间,第二应变率不变量的过渡较为平缓,水平方向的空间变化相对于密集模型来说要小很多。在模型演化末期,绿岩带不再发生明显应变,图中呈大面积的深蓝色表明地壳整体处于稳定状态。
对比两种模型可知,虽然模型材料设置与背景温度结构均相同,但应变程度却不相同。除初始时刻以外,稀疏模型的第二应变率不变量要显著低于密集模型。这充分地反映了稀疏模型不能有效地产生剪切应变,亦不能为穹脊构造的产生提供良好条件。
4. 讨论
岩浆通道的形成源于大规模的岩浆作用,前人研究表明太古宙时期的岩浆活动十分频繁[4-10]。前人认为岩浆的形成与超级地幔柱作用密切相关[50-52],也有人认为岩浆由含水玄武岩产生[7, 53-56]。而Moore等人[31-32]利用行星比较学与数值模拟的方法解释了频繁的岩浆活动并提出太古宙地球主要通过“热管”状的岩浆活动来释放热量。虽然岩浆的具体成因尚未明确,但岩浆通道实际存在并对岩石圈造成了实质性的影响。地幔柱无法直接作用于地壳,其主要作用是对岩石圈底部的活化与扰动。地幔柱的动力学过程打破了岩石圈平衡,最终导致地幔物质坠离。这一过程在岩浆过程结束之后出现,这表明地幔物质的坠离不是由岩浆直接驱动的。
数值模拟结果显示出岩浆作用与岩石圈构造变形的产生存在着紧密的联系。岩浆提供了形成穹窿的物质条件。岩浆活动弱化了岩石圈强度,提供了地壳形变的驱动力。岩浆通道是岩浆向上运动的重要途径,岩浆的密度显著低于围岩,使岩石圈形成了较强的水平不均一性。多个岩浆通道导致地表及岩石圈处于高应变状态。这一响应过程揭示了多个岩浆通道对岩石圈构造变形起到了重要的驱动作用。多个岩浆通道的存在为绿岩带的对称弯曲提供了可能。
岩浆在穿透地表后冷却结晶,经过散热与水平扩张后固结成TTG穹窿。岩浆过程对绿岩带变形的影响随岩浆通道的间距而变化。密集排布的岩浆通道能够引发绿岩带乃至上下地壳的拗沉,使绿岩带在岩浆侵入过程中逐渐收缩为线状并在剖面上呈现出“钱袋子”构造样式。地形变化则更加直观地证明了密集的岩浆通道能够产生一系列的高低起伏的穹窿及坳陷。稀疏模型则只能产生穹窿,无法产生绿岩带拗沉,也就无法产生穹脊构造。因此,密集排布的岩浆通道与分布于在加拿大Superior克拉通[50]、印度南部的Dharwar克拉通[57]、澳大利亚西部的Pilbala克拉通[58]和华北克拉通中东部内的花岗-绿岩带[48]内的穹脊构造相对应。
由模拟结果可知,穹窿和坳陷的面积并非一成不变的。对于密集岩浆通道条件来说,侵入之初时的穹窿面积较小,坳陷的面积较大,坳陷的弯曲弧度较小。随着穹窿的横向扩张,坳陷变得更加弯曲,其面积也不断缩小,最终绿岩带只出露一小部分。由此可见,穹脊构造经过了从初期的不稳定状态到后期较为稳定直至固化的动力学演化。这一演化的本质是水平不均一物质在重力作用下的再平衡过程。
岩浆通道底部的第二应变率不变量显著高于周围区域,这表示岩浆通道能够促使地幔物质向上运动。同样地,图2也显示出地幔物质能够通过岩浆通道穿过岩石圈地幔,最终能够到达浅部。本文认为这一过程与钻石矿以及贵金属矿产的形成密切相关。绿岩带的第二应变率不变量极低,这表明此时该处结构相对稳定。未设置岩浆通道的区域的绿岩带也未产生穹脊构造,这表明穹脊构造的产生并非是受绿岩带的重力作用驱动。稀疏模型的第二应变率不变量要显著低于密集模型,也无法产生穹脊构造。该结果指示出岩浆通道的密集程度对岩石圈变形具有重要指示意义。密集程度与岩浆活动规模相对应,这意味着大规模的岩浆活动是穹脊构造产生的必要条件之一,也揭示了太古宙构造体制与现今板块构造体制的实质性差别。
5. 结论
(1)岩浆通道条件是太古宙岩石圈构造变形的重要控制条件,并且与穹脊构造的产生有着密不可分的联系。岩浆活动弱化了岩石圈,并为岩石圈演化提供了物质基础与驱动力。
(2)密集的岩浆通道能够引发结构对称的绿岩带拗沉,从而形成“钱袋子”样式。穹脊构造的形成过程受岩浆侵入及穹窿水平扩张控制,并非由绿岩带下沉所主导。在穹脊构造形成过程中,穹窿在水平方向上扩张并导致绿岩带收窄。
(3)岩浆通道能够使地幔物质到达岩石圈浅部,这为成矿作用提供了有利条件。岩浆活动的规模与岩石圈构造变形密切相关,大规模的岩浆活动是穹脊构造的出现前提。
-
图 2 古洪水滞流沉积物野外位置及重建洪水方法
a:古洪水滞流沉积物示意图[65],b: 三种确定洪水水位方法示意图[66](据文献[65-66]修改)。
Figure 2. Field location of paleoflood sediment and flood reconstruction method
a: The schematic diagram of paleoflood SWD[65],b: Schematic diagram of three methods for determining flood level[66] (Modified according to references [65-66]).
图 7 长江流域全新世洪水记录及其与气候和人类活动记录的对比
a: 和尚洞石笋HS4的IRMsoft-flux[101], b: 10 000 cal. aBP以来北半球夏季太阳辐射变化[120], c: Huang等重建的10 000以来气温变化[121],d: 10 000 cal. aBP以来El Junco粉砂记录的ENSO变化情况[122], e: 阿曼Qunf洞穴石笋所记录的δ18O数据指示西南季风变化[123], f: 湖北神农架地区三宝洞石笋所记录的δ18O指示东亚季风变化[124], g: HYDE3.0数据库10 000 cal. aBP以来江汉平原地区人口密度变化[125], h: HYDE3.0数据库10 000 cal. aBP以来江汉平原地区耕地垦殖率变化[125](图中6处阴影从左至右分别对应LIA-小冰期、MCA-中世纪气候异常、DACP-黑暗时代冷期、RWP-罗马暖期、4.2ka寒冷事件、8.2ka寒冷事件)。
Figure 7. The Holocene flood records in the Yangtze River Basin and their comparison with climatic and human activity records
a: IRMsoft-flux in stalagmite HS4, Heshang Cave[101], b: changes of solar radiation in the northern hemisphere during summer since 10000 cal.aBP[120], c: changes in temperature over the past 10,000 years as reconstructed by Huang et al.[121], d: changes of ENSO recorded in El Junco silt since 10000 cal. aBP[122], e: the δ18O data recorded by stalagmites in Qunf Cave, Oman, indicate changes in the southwest monsoon[123], f: the δ18O recorded by stalagmites in Sanbao Cave, Shennongjia area, Hubei Province indicates the change of East Asian monsoon[124],g: the change of population density in Jianghan Plain area since 10000 cal. aBP is obtained by HYDE3.0 database [125] ,h: changes of cropland cultivation ratio in Jianghan Plain since 10000 cal. aBP[125] (The six shadows in the figure correspond from left to right to LIA- Little Ice Age, MCA-Medieval Climate Anomaly, DACP-Dark Age Cold Period, RWP-Roman Warm Period, 4.2ka cold event, and 8.2ka cold event respectively).
表 1 长江流域极端洪水事件研究剖面位置及代用指标
Table 1 Site and proxy of research profiles of extreme flood events in Yangtze River Basin
序号 河段 剖面位置 经纬度 地质记录类型 文献来源 1 上游 中坝遗址 30.34°N、108.45°E 文化遗址 [12] 2 玉溪遗址 30.03°N、107.86°E 文化遗址 [13] 3 红桥村 30.68°N、103.88°E 文化遗址 [14] 4 金沙遗址 30.68°N、104.00°E 文化遗址 [15] 5 马街遗址 30.89°N、103.92°E 文化遗址 [16] 6 张家湾遗址 31.27°N、109.77°E 文化遗址 [17] 7 汉东城遗址 29.00°N、105.84°E 文化遗址 [18] 8 涪碛口遗址 29.20°N、108.75°E 文化遗址 [19] 9 中游 曲远河 32.87°N、110.62°E 自然剖面 [20] 10 尚家河 32.84°N、110.46°E 自然剖面 [21] 11 庹家洲 32.85°N、110.39°E 自然剖面 [22] 12 庹家湾 32.86°N、110.39°E 自然剖面 [23] 13 李家咀 32.82°N、110.77°E 自然剖面 [24] 14 晏家棚 32.83°N、110.43°E 自然剖面 [25] 15 归仙河口 32.82°N、110.54°E 自然剖面 [22] 16 弥陀寺 32.82°N、110.58°E 自然剖面 [26] 17 前坊村 32.83°N、110.98°E 自然剖面 [27] 18 辽瓦店 32.82°N、110.68°E 自然剖面 [24] 19 黄坪村 32.84°N、110.74°E 自然剖面 [28] 20 万春村 33.19°N、107.69°E 自然剖面 [29] 21 祥龙洞 33.00°N、106.33°E 自然剖面 [30] 22 尾笔村 30.39°N、114.47°E 自然剖面 [31] 23 焦家台子 32.82°N、110.16°E 自然剖面 [32] 24 罗家滩 32.78°N、109.35°E 自然剖面 [33] 25 楼子滩 33.46°N、110.51°E 自然剖面 [34] 26 泥沟口 32.89°N、109.53°E 自然剖面 [35] 27 立石村 30.20°N、105.30°E 自然剖面 [36] 28 新滩村 32.76°N、109.33°E 自然剖面 [37] 29 杜家沟 33.19°N、107.67°E 自然剖面 [38] 30 三房湾 30.46°N、113.04°E 自然剖面 [39] 31 江北农场二砖厂 30.18°N、112.34°E 自然剖面 [40] 32 消泗剖面 30.32°N、113.78°E 自然剖面 [41] 33 武汉 30.64°N、114.34°E 自然剖面 [42] 34 SK10 30.60°N、114.31°E 自然剖面 [43] 35 ZK145 30.66°N、114.44°E 自然剖面 [44-45] 36 钟桥遗址 30.31°N、112.27°E 文化遗址 [46] 37 中游 JH001 30.52°N、114.39°E 自然剖面 [47] 38 扬子江剖面 30.30°N、112.12°E 自然剖面 [48] 39 网湖 29.86°N、115.33°E 自然剖面 [49] 40 中洲子 29.80°N、112.75°E 自然剖面 [50] 41 天鹅洲 29.85°N、112.57°E 自然剖面 [51] 42 下游 修河 29.05°N、115.83°E 自然剖面 [52] 43 赣江 29.10°N、116.00°E 自然剖面 [52] 44 黄茅潭 29.80°N、116.35°E 自然剖面 [52] 45 大汊湖 29.10°N、116.01°E 自然剖面 [52] 46 东门镇林峰桥 32.14°N、118.70°E 自然剖面 [53] 47 宝华山-和平冲 32.16°N、119.02°E 自然剖面 [54] 48 宝华山 32.13°N、119.09°E 自然剖面 [54] 表 2 长江流域滞流沉积物与冲积平原沉积物宏观特征对比
Table 2 Comparison of macroscopic characteristics of slack water deposits in the Yangtze River Basin and overbank flooding deposits in the floodplain
-
[1] Baker V R. Paleoflood hydrology and extraordinary flood events[J]. Journal of Hydrology, 1987, 96(1-4):79-99. doi: 10.1016/0022-1694(87)90145-4
[2] 顾西辉, 张强, 孔冬冬. 中国极端降水事件时空特征及其对夏季温度响应[J]. 地理学报, 2016, 71(5):718-730 doi: 10.11821/dlxb201605002 GU Xihui, ZHANG Qiang, KONG Dongdong. Spatiotemporal patterns of extreme precipitation with their responses to summer temperature[J]. Acta Geographica Sinica, 2016, 71(5):718-730.] doi: 10.11821/dlxb201605002
[3] 王立琨, 陶祖钰, 杨阳, 等. 1998年长江洪水大暴雨的卫星云图分析[J]. 北京大学学报: 自然科学版, 2000, 36(1):87-94 WANG Likun, TAO Zuyu, YANG Yang, et al. Analysis of satellite image characters of severe storm rainfall during the flood of Yangtze River in 1998[J]. Acta Scicentiarum Naturalum Universitis Pekinesis, 2000, 36(1):87-94.]
[4] 新华社. 河南郑州"7·20"特大暴雨灾害调查报告公布[EB/OL]. [2-11-26]. http://www.gov.cn/xinwen/2022-01/21/content_5669723.htm. Xinhua News Agency. Investigation Report on "7·20" Heavy Rainstorm Disaster in Zhengzhou[EB/OL]. [2022-11-26]. http://www.gov.cn/xinwen/2022-01/21/content_5669723.htm.
[5] 余锡平, 单楷越. 华北平原极端暴雨洪水事件共性机制探讨及对策建议[J]. 中国水利, 2023, 58(18):24-28 doi: 10.3969/j.issn.1000-1123.2023.18.007 YU Xiping, SHAN Kaiyue. Common mechanisms and disaster prevention strategies for catastrophic rainfall and flooding events in the North China Plain[J]. China Water Resources, 2023, 58(18):24-28.] doi: 10.3969/j.issn.1000-1123.2023.18.007
[6] Yu S Y, Li W J, Zhou L, et al. Human disturbances dominated the unprecedentedly high frequency of Yellow River flood over the last millennium[J]. Science Advances, 2023, 9(8):eadf8576. doi: 10.1126/sciadv.adf8576
[7] 高启慧, 秦圆圆, 梁媚聪, 等. IPCC第六次评估报告综合报告解读及对我国的建议[J]. 环境保护, 2023, 51(Z2):82-84 GAO Qihui, QIN Yuanyuan, LIANG Meicong, et al. Interpretation of the main conclusions and suggestions of IPCC AR6 synthesis report[J]. Environmental Protection, 2023, 51(Z2):82-84.]
[8] Ely L L, Enzel Y, Baker V R, et al. A 5000-year record of extreme floods and climate change in the southwestern United States[J]. Science, 1993, 262(5132):410-412. doi: 10.1126/science.262.5132.410
[9] Ely L L. Response of extreme floods in the southwestern United States to climatic variations in the Late Holocene[J]. Geomorphology, 1997, 19(3-4):175-201. doi: 10.1016/S0169-555X(97)00014-7
[10] Gong D Y, Zhu J H, Wang S W. Flooding 1990s along the Yangtze River, has it concern of global warming?[J]. Journal of Geographical Sciences, 2001, 11(1):43-52. doi: 10.1007/BF02837375
[11] Trenberth K E, Dai A G, Rasmussen R M, et al. The changing character of precipitation[J]. Bulletin of the American Meteorological Society, 2003, 84(9):1205-1218. doi: 10.1175/BAMS-84-9-1205
[12] Zhu C, Zheng C G, Ma C M, et al. Identifying paleoflood deposits archived in Zhongba Site, the Three Gorges reservoir region of the Yangtze River, China[J]. Chinese Science Bulletin, 2005, 50(21):2493-2504. doi: 10.1007/BF03183641
[13] Zhu C, Ma C M, Xu W F, et al. Characteristics of paleoflood deposits archived in unit T0403 of Yuxi Site in the Three Gorges reservoir areas, China[J]. Chinese Science Bulletin, 2008, 53(S1):1-17. doi: 10.1007/s11434-008-5005-8
[14] Huang M, Zhu C, Ma C M, et al. The hongqiaocun site: the earliest evidence of ancient flood sedimentation of the water conservancy facilities in the Chengdu Plain, China[J]. CATENA, 2020, 185:104296. doi: 10.1016/j.catena.2019.104296
[15] Jia T J, Ma C M, Zhu C, et al. Depositional evidence of palaeofloods during 4.0-3.6 ka BP at the Jinsha site, Chengdu Plain, China[J]. Quaternary International, 2017, 440:78-89. doi: 10.1016/j.quaint.2016.07.008
[16] 朱诚, 徐佳佳, 黄明, 等. 成都平原马街遗址古洪水事件遗存考古发现与研究[J]. 地学前缘, 2021, 28(2):181-201 ZHU Cheng, XU Jiajia, HUANG Ming, et al. Archaeological discoveries and research on the remains of an ancient flood event at the Majie Site in the Chengdu Plain[J]. Earth Science Frontiers, 2021, 28(2):181-201.]
[17] 张芸, 朱诚. 长江三峡大宁河流域大昌地区环境考古[J]. 科学通报, 2008, 53(S1): 121-131 ZHANG Yun, ZHU Cheng. Environmental archaeology of the dachang region in the Daning Valley, the Three Gorges reservoir region of the Yangtze River, China[J]. Chinese Science Bulletin, 2008, 53(S1): 140-152.]
[18] 李兰, 白九江, 代玉彪. 重庆永川汉东城遗址地层记录的长江上游唐代洪水事件[J]. 第四纪研究, 2020, 40(2):556-567 doi: 10.11928/j.issn.1001-7410.2020.02.24 LI Lan, BAI Jiujiang, DAI Yubiao. Flood event recorded by the layer of handongcheng site and its significance to the Upper reaches of yangtze river[J]. Quaternary Sciences, 2020, 40(2):556-567.] doi: 10.11928/j.issn.1001-7410.2020.02.24
[19] 李杰, 郑卓, 邹后曦, 等. 重庆阿蓬江涪碛口遗址近3000年来环境变化研究[J]. 第四纪研究, 2011, 31(3):554-565 doi: 10.3969/j.issn.1001-7410.2011.03.19 LI Jie, ZHENG Zhuo, ZOU Houxi, et al. Evironmental research of a 3000 year record from fuqikou archaeological sites in apeng river, chongqing[J]. Quaternary Sciences, 2011, 31(3):554-565.] doi: 10.3969/j.issn.1001-7410.2011.03.19
[20] 郑树伟, 庞奖励, 黄春长, 等. 汉江上游郧县曲远河河口段全新世古洪水水文状态研究[J]. 长江流域资源与环境, 2013, 22(12):1608-1613 ZHENG Shuwei, PANG Jiangli, HUANG Chunchang, et al. Palaeoflood hydrological study in the quyuanhekou reach in the Upper reaches of the hanjiang river[J]. Resources and Environment in the Yangtze Basin, 2013, 22(12):1608-1613.]
[21] Zha X, Huang C C, Pang J L, et al. Reconstructing the palaeoflood events from slackwater deposits in the Upper reaches of Hanjiang River, China[J]. Quaternary International, 2015, 380-381:358-367. doi: 10.1016/j.quaint.2014.06.029
[22] Mao P N, Pang J L, Huang C C, et al. A multi-index analysis of the extraordinary paleoflood events recorded by slackwater deposits in the Yunxi Reach of the Upper Hanjiang River, China[J]. CATENA, 2016, 145:1-14. doi: 10.1016/j.catena.2016.05.016
[23] 查小春, 黄春长, 庞奖励, 等. 汉江上游郧西段全新世古洪水事件研究[J]. 地理学报, 2012, 67(5):671-680 doi: 10.11821/xb201205009 ZHA Xiaochun, HUANG Chunchang, PANG Jiangli, et al. The Holocene palaeoflood events in the yunxi reach in the Upper reaches of Hanjiang River[J]. Acta Geographica Sinica, 2012, 67(5):671-680.] doi: 10.11821/xb201205009
[24] 查小春, 黄春长, 庞奖励, 等. 汉江上游沉积记录的东汉时期古洪水事件考证研究[J]. 地理学报, 2017, 72(9):1634-1644 doi: 10.11821/dlxb201709008 ZHA Xiaochun, HUANG Chunchang, PANG Jiangli, et al. The palaeoflood events recorded by slackwater deposits in sedimentary profiles during the eastern Han Dynasty in the Upper reaches of the Hanjiang River[J]. Acta Geographica Sinica, 2017, 72(9):1634-1644.] doi: 10.11821/dlxb201709008
[25] 吉琳, 庞奖励, 黄春长, 等. 汉江上游晏家棚段全新世古洪水研究[J]. 地球科学进展, 2015, 30(4):487-494 JI Lin, PANG Jiangli, HUANG Chunchang, et al. Holocene palaeoflood studies of the Yanjiapeng reach in the Upper Hanjiang River, China[J]. Advances in Earth Science, 2015, 30(4):487-494.]
[26] 郑树伟, 庞奖励, 黄春长, 等. 湖北弥陀寺汉江段北宋时期古洪水研究[J]. 自然灾害学报, 2015, 24(3):153-160 ZHENG Shuwei, PANG Jiangli, HUANG Chunchang, et al. Study on palaeoflood in northern Song Period at Mituosi segment of Hanjiang River, Hubei province[J]. Journal of Natural Disasters, 2015, 24(3):153-160.]
[27] Huang C C, Pang J L, Zha X, et al. Extraordinary hydro-climatic events during the Period AD 200−300 recorded by slackwater deposits in the Upper Hanjiang River valley, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 374:274-283. doi: 10.1016/j.palaeo.2013.02.001
[28] 郑树伟, 庞奖励, 黄春长, 等. 汉江上游黄坪村段古洪水滞流沉积物研究及意义[J]. 土壤通报, 2014, 45(5):1025-1031 ZHENG Shuwei, PANG Jiangli, HUANG Chunchang, et al. The significance of palaeoflood slack water deposit in Huang Ping Site in Hanjiang River[J]. Chinese Journal of Soil Science, 2014, 45(5):1025-1031.]
[29] Guo Y Q, Huang C C, Zhou Y L, et al. Sedimentary record and luminescence chronology of palaeoflood events along the Gold Gorge of the Upper Hanjiang River, Middle Yangtze River Basin, China[J]. Journal of Asian Earth Sciences, 2018, 156:96-110. doi: 10.1016/j.jseaes.2017.12.034
[30] Tan L C, Cai Y J, Cheng H, et al. Centennial-to decadal-scale monsoon precipitation variations in the Upper Hanjiang River region, China over the past 6650 years[J]. Earth and Planetary Science Letters, 2018, 482:580-590. doi: 10.1016/j.jpgl.2017.11.044
[31] Guo Y Q, Huang C C, Zhou Y L, et al. Extraordinary flood events and the response to monsoonal climatic change during the last 3000 years along the Middle Yangtze River valley, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 462:70-84. doi: 10.1016/j.palaeo.2016.09.005
[32] 李晓刚, 黄春长, 庞奖励, 等. 汉江上游白河段万年尺度洪水水文学研究[J]. 地理科学, 2012, 32(8):971-978 LI Xiaogang, HUANG Chunchang, PANG Jiangli, et al. Palaeoflood hydrological study in the baihe reach in the Upper reaches of the Hanjiang River[J]. Scientia Geographica Sinica, 2012, 32(8):971-978.]
[33] Zhang Y Z, Huang C C, Pang J L, et al. Holocene paleofloods related to climatic events in the Upper reaches of the Hanjiang River valley, Middle Yangtze River Basin, China[J]. Geomorphology, 2013, 195:1-12. doi: 10.1016/j.geomorph.2013.03.032
[34] Li X G, Huang C C, Zhang Y Z, et al. Hydrological reconstruction of extreme palaeoflood events 9000-8500 a BP in the Danjiang River Valley, tributary of the Danjiangkou Reservoir, China[J]. Arabian Journal of Geosciences, 2020, 13:137. doi: 10.1007/s12517-020-5132-3
[35] Wang L S, Huang C C, Pang J L, et al. Paleofloods recorded by slackwater deposits in the Upper reaches of the Hanjiang River valley, Middle Yangtze River Basin, China[J]. Journal of Hydrology, 2014, 519:1249-1256. doi: 10.1016/j.jhydrol.2014.08.002
[36] 周亮, 黄春长, 周亚利, 等. 汉江上游安康东段古洪水事件光释光测年研究[J]. 地质学报, 2013, 87(11):1703-1714 ZHOU Liang, HUANG Chunchang, ZHOU Yali, et al. OSL dating of the palaeoflood events in the ankang east reach in the Upper Hanjiang River valley[J]. Acta Geologica Sinica, 2013, 87(11):1703-1714.]
[37] Guo Y Q, Huang C C, Pang J L, et al. Investigating extreme flood response to Holocene palaeoclimate in the Chinese monsoonal zone: a palaeoflood case study from the Hanjiang River[J]. Geomorphology, 2015, 238:187-197. doi: 10.1016/j.geomorph.2015.03.014
[38] Mao P N, Pang J L, Huang C C, et al. Paleoflood evidence for an Upper limit of the maximum flood magnitudes along the Gold Gorge, the Upper Hanjiang River, China[J]. CATENA, 2022, 212:106111. doi: 10.1016/j.catena.2022.106111
[39] Jia M, Li C, Mao X, et al. Climate–human–environment interactions in the middle Yangtze Basin (central China) during the middle Holocene, based on pollen and geochemical records from the Sanfangwan Site[J]. Catena, 2021, 204:105357. doi: 10.1016/j.catena.2021.105357
[40] 张玉芬, 李长安, 陈亮, 等. 基于磁组构特征的江汉平原全新世古洪水事件[J]. 地球科学: 中国地质大学学报, 2009, 34(6):985-992 doi: 10.3799/dqkx.2009.112 ZHANG Yufen, LI Chang’an, CHEN Liang, et al. Magnetic fabric of Holocene palaeo-floods events in Jianghan plain[J]. Earth Science: Journal of China University of Geosciences, 2009, 34(6):985-992.] doi: 10.3799/dqkx.2009.112
[41] 陈亮, 张玉芬, 李长安, 等. 江汉平原消泗剖面沉积物磁组构特征[J]. 工程地球物理学报, 2007, 4(3):190-195 doi: 10.3969/j.issn.1672-7940.2007.03.005 CHEN Liang, ZHANG Yufen, LI Chang’an, et al. Magnetic fabric characteristics of the sediments in the xiaosi profile of Jianghan Plain of Hubei province[J]. Chinese Journal of Engineering Geophysics, 2007, 4(3):190-195.] doi: 10.3969/j.issn.1672-7940.2007.03.005
[42] Liu X J, Min F Y, Kettner A J. The impact of large to extreme flood events on floodplain evolution of the Middle and Lower reaches of the Yangtze River, China[J]. CATENA, 2019, 176:394-409. doi: 10.1016/j.catena.2019.01.027
[43] 张跞颖, 李长安, 张玉芬, 等. 长江武汉段4.5~2.5 ka沉积地层与古洪水标志识别[J]. 地质论评, 2019, 65(4):973-982 ZHANG Luoying, LI Chang'an, ZHANG Yufen, et al. Sedimentary strata and paleoflood identification indexes of Wuhan section, Yangtze River, during 4.5~2.5 ka BP[J]. Geological Review, 2019, 65(4):973-982.]
[44] 熊智秋, 张玉芬, 毛欣, 等. 武汉地区ZK145钻孔沉积物磁性特征及对古洪水的记录[J]. 地球科学, 2020, 45(2):663-671 XIONG Zhiqiu, ZHANG Yufen, MAO Xin, et al. Magnetic characteristics of ZK145 borehole sediments in Wuhan area and its[J]. Earth Science, 2020, 45(2):663-671.]
[45] 朱海, 张玉芬, 李长安. 端元分析在长江武汉段古洪水识别中的应用[J]. 沉积学报, 2020, 38(2):297-305 ZHU Hai, ZHANG Yufen, LI Chang'an. The application of end-member analysis in identification of paleo-floods in wuhan section of the Yangtze River[J]. Acta Sedimentologica Sinica, 2020, 38(2):297-305.]
[46] 吴立, 朱诚, 李枫, 等. 江汉平原钟桥遗址地层揭示的史前洪水事件[J]. 地理学报, 2015, 70(7):1149-1164 doi: 10.11821/dlxb201507011 WU Li, ZHU Cheng, LI Feng, et al. Prehistoric flood events recorded at the Zhongqiao neolithic site in the Jianghan Plain, Central China[J]. Acta Geographica Sinica, 2015, 70(7):1149-1164.] doi: 10.11821/dlxb201507011
[47] Guan S, Yang Q, Li Y N, et al. River flooding response to ENSO-related monsoon precipitation: evidence from Late Holocene core sediments in the Jianghan Plain[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 589:110834. doi: 10.1016/j.palaeo.2022.110834
[48] 罗淑元, 郑丽匀, 曹向明, 等. 长江中游河漫滩沉积序列对洪水事件的指示: 以荆州扬子江剖面为例[J]. 人民长江, 2021, 52(1):6-12 LUO Shuyuan, ZHENG Liyun, CAO Xiangming, et al. Indication of flood events based on floodplain sedimentary sequence in Middle reaches of Changjiang River since 19th century: case of Yangzijiang profile in Jingzhou city[J]. Yangtze River, 2021, 52(1):6-12.]
[49] 史小丽, 秦伯强. 近百年来长江中游网湖沉积物粒度特征及其环境意义[J]. 海洋地质与第四纪地质, 2009, 29(2):117-122 SHI Xiaoli, QIN Boqiang. Grain-size characteristics and their environmental significance of wanghu lake sediments in the Middle reach of yangtze river[J]. Marine Geology & Quaternary Geology, 2009, 29(2):117-122.]
[50] 袁世飞. 近百年来长江中游牛轭湖沉积记录的高分辨率环境演变研究[D]. 上海师范大学硕士学位论文, 2014 YUAN Shifei. High-resolution environmental evolution of Oxbow Lake sedimentary records in the Middle reaches of the Yangtze River in the last hundred years[D]. Master Dissertation of Shanghai Normal University, 2014.]
[51] 王峰. 近百年来长江中游牛轭湖沉积特征及其环境意义: 以长江荆江段牛轭湖群为例[D]. 上海师范大学硕士学位论文, 2015 WANG Feng. Sedimentary characteristics and environmental significance of Oxbow Lake in the Middle reaches of Yangtze River in the last hundred years[D]. Master Dissertation of Shanghai Normal University, 2015.]
[52] 曹向明. 长江中下游地区高分辨率河湖相沉积记录的洪水事件及其规律[D]. 江西师范大学硕士学位论文, 2020 CAO Xiangming. Flood events recorded by high-resolution fluvial and lacustrine deposits in the Middle and Lower reaches of the yangtze river and their properties[D]. Master Dissertation of Jiangxi Normal University, 2020.]
[53] 朱诚, 于世永, 史威, 等. 南京江北地区全新世沉积与古洪水研究[J]. 地理研究, 1997, 16(4):23-30 ZHU Cheng, YU Shiyong, SHI Wei, et al. Holocene deposits and paleo-floods on the north bank of the Yangtze River, Nanjing area[J]. Geographical Research, 1997, 16(4):23-30.]
[54] Yu S Y, Zhu C, Wang F B. Radiocarbon constraints on the Holocene flood deposits of the Ning‐Zhen Mountains, Lower Yangtze River area of China[J]. Journal of Quaternary Science, 2003, 18(6):521-525. doi: 10.1002/jqs.767
[55] Baker V R. Paleoflood hydrologic techniques for the extension of streamflow records[J]. Transportation Research Record, 1983, 4(922):18-23.
[56] Kochel R C, Baker V R. Paleoflood hydrology[J]. Science, 1982, 215(4531):353-361. doi: 10.1126/science.215.4531.353
[57] Baker V R, Kochel R C, Patton P C. Flood geomorphology[M]. Wiley, 1988.
[58] Wright M N, Bird B W, Gibson D K, et al. Fluvial responses to Late Holocene hydroclimate variability in the midcontinental United States[J]. Quaternary Science Reviews, 2023, 301:107939. doi: 10.1016/j.quascirev.2022.107939
[59] Macklin M G, Lewin J. River sediments, great floods and centennial‐scale Holocene climate change[J]. Journal of Quaternary Science, 2003, 18(2):101-105. doi: 10.1002/jqs.751
[60] Wilhelm B, Arnaud F, Sabatier P, et al. Palaeoflood activity and climate change over the last 1400 years recorded by lake sediments in the north‐west European Alps[J]. Journal of Quaternary Science, 2013, 28(2):189-199. doi: 10.1002/jqs.2609
[61] 杨劲松, 刘林敬, 赵华, 等. 黄河故道区晚全新世沉积记录及其对洪水灾害事件的响应[J]. 中国地质, 2023, 50(4):1004-1015 doi: 10.12029/gc20220323001 YANG Jinsong, LIU Linjing, ZHAO Hua, et al. Late Holocene sedimentary records along the abandoned channel areas of the Yellow River and their response to flood hazards[J]. Geology in China, 2023, 50(4):1004-1015.] doi: 10.12029/gc20220323001
[62] Huang C C, Pang J L, Zha X, et al. Holocene palaeoflood events recorded by slackwater deposits along the Lower Jinghe River valley, Middle Yellow River Basin, China[J]. Journal of Quaternary Science, 2012, 27(5):485-493. doi: 10.1002/jqs.2536
[63] Baker V R. Paleoflood hydrology: origin, progress, prospects[J]. Geomorphology, 2008, 101(1-2):1-13. doi: 10.1016/j.geomorph.2008.05.016
[64] 谢悦波, 杨达源. 古洪水平流沉积基本特征[J]. 河海大学学报: 自然科学版, 1998, 26(6):5-10 XIE Yuebo, YANG Dayuan. Basic characteristics of paleoflood slack water deposits[J]. Journal of Hohai University: Natural Sciences, 1998, 26(6):5-10.]
[65] Jarrett R D. Paleohydrology and its value in analyzing floods and droughts[J]. US Geological Survey Water-Supplementary Paper, 1991, 2375:105-116.
[66] Guo Y Q, Huang C C, Pang J L, et al. Reconstruction palaeoflood hydrology using slackwater flow depth method in the Yanhe River valley, Middle Yellow River Basin, China[J]. Journal of Hydrology, 2017, 544:156-171. doi: 10.1016/j.jhydrol.2016.11.017
[67] 吴帅虎, 庞奖励, 黄春长, 等. 汉江上游河谷古洪水滞流沉积物特征[J]. 土壤通报, 2013, 44(2):271-276 WU Shuaihu, PANG Jiangli, HUANG Chunchang, et al. The palaeoflood slackwater sediments feature in the valley of the Upper reaches of the Hanjiang River[J]. Chinese Journal of Soil Science, 2013, 44(2):271-276.]
[68] 李晓刚, 黄春长, 庞奖励. 丹江上游全新世早期古洪水滞流沉积物粒度特征研究[J]. 干旱区地理, 2014, 37(4):646-655 LI Xiaogang, HUANG Chunchang, PANG Jiangli. Grain-size characteristics of the early Holocene flood Slackwater deposits in the Upper reaches of Danjiang River[J]. Arid Land Geography, 2014, 37(4):646-655.]
[69] Wohl E. An integrative conceptualization of floodplain storage[J]. Reviews of Geophysics, 2021, 59(2):e2020RG000724. doi: 10.1029/2020RG000724
[70] Normally N R. Definition and identification of channel and overbank deposits and their respective roles in flood plain Formation[J]. The Professional Geographer, 1967, 19(1):1-4. doi: 10.1111/j.0033-0124.1967.00001.x
[71] 杨劲松, 王永, 尹金辉, 等. 我国冲积平原区洪水事件重建研究进展及展望[J]. 地球科学, 2022, 47(11):3944-3959 YANG Jinsong, WANG Yong, YIN Jinhui, et al. Progress and prospects in reconstruction of flood events in Chinese alluvial plains[J]. Earth Science, 2022, 47(11):3944-3959.]
[72] 张振克, 王苏民. 中国湖泊沉积记录的环境演变: 研究进展与展望[J]. 地球科学进展, 1999, 14(4):417-422 doi: 10.3321/j.issn:1001-8166.1999.04.018 ZHANG Zhenke, WANG Sumin. Advance and prospects of lake sediments and environmental changes study in China[J]. Advance in Earth Sciences, 1999, 14(4):417-422.] doi: 10.3321/j.issn:1001-8166.1999.04.018
[73] 张凌华. 长江南京—镇江段现代河漫滩沉积特征与环境意义[D]. 南京大学博士学位论文, 2015 ZHANG Linghua. Sediment characteristics and overbank sediments in the Nanjing-Zhenjiang reaches of the Yangtze River and their environmental implication[D]. Doctor Dissertation of Nanjing University, 2015.]
[74] 何报寅. 江汉平原湖泊的成因类型及其特征[J]. 华中师范大学学报: 自然科学版, 2002, 36(2):241-244 HE Baoyin. The origin types and their characteristics of the lakes in Jianghan Plain[J]. Journal of Central China Normal University: Natural Science, 2002, 36(2):241-244.]
[75] 赵炳炎, 胡建芳, 刘丰豪, 等. 长江下游南漪湖沉积记录的全新世以来温度变化[J]. 第四纪研究, 2021, 41(4):1044-1055 doi: 10.11928/j.issn.1001-7410.2021.04.14 ZHAO Bingyan, HU Jianfang, LIU Fenghao, et al. Variation of temperature in lake nanyi sediments from the Lower yangtze river region since the last 12.0 ka B. P.[J]. Quaternary Sciences, 2021, 41(4):1044-1055.] doi: 10.11928/j.issn.1001-7410.2021.04.14
[76] Wu L, Zhu C, Ma C M, et al. Mid-Holocene palaeoflood events recorded at the Zhongqiao Neolithic cultural site in the Jianghan Plain, Middle Yangtze River Valley, China[J]. Quaternary Science Reviews, 2017, 173:145-160. doi: 10.1016/j.quascirev.2017.08.018
[77] Wilhelm B, Ballesteros Cánovas J A, Macdonald N, et al. Interpreting historical, botanical, and geological evidence to aid preparations for future floods[J]. WIREs Water, 2019, 6(1):e1318. doi: 10.1002/wat2.1318
[78] 朱诚, 于世永, 卢春成. 长江三峡及江汉平原地区全新世环境考古与异常洪涝灾害研究[J]. 地理学报, 1997, 52(3):268-278 doi: 10.3321/j.issn:0375-5444.1997.03.010 ZHU Cheng, YU Shiyong, LU Chuncheng. The study of Holocene environmental archaeology and extreme flood disaster in the three gorges of the Changjiang River and the Jianghan Plain[J]. Acta Geographica Sinica, 1997, 52(3):268-278.] doi: 10.3321/j.issn:0375-5444.1997.03.010
[79] 吴立. 江汉平原中全新世古洪水事件环境考古研究[D]. 南京大学博士学位论文, 2013 WU Li. Environmental Archaeology of the Mid-Holocene palaeofloods in the Jianghan Plain, Central China[D]. Doctor Dissertation of Nanjing University, 2013.]
[80] 连丽聪, 凌超豪, 李晓峰, 等. 河漫滩沉积体系对洪水事件的指示: 以修河为例[J]. 沉积学报, 2019, 37(1):135-142 LIAN Licong, LING Chaohao, LI Xiaofeng, et al. Indicator of flood events based on floodplain sediments: a case study of Xiu River[J]. Acta Sedimentologica Sinica, 2019, 37(1):135-142.]
[81] 谢悦波, 王文辉, 王平. 古洪水平流沉积粒度特征[J]. 水文, 2000, 20(4):18-20 doi: 10.3969/j.issn.1000-0852.2000.04.005 XIE Yuebo, WANG Wenhui, WANG Ping. Characteristics of grain size for palaeoflood slackwater deposits[J]. Journal of China Hydrology, 2000, 20(4):18-20.] doi: 10.3969/j.issn.1000-0852.2000.04.005
[82] 谢远云, 李长安, 王秋良, 等. 江汉平原近3 000年来古洪水事件的沉积记录[J]. 地理科学, 2007, 27(1):81-84 doi: 10.3969/j.issn.1000-0690.2007.01.013 XIE Yuanyun, LI Chang’an, WANG Qiuliang, et al. Sedimentary records of paleoflood events during the last 3000 years in Jianghan Plain[J]. Scientia Geographica Sinica, 2007, 27(1):81-84.] doi: 10.3969/j.issn.1000-0690.2007.01.013
[83] 李长安, 张玉芬. 长江中游洪水沉积特征与标志初步研究[J]. 水科学进展, 2004, 15(4):485-488 doi: 10.3321/j.issn:1001-6791.2004.04.015 LI Chang'an, ZHANG Yufen. Flood sedimental characteristic and its mark on the Middle reaches of Yangtze River[J]. Advances in Water Science, 2004, 15(4):485-488.] doi: 10.3321/j.issn:1001-6791.2004.04.015
[84] 张灿, 周爱锋, 张晓楠, 等. 湖泊沉积记录的古洪水事件识别及与气候关系[J]. 地理科学进展, 2015, 34(7):898-908 doi: 10.18306/dlkxjz.2015.07.011 ZHANG Can, ZHOU Aifeng, ZHANG Xiaonan, et al. Identification of Paleaoflood events by lacustrine archives and their links to climatic conditions[J]. Progress in Geography, 2015, 34(7):898-908.] doi: 10.18306/dlkxjz.2015.07.011
[85] 吴霜, 刘倩, 曹向明, 等. 赣北黄茅潭湖泊沉积记录的240年以来古洪水事件[J]. 地理科学进展, 2017, 36(11):1413-1422 doi: 10.18306/dlkxjz.2017.11.010 WU Shuang, LIU Qian, CAO Xiangming, et al. A 240-year sedimentary record of paleoflood events from the Huangmaotan Lake, northern Jiangxi province[J]. Progress in Geography, 2017, 36(11):1413-1422.] doi: 10.18306/dlkxjz.2017.11.010
[86] Gilli A, Anselmetti F S, Glur L, et al. Lake sediments as archives of recurrence rates and intensities of past flood events[M]//Schneuwly-Bollschweiler M, Stoffel M, Rudolf-Miklau F. Dating Torrential Processes on Fans and Cones: Methods and Their Application for Hazard and Risk Assessment. Dordrecht: Springer, 2013: 225-242.
[87] Brown S L, Bierman P R, Lini A, et al. 10 000 yr record of extreme hydrologic events[J]. Geology, 2000, 28(4):335-338. doi: 10.1130/0091-7613(2000)28<335:YROEHE>2.0.CO;2
[88] Osleger D A, Heyvaert A C, Stoner J S, et al. Lacustrine turbidites as indicators of Holocene storminess and climate: Lake Tahoe, California and Nevada[J]. Journal of Paleolimnology, 2009, 42(1):103-122. doi: 10.1007/s10933-008-9265-8
[89] Fairchild I J, Treble P C. Trace elements in speleothems as recorders of environmental change[J]. Quaternary Science Reviews, 2009, 28(5-6):449-468. doi: 10.1016/j.quascirev.2008.11.007
[90] Cheng H, Edwards R L, Broecker W S, et al. Ice age terminations[J]. Science, 2009, 326(5950):248-252. doi: 10.1126/science.1177840
[91] Tan L C, Cai Y J, Cheng H, et al. Climate significance of speleothem δ18O from central China on decadal timescale[J]. Journal of Asian Earth Sciences, 2015, 106:150-155. doi: 10.1016/j.jseaes.2015.03.008
[92] Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters, 2005, 233(1-2):71-86. doi: 10.1016/j.jpgl.2005.01.036
[93] Wang X F, Edwards R L, Auler A S, et al. Hydroclimate changes across the Amazon lowlands over the past 45, 000 years[J]. Nature, 2017, 541(7636):204-207. doi: 10.1038/nature20787
[94] Tan L C, Cai Y J, An Z S, et al. A Chinese cave links climate change, social impacts and human adaptation over the last 500 years[J]. Scientific Reports, 2015, 5(1):12284. doi: 10.1038/srep12284
[95] Wang Z J, Chen S T, Wang Y J, et al. A high-resolution stalagmite record from Luoshui Cave, Central China over the past 23.5 kyr[J]. Quaternary Science Reviews, 2022, 282:107443. doi: 10.1016/j.quascirev.2022.107443
[96] Xie S C, Evershed R P, Huang X Y, et al. Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China[J]. Geology, 2013, 41(8):827-830. doi: 10.1130/G34318.1
[97] Lascu I, Feinberg J M. Speleothem magnetism[J]. Quaternary Science Reviews, 2011, 30(23-24):3306-3320. doi: 10.1016/j.quascirev.2011.08.004
[98] Maher B A, Thompson R. Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols[J]. Quaternary Research, 1995, 44(3):383-391. doi: 10.1006/qres.1995.1083
[99] Strauss B E, Strehlau J H, Lascu I, et al. The origin of magnetic remanence in stalagmites: Observations from electron microscopy and rock magnetism[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(12):5006-5025. doi: 10.1002/2013GC004950
[100] Bourne M D, Feinberg J M, Strauss B E, et al. Long-term changes in precipitation recorded by magnetic minerals in speleothems[J]. Geology, 2015, 43(7):595-598. doi: 10.1130/G36695.1
[101] Zhu Z M, Feinberg J M, Xie S C, et al. Holocene ENSO-related cyclic storms recorded by magnetic minerals in speleothems of central China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(5):852-857.
[102] 黄忠恕. 长江流域历史水旱灾害分析[J]. 人民长江, 2003, 34(2):1-3 doi: 10.3969/j.issn.1001-4179.2003.02.001 HUANG Zhongshu. Analysis on historic flood and drought disasters of the Yangtze river[J]. Yangtze River, 2003, 34(2):1-3.] doi: 10.3969/j.issn.1001-4179.2003.02.001
[103] 李雨凡, 周亮, 于世永, 等. 过去两千年长江干流历史洪水事件的时空变化研究[J]. 地球与环境, 2022, 50(2):241-251 LI Yufan, ZHOU Liang, YU Shiyong, et al. Temporal and spatial variations of flood events of the Yangtze River over the past 2000 years[J]. Earth and Environment, 2022, 50(2):241-251.]
[104] 温克刚. 中国气象灾害大典: (重庆卷)[M]. 北京: 气象出版社, 2008 WEN Kegang. The Meteorological Disaster Encyclopedia of China: Chongqing Volume[M]. Beijing: China Meteorological Press, 2008.]
[105] 廖淦标, 范代读. 全球变暖是否导致台风增强: 古风暴学研究进展与启示[J]. 科学通报, 2008, 53(13):1489-1502 doi: 10.3321/j.issn:0023-074X.2008.13.001 LIAO Ganbiao, FAN Daidu. Perspectives on the linkage between typhoon activity and global warming from recent research advances in paleotempestology[J]. Chinese Science Bulletin, 2008, 53(13):1489-1502.] doi: 10.3321/j.issn:0023-074X.2008.13.001
[106] Baker V R, Kochel R C, Patton P C, et al. Palaeohydrologic analysis of Holocene flood slack‐water sediments[J]. Modern and ancient fluvial systems, 1983: 229-239.
[107] Benito G, Sánchez-Moya Y, Sopeña A. Sedimentology of high-stage flood deposits of the Tagus River, Central Spain[J]. Sedimentary Geology, 2003, 157(1-2):107-132. doi: 10.1016/S0037-0738(02)00196-3
[108] 杨轶文, 杨青惠. 窟野河流域水文特性分析[J]. 水资源与水工程学报, 2006, 17(1):57-60,64 doi: 10.3969/j.issn.1672-643X.2006.01.013 YANG Yiwen, YANG Qinghui. Analysis of hydrologic characteristics in Kuye river Basin[J]. Journal of Water Resources and Water Engineering, 2006, 17(1):57-60,64.] doi: 10.3969/j.issn.1672-643X.2006.01.013
[109] Li X G, Huang C C, Pang J L, et al. Sedimentary and hydrological studies of the Holocene palaeofloods in the Shanxi-Shaanxi Gorge of the Middle Yellow River, China[J]. International Journal of Earth Sciences, 2015, 104(1):277-288. doi: 10.1007/s00531-014-1067-9
[110] Storozum M, Lu P, Wang S Y, et al. Geoarchaeological evidence of the AD 1642 Yellow River flood that destroyed Kaifeng, a former capital of dynastic China[J]. Scientific Reports, 2020, 10(1):3765. doi: 10.1038/s41598-020-60169-1
[111] Crookshanks S, Gilbert R. Continuous, diurnally fluctuating turbidity currents in Kluane Lake, Yukon Territory[J]. Canadian Journal of Earth Sciences, 2008, 45(10):1123-1138. doi: 10.1139/E08-058
[112] Wilhelm B, Amann B, Corella J P, et al. Reconstructing paleoflood occurrence and magnitude from lake sediments[J]. Quaternary, 2022, 5(1):9. doi: 10.3390/quat5010009
[113] Wilhelm B, Vogel H, Crouzet C, et al. Frequency and intensity of palaeofloods at the interface of Atlantic and Mediterranean climate domains[J]. Climate of the Past, 2016, 12(2):299-316. doi: 10.5194/cp-12-299-2016
[114] 周凤琴. 荆江近5000年来洪水位变迁的初步探讨[J]. 历史地理, 1986, 6(1):46-53 ZHOU Fengqin. Preliminary study on flood level change in recent 5000 year in Jingjiang River[J]. Historical Geography, 1986, 6(1):46-53.]
[115] Knox J C. Sensitivity of modern and Holocene floods to climate change[J]. Quaternary Science Reviews, 2000, 19(1-5):439-457. doi: 10.1016/S0277-3791(99)00074-8
[116] 葛兆帅, 杨达源, 李徐生, 等. 晚更新世晚期以来的长江上游古洪水记录[J]. 第四纪研究, 2004, 24(5):555-560 doi: 10.3321/j.issn:1001-7410.2004.05.012 GE Zhaoshuai, YANG Dayuan, LI Xusheng, et al. The paleoflooding record along the up-reaches of the Changjiang River since the Late Pleistocene Epoch[J]. Quaternary Sciences, 2004, 24(5):555-560.] doi: 10.3321/j.issn:1001-7410.2004.05.012
[117] 王娜, 查小春, 黄春长, 等. 汉江上游晚冰期以来古洪水事件发生的气候背景分析[J]. 长江流域资源与环境, 2020, 29(10):2250-2260 WANG Na, ZHA Xiaochun, HUANG Chunchang, et al. Climate background about the palaeoflood events since Lateglacial Epoch in the Upper reaches of Hanjiang River, China[J]. Resources and Environment in the Yangtze Basin, 2020, 29(10):2250-2260.]
[118] 朱诚, 于世永, 张兵, 等. 南京宝华山地区全新世沉积环境研究[J]. 地理科学, 1997, 17(3):253-258 ZHU Cheng, YU Shiyong, ZHANG Bing, et al. Study on Holocene sedimentary environment in Baohuashan area of Nanjing[J]. Scientia Geographica Sinica, 1997, 17(3):253-258.]
[119] 王江月, 白伟明, 王照波, 等. 中国东部地区全新世气候演化及其与气候事件的对应性[J]. 海洋地质与第四纪地质, 2022, 42(2):167-177 WANG Jiangyue, BAI Weiming, WANG Zhaobo, et al. The Holocene climatic evolution in eastern China and its bearing on climatic events[J]. Marine Geology & Quaternary Geology, 2022, 42(2):167-177.]
[120] Berger A, Loutre M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4):297-317. doi: 10.1016/0277-3791(91)90033-Q
[121] Huang X Y, Meyers P A, Jia C L, et al. Paleotemperature variability in central China during the last 13 ka recorded by a novel microbial lipid proxy in the Dajiuhu peat deposit[J]. The Holocene, 2013, 23(8):1123-1129. doi: 10.1177/0959683613483617
[122] Conroy J L, Overpeck J T, Cole J E, et al. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record[J]. Quaternary Science Reviews, 2008, 27(11-12):1166-1180. doi: 10.1016/j.quascirev.2008.02.015
[123] Fleitmann D, Burns S J, Mangini A, et al. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra)[J]. Quaternary Science Reviews, 2007, 26(1-2):170-188. doi: 10.1016/j.quascirev.2006.04.012
[124] Dong J G, Wang Y J, Cheng H, et al. A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt Shennongjia, central China[J]. The Holocene, 2010, 20(2):257-264. doi: 10.1177/0959683609350393
[125] Klein Goldewijk K, Beusen A, Doelman J, et al. Anthropogenic land use estimates for the Holocene–HYDE 3.2[J]. Earth System Science Data, 2017, 9(2):927-953. doi: 10.5194/essd-9-927-2017
[126] 施雅风, 姜彤, 苏布达, 等. 1840年以来长江大洪水演变与气候变化关系初探[J]. 湖泊科学, 2004, 16(4):289-297 doi: 10.3321/j.issn:1003-5427.2004.04.001 SHI Yafeng, JIANG Tong, SU Buda, et al. Preliminary analysis on the relation between the evolution of heavy floods in the Yangtze River catchment and the climate changes since 1840[J]. Journal of Lake Sciences, 2004, 16(4):289-297.] doi: 10.3321/j.issn:1003-5427.2004.04.001
[127] 葛兆帅. 长江上游全新世特大洪水对西南季风变化的响应[J]. 地理研究, 2009, 28(3):592-600 doi: 10.3321/j.issn:1000-0585.2009.03.004 GE Zhaoshuai. The response of Holocene extreme floods in the Upper Changjiang River to changes of southwest monsoon[J]. Geographical Research, 2009, 28(3):592-600.] doi: 10.3321/j.issn:1000-0585.2009.03.004
[128] Trenberth K E. Changes in precipitation with climate change[J]. Climate Research, 2011, 47(1-2):123-138.
[129] Xie S P, Philander S G H. A coupled ocean‐atmosphere model of relevance to the ITCZ in the eastern Pacific[J]. Tellus A: Dynamic Meteorology and Oceanography, 1994, 46(4):340-350. doi: 10.3402/tellusa.v46i4.15484
[130] Bischoff T, Schneider T. Energetic constraints on the position of the intertropical convergence zone[J]. Journal of Climate, 2014, 27(13):4937-4951. doi: 10.1175/JCLI-D-13-00650.1
[131] 李晓峰, 郭品文, 董丽娜, 等. 夏季索马里急流的建立及其影响机制[J]. 南京气象学院学报, 2006, 29(5):599-605 LI Xiaofeng, GUO Pinwen, DONG Lina, et al. Onset process of summer somali jet and the possible influenced mechanism[J]. Journal of Nanjing Institute of Meteorology, 2006, 29(5):599-605.]
[132] Chang W Y B, King G. Centennial climate changes and their global associations in the Yangtze River (Chang Jiang) Delta, China and subtropical Asia[J]. Climate Research, 1994, 4(2):95-103.
[133] Dilley M, Heyman B N. ENSO and disaster: droughts, floods and El Niño/southern Oscillation warm events[J]. Disasters, 1995, 19(3):181-193. doi: 10.1111/j.1467-7717.1995.tb00338.x
[134] 冯利华, 张强. 1998年长江巨洪与厄尔尼诺事件[J]. 东海海洋, 2001, 19(4):13-16 FENG Lihua, ZHANG Qiang. Large flood along the Changjiang River in 1998 and El Nio event[J]. Donghai Marine Science, 2001, 19(4):13-16.]
[135] Tong J, Qiang Z, Deming Z, et al. Yangtze floods and droughts (China) and teleconnections with ENSO activities (1470-2003)[J]. Quaternary International, 2006, 144(1):29-37. doi: 10.1016/j.quaint.2005.05.010