GEOLOGICAL CONTROLLING FACTORS AND SCIENTIFIC CHALLENGES FOR OFFSHORE GAS HYDRATE EXPLOITATION
-
摘要: 目前,国际上对天然气水合物产状、分布和特征的认识已取得显著进展,开展了一系列陆地多年冻土区和海域天然气水合物试采,但天然气水合物开采仍面临科学挑战。本文在综述全球天然气水合物勘探开发现状的基础上,阐述了天然气水合物储层分类及其开采的地质控制因素,提出了海域天然气水合物有效经济开采面临的资源评价、开采技术方法、储层地质参数和工程地质风险等4方面的科学挑战。要实现海域天然气水合物的有效经济开采,资源评价是基础,开采技术方法是关键。判定天然气水合物储层是否可采需要精确的储层地质参数,能否实现有效开采取决于工程地质风险的控制。Abstract: Significant progresses have been made so far for understanding of the occurrence, distribution and characteristics of natural gas hydrate, and a series of gas production tests from the permafrost and marine hydrate deposits have been carried out all over the world. However, the gas hydrate exploitation is still facing severe scientific challenges. Based on a general review of the global gas hydrate exploration and exploitation, this paper expounded the gas hydrate reservoir classification and geological controlling factors, and put forward four aspects of scientific challenges for the effective economic exploitation, including the resource evaluation, exploitation method and technology, reservoir geological parameters and engineering geological risks. In order to realize the effective economic exploitation of gas hydrate, the resource evaluation is the foundation, and the exploitation method and technology is the key. To determine whether the gas hydrate reservoir can be exploited requires the accurate reservoir geological parameters, and whether the effective exploitation can be realized depends on the control of engineering geological risks.
-
据不完全统计,全球新发现的油气田60%来自海上,且未来油气总储量的40%将来自深水区,深水以及超深水油气勘探开发将逐渐成为油气增产和资源战略的新领域和新热点[1-4]。但如何有效规避勘探风险,提高钻井成功率,是深水油气勘探开发面临的重要挑战。对此,学者通过运用高分辨率层序地层学、三维地震属性、测井和钻井、地质露头等多种技术方法[5-15],识别深水沉积类型、分布和油气聚集关系,建立深水沉积体系下储层的识别与有利储层中油气资源的有效预测。其中,地震相-沉积相分析技术具有重要的科学指导意义。
地震相的概念是20世纪随地震地层学的兴起而逐渐推广的,其主要为沉积相在地震资料上表征的总和[16-18]。地震相分析是稀疏井网甚至无井条件下开展沉积相研究的最有效的方法。目前,国外比较流行的地震相分析主要有人工相面法、地震属性和波形分类法和基于地震切片的沉积地貌单元分析法[19-23];而国内主要采用传统地震相分析法[24-28]。
传统地震相分析在地震相-沉积相转换上存在较大误差与不确定性,例如,三角洲平原内大套洪泛平原泥岩和厚层状河道砂岩均表现出弱-空白反射;高孔渗含气砂岩和灰岩(或含灰质、钙质)均表现出强-极强振幅反射;陆架边缘三角洲和陆棚边缘进积楔都具有前积构型,但前者为低位域高含砂岩相,后者为高位域含泥岩相。针对这种情况,徐国强教授通过对南海北部珠江口盆地大量钻井的井震对比与岩性总结,提出地震反射波光滑性、地震反射整洁性和特殊波形3种新标识,来开展岩相辨别和沉积相转换,并以此推广至无井地区的地震岩相预测。
我国对北康盆地油气勘探程度较低且无钻井,国外钻井最深也仅到下中新统,对渐新统的探索几乎为零。而随着浅层可采油气资源量的不断减少,日益增长的油气需求迫使我们向深层勘探,面对成本高、风险大等问题,更加要求对实际地质情况的准确把握。本文通过开展二维地震资料综合解释,总结北康盆地晚渐新世典型地震岩相特征,并重建沉积体系。希望该研究对进一步深化北康盆地沉积认识以及为后续油气勘探工作提供基础支撑。
1. 沉积背景
北康盆地位于南海南部海域中部,南沙地块西南缘,盆地从西到东依次环绕南薇西盆地、曾母盆地、文莱-沙巴盆地、南沙海槽盆地(图1)。总面积约6×104 km2,最大沉积厚度约12000 m,水深范围100~1200 m,主体水深超过1000 m[29-37]。盆地分为3隆3坳共6个二级单元,发育齐全的新生代沉积地层,根据广州海洋地质调查局解释方案,划分出6个地质界面,T1界面为5.3 Ma,对应上新统和第四系的分界面;T2界面为10.5 Ma,对应中中新统和上中新统的分界面;T3界面为16.5 Ma,对应下中新统和中中新统的分界面;T4界面为32 Ma,对应下渐新统和上渐新统的分界面;T5界面为40.4 Ma,对应始新统和渐新统的分界面;Tg界面为58.7 Ma,是新生界的底界面(图2)。随“古南海消亡、新南海扩张”的南海构造演化史,北康盆地总体上经历了初始断陷期(湖相碎屑岩沉积)、继承性断陷期(河流、沼泽和滨浅湖相碎屑岩夹煤层沉积)、裂陷高潮期(海岸平原、浅海相沉积)和拗陷期(半深海-深海相沉积,局部发育生物礁)。其中,晚渐新世时,盆地经历裂陷高潮期,发育海岸平原富砂的砂泥互层夹煤层到浅海相砂泥互层沉积[38-44]。
2. 地震相分析
2.1 反射特征
传统地震相分析中的反射外形主要有丘状、席状、楔状以及侵蚀沟谷等。其中,丘状反射可进一步分为沉积型和非沉积型,沉积型的丘状反射外形具有明显的方向性,在横剖面上表现为丘状,在纵剖面上为楔状并呈现出向盆地方向收敛的形态;非沉积型的丘状反射不具有方向性,表现出原地生长发育的特征,例如泥底辟、火山岩体、剥蚀残丘等。席状反射表现为顶底面呈平行或亚平行的层状沉积体,分布范围广,沉积厚度大,发育于中陆棚、外陆棚、宽缓的陆坡和深海平原等非常开阔平坦的古地理环境。楔状反射主要有单边断陷同沉积楔状体和陆架边缘前积楔两大类,前者发育于盆地内大型断裂一侧,靠近断裂的凹陷可堆积巨厚的沉积物,翘倾隆起端则相对较薄;而陆架边缘三角洲、富泥型陆棚边缘前积楔和礁前斜坡都会发育向盆地方向收敛的陆架边缘前积楔。侵蚀沟谷主要为河流途经后的产物,根据水流的势能而呈现不同的深度和宽度。
2.2 内部反射结构
内部反射结构受控于反射外形,两者间一般具有匹配关系,常见的有平行、亚平行、斜交型(S型斜交、平行斜交、叠瓦状斜交等)、收敛或发散型以及充填结构等。平行或亚平行主要见于席状反射体内,指示细粒沉积物,例如纯泥岩层、薄层粉砂岩等。斜交型与丘状反射体或滩状反射有关,例如随三角洲的前积而向盆地方向迁移的S型斜交、或河控三角洲的平行斜交、或浪控三角洲的叠瓦状斜交。收敛或发散型与楔状反射体有关,呈凹陷处发散而隆起端收敛的特征。充填结构发育于侵蚀沟谷内,可表现为槽状交错结构、上超充填、侧向加积和杂乱空白。
2.3 振幅、频率、连续性
地震反射波的振幅主要反映上下岩层界面的波阻抗差异大小,它与岩性、孔隙度、充填介质及厚度多种因素有关。可分为弱振幅、中振幅、强振幅和极强振幅,若上下岩层间的波阻抗差异较小或在大套同时期沉积体内部(无波阻抗差异),则表现出弱振幅反射;若上下岩层间波阻抗差异较大,如煤层、欠压实泥岩、含气砂岩与泥灰岩、灰岩和玄武岩,则表现出强—极强振幅反射。
频率指单位时间内反射波的数量,主要指示岩性在纵向上变化的频繁程度。一般地,高频代表纵向上岩性变化非常频繁,如砂泥岩薄互层;低频代表纵向上岩性变化不频繁,单位时间内反射界面少。
地震反射同相轴的连续性反映的是地层横向分布的稳定性,一般地,河流相砂体的横向分布不稳定,通常产生短轴不连续反射;经过波浪和潮汐摊平的河口坝、席状砂、沿岸砂坝和远砂坝砂体,分布范围相对较宽,产生连续反射。
2.4 地震同相轴光滑性
地震同相轴光滑性指沉积层表面的平整程度,当地层横向沉积稳定、分布广泛时,通常表现出连续性的特征。例如,发育于陆架边缘的三角洲前缘席状砂由于受海浪冲刷作用,分布广且平整性好而产生连续反射;海进期沉积的灰岩层或含灰质(钙质)层表面平整且横向分布非常稳定亦表现出连续反射,并且当砂岩含气或孔渗性极好时,呈强—极强振幅反射,与灰岩层或含灰质(钙质)层振幅相似,这给研究判断带来迷惑性。因此,在连续性的基础上,增加光滑性用以表征沉积层表面的平整程度,突出其主要受沉积物组分的性质和成因影响。灰岩层或含灰质(钙质)层主要通过物质的化学沉淀和结晶形成,同相轴表面呈极光滑的特征;而三角洲前缘席状砂由河流搬运的物理沉积形成,尽管受波浪、潮汐等水动力作用,但同相轴表面呈凹凸起伏,光滑性较差(图3)。
2.5 特殊波形
Anstey[45]通过利用不同地震子波形态来直接识别砂岩储集层的相关问题。之后,通过利用大量详实的钻井资料,并结合切实的地质模型研究发现,在特定的沉积环境下,利用地震波形分析方法是可行、可信的,并总结出零十字对称、斜十字对称和低频不对称波形为三种基本地震反射波型。
下文主要指低速和高速夹层所表现出的斜十字对称波形。例如,高孔渗砂岩由于波阻抗低于上下围岩,其顶面为负反射,对应波谷;底面为正反射,对应波峰,整体呈现一个右下倾斜对称的形态,即A1与A4、A2与A3均呈斜十字对称,从A2到A3振幅变化最大(图4),若砂岩含气时,A2到A3将表现出更大的振幅。灰岩、火山熔岩或钙质砂岩,其波阻抗远大于上下围岩,顶面为正反射,对应于波峰;底面为负反射,对应于波谷,整体表现出一个左下倾斜对称波形(图4)。结合地震相分析,高孔渗砂岩主要有河流相砂、河口坝砂、三角洲前缘席状砂等;灰岩发育于海进期没有陆缘碎屑供应的陆架、台地等浅海环境;火山熔岩在火山口附近,发育于任何水深。
2.6 地震反射剖面整洁性
地震反射剖面整洁性指沉积层内部结构的变化,沉积地层内部结构、岩性变化以及外来物数量等,均会引起宏观层界面同相轴振幅的变化,这种变化在纵横向上延伸至更大范围时,就可以在剖面上辨别出来,表现出不干净和干净的画面。例如内部结构的变化,河流相砂岩因其内部地层结构横向不稳定或产生突变(如槽状交错充填)而表现出不干净画面;三角洲前缘席状砂、河口坝砂等因其内部地层结构横向上稳定(平行层状加积)而呈干净反射。又如岩性变化,大套河流相砂岩和静水泥岩尽管均表现为弱振幅反射,但砂岩内部稳定性差、岩性变化快,表现出不干净画面;而泥岩内部物质均一、地层平整且横向稳定,整个反射画面看起来显得整洁干净。最后,当层状介质中夹杂其他外来沉积物时,将会导致同相轴波形的突变,在变密度剖面中表现出不同程度的“变脏”,如砂泥岩地层中夹杂火山碎屑、静水泥岩中夹杂浊积岩、灰岩或煤层中夹杂砂岩等(图5)。
3. 北康盆地主要地震岩相特征
3.1 国外钻井分析
通过收集周边国家在北康盆地和曾母盆地的钻井信息,将岩性信息植入地震剖面,利用传统地震相分析和3种新增标识,开展钻井岩性与井旁地震反射特征研究(图6),总结出主要的地震岩相有:
①砂砾岩相:砂砾岩混杂,由于砂砾岩间波阻抗差异较大而表现出中—强振幅反射;主要发育在冲积平原—河流的高能环境中,且快速堆积而成,沉积物在纵向上厚度大,横向上稳定性差而表现出中—低频、杂乱不光滑以及不干净反射。
②砂包泥相:泥岩以条带状的形式嵌于砂岩中,砂岩层之间由于波阻抗差异较小,总体呈弱反射的地震响应;主要发育在河流—三角洲平原的高能环境中,砂体沉积厚度大且内部存在的各种层理面(弱波阻抗差异界面)横向稳定性差,表现出中—低频、短轴不光滑及不干净反射。
③砂泥岩互层相:砂泥岩以层状形式相互叠置,砂泥岩之间由于波阻抗差异大而表现出中—强振幅反射;常见于三角洲前缘环境或高含砂的滨岸砂坝环境,砂岩和泥岩都比较纯且横向连续性较好而表现出中—高频、光滑连续反射。
④灰岩(或含钙质、灰质)相:由于与围岩巨大的波阻抗差异而表现出强振幅反射;而灰岩层表面的平整性以及灰岩分布的广泛性使其呈现出极光滑连续性;低—中频主要为强振幅造成的假象。
⑤泥包砂相:砂岩被周围大套泥岩包裹,砂体以短轴不连续反射或孤立状反射,置于弱振幅泥岩背景中而呈中—强振幅、中—低频、不光滑反射;通常为发育在陆坡或盆底的深水扇砂体。
⑥纯泥(页)岩相:发育于静水环境而呈水平层状;较低的沉积速率表现出中—高频;横向上地层结构、岩石类型大致相同或相似,纵向上层与层之间波阻抗差异甚小,总体表现为光滑连续干净反射。
⑦泥夹粉砂(细沙)相:主要发育于前三角洲或深海平原等低能环境,粉砂岩(细砂岩)和泥岩呈平铺式展布沉积而表现出光滑连续的水平层状反射;由于粉砂岩(细砂岩)与泥岩之间波阻抗差异较小且沉积速率低而表现为弱—中振幅、中—高频、较干净反射。
3.2 北康盆地主要地震岩相
基于上述钻井分析,结合传统地震相和3种新增标识建立北康盆地综合地震相分析方法(图7),通过开展北康盆地地震资料连片解释,识别出北康盆地8种主要地震岩相,即砂砾岩相、砂包泥相、砂泥岩互层相、泥包砂相、纯泥(页)岩相、泥夹粉砂(细沙)相、灰岩(含钙质)相和火山岩相(图8)。其中火山岩相尽管在所收集的钻井中未钻遇,通过已有研究成果判别北康盆地主要包括火山熔岩、火山碎屑岩和火山侵入岩。其中,火山熔岩呈连续极强振幅反射,地震波形表现为高速层的左下倾斜对称波形;火山口附近的火山碎屑岩或撒落后的火山碎屑表现出中—强振幅、没有生根、内部呈杂乱或空白反射的特征,翼部为没有构造形态丘状反射体;而火山侵入岩则有“根”且翼部发生构造形变。
4. 北康盆地晚渐新世沉积体系构建
4.1 方法和原理
通过地震相定性标定,将不同的地震相标定解释结果叠合到同一张平面图上,生成地震相线图,再利用地震相-地震岩相的方法,将地震相线图转换为岩相图。这里的岩相分析为主要的骨架岩相分布图,即碎屑岩岩相主要包括砂砾岩、砂包泥岩、砂泥岩互层和泥包砂岩;灰岩和火山岩为特殊岩性;纯泥岩和泥夹粉砂岩为充填岩性。
在骨架岩相分布图的基础上,结合北康盆地上渐新统等厚度图,通过海岸线(陆相沉积地层不连续反射与海相沉积地层连续反射的分界带)、陆架坡折带(沉积地层产状和堆积方式由水平层状加积堆积转变为“S”型斜交前积堆积的突变处)和深水盆地(弱振幅、中—高频、连续层状反射)等来圈定内陆架(滨浅海)、陆架边缘—斜坡、深海盆地的大类环境相图。
陆源碎屑沉积物主要通过大型河流带来,通过识别地震剖面上的侵蚀沟谷或根据等厚度图上高地势夹低谷来确定主要的水流路径,得到水流路径图。最后将岩相图、环境相图和水流路径图叠合在一起,得到较准确的沉积体系图。
4.2 北康盆地晚渐新世沉积体系特征
北康盆地上渐新统内主要发育6类典型地震相(图9),即:① 中—强振幅、中—低频,杂乱不连续、不干净反射;② 弱振幅、中—低频,短轴不连续、不干净反射;③ 中—强振幅、中—高频,光滑连续、较干净反射;④ 弱振幅干净反射背景中,中—强振幅、短轴不连续反射;⑤ 弱振幅、中—高频,光滑连续、干净反射;⑥ 中—强振幅、内部杂乱或近空白反射,具有侧积或刺穿特征。将该6类地震相进行转换,得到北康盆地上渐新统6类主要岩相,即砂砾岩相、砂包泥岩相、砂泥岩互层相、泥包砂岩相、火山岩相和纯泥岩相(图10)。其中曾母盆地的康西坳陷、北康盆地的南部坳陷以及中部坳陷的西南部为砂岩发育的有利相带;北康盆地中部坳陷和北部坳陷发育深水浊积砂岩;火山岩主要分布于两盆地交界处以及北康盆地深水区;在三角洲相间处发育静水泥岩。
晚渐新世时为南海同扩张期,盆地强烈伸展,南部的曾母盆地开始进入周缘前陆阶段,而北康盆地主要以滨浅海相沉积为主,局部可见半深海相沉积。从南至北依次为三角洲、浅海、半深海-深海的沉积环境。
研究分析表明,沉积物源主要来自南部陆地,尤其是婆罗洲山地,受沙巴造山运动的影响,通过拉让江和巴兰河分别从南面和东南面向盆地凹陷内搬运沉积物,主水流距离超过40 km,进入陆架后分叉为多支较小水流,形成多个三角洲-深水扇沉积体系。此外,还有来自西北方向(印支半岛)的物源进入研究区,其规模较小[46-47]。
综上,北康盆地晚渐新世主要发育河流三角洲、陆架浅海、陆坡浊积扇和深海盆地4种沉积体系(图11)。在盆地南部和东南部的陆架-斜坡区域发育大型三角洲-深水扇沉积体系,其沉积物源主要来自南部婆罗洲地区,其中发育于曾母盆地康西坳陷和北康盆地南部坳陷的三角洲和斜坡扇砂体有形成优质储层的潜力。
5. 结论
(1)光滑性主要表征沉积地层界面的平整程度,突出其主要受沉积物组分的性质和成因影响;特殊波形中的斜对称波形可有效识别低速和高速夹层;画面整洁性是内部岩石物理特性的表现,沉积物质均一、沉积环境稳定且无外来物质,将呈干净整洁的画面。利用该3种新标识,建立地震岩相的分析方法,在开展无井地区的沉积相转换上精度大幅提升且信息更加准确。
(2)北康盆地晚渐新世主要发育6种地震岩相,即砂砾岩相、砂包泥相、砂泥岩互层相、泥包砂相、纯泥(页)岩相和火山岩相;主要沉积物源为来自南部婆罗洲,通过拉让江和巴兰河运送至盆地沉积。
(3)北康盆地晚渐新世主要发育河流三角洲、陆架浅海、陆坡浊积扇和深海盆地4种沉积体系,形成了陆架三角洲-陆坡浊积体-深海盆地沉积体系以及火成岩体的空间展布体系。
(4)基于地震岩相分析,结合沉积环境获得较为准确的北康盆地晚渐新世沉积体系图,为北康盆地油气勘探提供有效的地质基础支持。
-
图 2 天然气水合物资源量和储量关系图[51]
Figure 2. Relationship between the resources and reserves of gas hydrate
图 3 天然气水合物开采能量效率与成本在不同时期的变化趋势[62]
Figure 3. Trends of energy efficiency and cost of gas hydrate production in different periods
图 4 开发过程中能量的投入与产出比EROI指标与累计产量的关系[64]
Figure 4. Relationship between the energy input/output ratio (the EROI index) and the cumulative output in the gas hydrate production
表 1 全球陆地永久冻土带和海洋中的天然气水合物资源量
Table 1 Global estimates of in-situ gas hydrates resources hydrated methane in the permafrost and the ocean
全球资源量/1015 m3 永久冻土带中的资源量/1014 m3 海洋中的资源量/1016 m3 资料来源 30.057 0.57 0.3 Trofimuk等, 1981[10] 301 0.31 30.1 McIver, 1981[11] 7 634 340 760 Dobrynin等, 1981[12] 15 — — Makogon, 1981[13] 10.1 1.0 1.0 Makogon, 1988[14] 1 573 — — Cherskiy等, 1982[15] 5.057~25.057 0.57 0.5-2.5 Trofimuk等, 1977[16] 40 — — Kvenvolden和Claypool, 1988[17] 20 24 1.76 Kvenvolden, 1988[18] 20 7.4 2.1 MacDonald, 1990[19] 26.4 — — Gornitz和Fung, 1994[20] 45.4 — — Harvey和Huang, 1995[21] 1 0.57 0.3 Ginsburg和Soloviev, 1995[22] 6.8 — — Holbrook等, 1996[23] 15 — — Makogon, 1997[24] 2.5 — — Milkov, 2004[25] 120 440 7.6 Jeffery等, 2005[26] 表 2 全球天然气水合物试采情况
Table 2 Gas hydrate production tests in the world
时间和地点 试采目标 试采方法 试采状况 天然气水合物赋存特征 2002年,加拿大麦肯齐三角洲 尝试直接从含水合物储层中开采天然气,忽略下伏游离气 加热法,注热盐水,温度高于50 ℃ 125 h,产气468 m3,试验结束后仍产气48 m3 A层段砂岩(892~930 m),渗透率0.1 mD。储层初始温压8.7~9.0 MPa,5.9~6.3 ℃,孔隙度32%~38%,水合物饱和度高达80%[32, 33] 2007年,加拿大麦肯齐三角洲 降压法 12.5 h,产气830 m3, 由于出砂被迫中止 B层段砂岩、粉砂岩互层(942~993 m),渗透率0.01-0.1 mD。储层初始温压9.3~9.7 MPa,7.2~8.3 ℃,孔隙度30%~40%,水合物饱和度40%~80%[34-37] 2008年,加拿大麦肯齐三角洲 降压法 6 d,累计产气1.3万m3, 平均日产2 000~4 000 m3/d C层段砂质粉砂岩(1 070~1 107 m), 渗透率0.1 mD。储层初始温压10.4~10.8 MPa,10.6~12.0 ℃,孔隙度30%~40%,水合物饱和度80%~90%[36, 37] 2012年,美国阿拉斯加北坡Ignik Sikumi 研究CO2-CH4水合物置换开采方法和效率 CO2水合物置换法,13 d,注入4 587 m3N2+1 360 m3CO2(1 420 psia) 5周,累计产气28 300 m3, 平均产气4 955 m3/d,绝大多数N2被回收, CO2回收不到50% 水合物赋存518.2~731.5 m深度范围内的C、D两个砂体层位,其中C层段水合物厚14 m,水合物饱和度75%,水饱和度25%,无游离气,预流体试验测得含水合物储层渗透率0.12~0.17 mD[38-40] 2013年,日本南海海槽 海域砂质水合物储层试采 降压法 6 d,累计产气11.9万m3, 平均日产约2万m3/d 砂质沉积物渗透率1~1 500 mD,水深857~1 405 m赋存深度约300 mbsf,孔隙度39%,水合物饱和度68%[7, 41-45] 2017年,南海海槽 降压法 12 d,累计产气3.5万m3 降压法 24 d,累计产气20万m3 2017,中国南海神狐海域 海域细粒泥质粉砂水合物储层试采 流体抽取法 60 d,累计产气30.9万m3,平均日产5 151 m3 水深1 266 m,水合物赋存深度203~277 mbsf,粉砂质黏土、黏土质粉砂,渗透率0.2~20 mD, 水合物饱和度30%~50%[46] -
[1] Dallimore S R, Wright J F, Nixon F M, et al. Geologic and porous media factors affecting the 2007 production response characteristics of the JOGMEC/NRCAN/AURORA Mallik Gas Hydrate Production Research Well[C]//Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008). Vancouver, British Columbia, Canada: ICGH, 2008.
[2] Dallimore S R, Wright J F, Yamamoto K. Appendix D: Update on mallik[C]//Energy from gas hydrates: Assessing the opportunities and challenges for Canada. Ottawa, Canada: Council of Canadian Academies, 2008: 196-200.
[3] Dallimore S R, Yamamoto K, Wright J F, et al. Scientific Results from the JOGMEC/NRCan/Aurora Mallik 2007-2008 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada[Z]. S.l.: Geological Survey of Canada, 2012: 294.
[4] Yamamoto K, Dallimore S. Aurora-JOGMEC-NRCan Mallik 2006-2008 Gas Hydrate Research Project progress[EB/OL]. DOE-NETL Fire In the Ice Methane Hydrate Newsletter, 2008: 1-5. http://www.netl.doe.gov/technologies/oil-gas/publications/Hydrates/Newsletter/HMNewsSummer08.pdf#Page=1.
[5] Schoderbek D, Martin K L, Howard J, et al. North Slope hydrate field trial: CO2/CH4 exchange[C]//OTC Arctic Technology Conference 2012. Houston, Texas, USA: Offshore Technology Conference, 2012.
[6] Collett T S, Boswell R. Resource and hazard implications of gas hydrates in the Northern Gulf of Mexico: Results of the 2009 Joint Industry Project Leg Ⅱ Drilling Expedition[J]. Journal of Marine Petroleum Geology, 2012, 34(1): 1-224. doi: 10.1016/j.marpetgeo.2012.01.002
[7] Yamamoto K, Terao Y, Fujii T, et al. Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough[C]//Offshore Technology Conference 2014. Houston, Texas, USA: Offshore Technology Conference, 2014.
[8] Park K P, Bahk J J, Kwon Y, et al. Korean national program expedition confirm rich gas hydrate deposits in the Ulleung Basin, East Sea[EB/OL]. Fire in the Ice Methane Hydrate Newsletter, 2008: 6-9. http://www.netl.doe.gov/technologies/oil-gas/publications/Hydrates/Newsletter/HMNewsSpring08.pdf#page=6.
[9] Collett, T S, Riedel M, Cochran, J R, et al. Indian continental margin gas hydrate prospects: results of the Indian National Gas Hydrate Program (NGHP) Expedition 01[C]//Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008). Vancouver, British Columbia, Canada: ICGH, 2008: 10.
[10] Trofimuk A A, Makogon Y F, Tolkachev M V. Gas hydrate accumulations—new reserve of energy sources[Z]. Geologiya Nefti i Gaza, 1981(10): 15-22.
[11] McIver R D. Gas Hydrate[M]//Meyer R F, Olson J D. Long-Term Energy Resources. Boston: Pitman, 1981: 713-726.
[12] Dobrynin V N M, Korotajev Y P, Plyuschev D V. Gas Hydrates--A Possible Energy Resource[M]//Meyer R F, Olson J D. Long Term Energy Resources. Boston, MA: Pitman, 1981: 727-729.
[13] Makogon Y F. Hydrates of Natural Gas, Moscow, Nedra, Izadatelstro[M]. Cieslesicz W J, trans. Tulsa, Oklahoma: PennWell Books, 1981: 237. (in Russian)
[14] Makogon, Y F. Natural Gas Hydrates: The State of Study in the USSR and Perspectives for Its Use[C]//Paper presented at the Third Chemical Congress of North America. Toronto, Canada, 1988.
[15] Cherskiy N V, Tsaarev V P, Nikitin S P. Investigation and prediction of conditions of accumulation of gas resources in gas hydrate pools[J]. Petroleum Geology, 1982, 21: 65-89.
[16] Trofimuk A A, Cherskiy N V, Tsarev V P. Introduction: The Future Supply of Nature-Made Petroleum and Gas[M]//Meyer R F. The Future Supply of Nature-Made Petroleum and Gas. New York: Pergamon Press, 1977: 919.
[17] Kvenvolden K A, Claypool G E. U. S. Geological Survey Open File Report 88-216, 1988: 50.
[18] Kvenvolden K A. Methane hydrate-A major reservoir of carbon in the shallow geosphere?[J]. Chemical Geology, 1988, 71(1-3): 41-51. doi: 10.1016/0009-2541(88)90104-0
[19] MacDonald G J. Role of methane clathrates in past and future climates[J]. Climatic Change, 1990, 16(3): 247-281. doi: 10.1007/BF00144504
[20] Gornitz V, Fung I. Potential distribution of methane hydrates in the world's oceans[J]. Global Biogeochemical Cycles, 1994, 8(3): 335-347. doi: 10.1029/94GB00766
[21] Harvey L D D, Huang Z. Evaluation of the potential impact of methane clathrate destabilization on future global warming[J]. Journal of Geophysical Research: Atmospheres, 1995, 100(D2): 2905-2926. doi: 10.1029/94JD02829
[22] Ginsburg G D, Soloviev V A. 27th Annual Offshore Technology Conference[C]. Richardson, TX: Offshore Technology Conference, 1995.
[23] Holbrook W S, Hoskins H, Wood W T, et al. Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling[J]. Science, 1996, 273(5283): 1840-1843. doi: 10.1126/science.273.5283.1840
[24] Makogon Y F. Hydrates of Hydrocarbons[M]. Tulsa, OK: PennWell Publshing Co, 1997: 482.
[25] Milkov A V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there?[J]. Earth Science Reviews, 2004, 66(3-4): 183-197. doi: 10.1016/j.earscirev.2003.11.002
[26] Klauda J B, Sandler S I. Global distribution of methane hydrate in ocean sediment[J]. Energy & Fuels, 2005, 19(2): 459-470. doi: 10.1021/ef049798o
[27] Moridis G J, Collett T S. Strategies for gas production from hydrate accumulations under various geologic conditions[C]//Proceeding Tough Symposium. Berkeley, California: Lawrence Berkeley National Laboratory, 2003.
[28] Moridis G J, Collett T S. Gas Production from Class 1 Hydrate Accumulation[M]//Taylor C, Qwan J, eds. Advances in the Study of Gas Hydrates. New York: Kluwer Academic, 2004.
[29] Moridis G J, Reagan M T, Kim S J, et al. Evaluation of the gas production potential of marine hydrate deposits in the Ulleung Basin of the Korean East Sea[J]. SPE Journal, 2009, 14(4): 759-781. doi: 10.2118/110859-PA
[30] Chen D F, Su Z, Cathles L M. Types of gas hydrates in marine environments and their thermodynamic characteristics[J]. Terrestrial Atmospheric and Oceanic Sciences, 2006, 17(4): 723-737. doi: 10.3319/TAO.2006.17.4.723(GH)
[31] 苏正, 陈多福.海洋天然气水合物的类型及特征[J].大地构造与成矿学, 2006, 30(2): 256-264. doi: 10.3969/j.issn.1001-1552.2006.02.016 SU Zheng, CHEN Duofu. Types of gas hydrates and their characteristics in marine environments[J]. Geotectonica et Metallogenia, 2006, 30(2): 256-264. doi: 10.3969/j.issn.1001-1552.2006.02.016
[32] Boswell R, Collett T S. The gas hydrates resource pyramid[J]. Fire in the Ice, 2006, 6(3): 5-7.
[33] Collett T S, Johnson A H, Knapp C C, et al. Natural Gas Hydrates: A Review[M]//Collett T S, Johnson A H, Knapp C, et al. Natural Gas Hydrate-Energy Resource Potential and Associated Geologic Hazards. Tulsa, OK: AAPG, 2009: 1-219.
[34] Hancock SH, Collett TS, Dallimore SR, et al. Dallimore S R, Collett T S. Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada. S.l.: Geological Survey of Canada, 2005: 135.
[35] Dallimore S R, Collett T S. Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada[Z] [S.l.: Geological Survey of Canada, 2005: 140.
[36] Sloan E D Jr, Koh C A. Clathrate Hydrates of Natural Gases[M].3rd ed. Boca Raton: CRC Press, 2007.
[37] Takahashi H, Yonezawa T, Fercho E. Operation overview of the 2002 Mallik gas hydrate production research well program at Mackenzie delta in the Canadian Arctic[C]//Offshore Technology Conference 2003. Houston, Texas: Offshore Technology Conference, 2003.
[38] Yamamoto K, Dallimore S R. Overview of the 2006-2008 JOGMEC/NRCan/Aurora mallik gas hydrate production test program[C]//AGU Fall Meeting. Washington, DC: AGU, 2008.
[39] Dallimore S R, Wright J F, Nixon F M, et al. Objectives and Operation overview of the 2007 JOGMEC/NRCan/Aurora Mallik 2L-38 Gas Hydrate.
[40] Schoderbek D, Martin K L, Howard J, et al. North Slope hydrate fieldtrial: CO2/CH4 exchange[C]//Proceedings Arctic Technology Conference. Houston, Texas, U S A: Offshore Technology Conference, 2012.
[41] Boswell R, Hunter R, Collett T S et al. Investigation of gas hydrate bearing sandstone reservoirs at the Mount Elbert stratigraphic test well, Milne Point, Alaska[C]//Proceedings of the 6th International Conference on Gas Hydrates (ICGII 2008). Vancouver, British Columbia, Canada: ICGH, 2008.
[42] Collett T S, Lewis R E, Winters W F et al. Downhole well log and core montages from the Mount Elbert gas hydrate stratigraphic test well, Alaska North Slope[J]. Marine and Petroleum Geology, 2011, 28(2): 561-577. doi: 10.1016/j.marpetgeo.2010.03.016
[43] Boswell R. Japan completes first offshore methane hydrate production test-Methane successfully produced from deepwater hydrate layers[J]. Center for Natural Gas and Oil, 2013, 412: 386.
[44] http://www.meti.go.jp/press/2017/06/20170629004/20170629004.html. (in Japanese)
[45] Fujii T M, Nakamizu M, Tsuji Y, et al. Methane-hydrate occurrence and saturation confirmed from core samples, eastern Nankai Trough, Japan[C]//Collett T, Johnson A, Knapp C, et al. Natural Gas Hydrates-Energy Resource Potential and Associated Geologic Hazards. Tulsa, OK: AAPG, 2009: 385-400.
[46] Fujii T, Suzuki K, Takayama T, et al. Geological setting and characterization of a methane hydrate reservoir distributed at the first offshore production test site on the Daini-Atsumi Knoll in the eastern Nankai Trough, Japan[J]. Marine and Petroleum Geology, 2015, 66(2): 310-322. doi: 10.1016/j.marpetgeo.2015.02.037
[47] Suzuki K, Schultheiss P, Nakatsuka Y, et al. Physical properties and sedimentological features of hydrate-bearing samples recovered from the first gas hydrate production test site on Daini-Atsumi Knoll around eastern Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66: 346-357. doi: 10.1016/j.marpetgeo.2015.02.025
[48] http://finance.sina.com.cn/roll/2017-05-22/doc-ifyfkkmc99 68617.shtml.
[49] Milkov A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates[J]. Marine Geology, 2000, 167(1-2): 29-42. doi: 10.1016/S0025-3227(00)00022-0
[50] Sassen R, Sweet S T, Milkov A V, et al. Geology and geochemistry of gas hydrates, central Gulf of Mexico continental slope[J]. GCAGS Transactions, 1999, 49: 462-468.
[51] Collett T S. The evolution of gas hydrate from a gas resource to a gas reserve[C]//Proceedings of the 9th International Conference on Gas Hydrates (ICGH9-2017). Denver, USA: ICGH, 2017.
[52] Milkov A V, Sassen R. Preliminary assessment of resources and economic potential of individual gas hydrate accumulations in the Gulf of Mexico continental slope[J]. Marine and Petroleum Geology, 2003, 20(2): 111-128. doi: 10.1016/S0264-8172(03)00024-2
[53] 孙运宝, 赵铁虎, 蔡峰.国外海域天然气水合物资源量评价方法对我国的启示[J].海洋地质前沿, 2013, 29(1): 27-35. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201301004 SUN Yunbao, ZHAO Tiehu, CAI Feng. Gas hydrate resource assessment abroad and its implications[J]. Marine Geology Frontiers, 2013, 29(1): 27-35. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201301004
[54] Soloviev V A. Global estimation of gas content in submarine gas hydrate accumulations[J]. Russian Geology and Geophysics, 2002, 43: 609624.
[55] Sain K, Gupta H. Gas hydrate in India: potential and development[J]. Gondwana Research, 2012, 22(2): 645-657. doi: 10.1016/j.gr.2012.01.007
[56] Xu W Y, Ruppel C. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments[J]. Journal of Geophysical Research: Soild Earth, 1999, 104(B3): 5081-5095. doi: 10.1029/1998JB900092
[57] Collett T S. Gas hydrate petroleum systems in marine and arctic permafrost environments[C]//Unconventional Energy Resources: Making the Unconventional Conventional: 29th Annual GCSSEPM Proceedings. Houston, Texas: Gulf Coast Section of the Society of Economic Paleontologists and Mineralogists Foundation, 2009: 6-30.
[58] Kamath V A, Holder G D. Dissociation heat transfer characteristics of methane hydrates[J]. AIChE J, 1987, 33(2): 347-350. doi: 10.1002/aic.690330228
[59] Ji Chuang, Ahmadi G, Smith D H, et al. Natural gas production from hydrate decomposition by depressurization[J]. Chemical Engineering Science, 2001, 56(20): 5801-5814. doi: 10.1016/S0009-2509(01)00265-2
[60] Dong F H, Zang X Y, Li D L, et al. Experimental investigation on propane hydrate dissociation by high concentration methanol and ethylene glycol solution injection[J]. Energy & Fuels, 2009, 23(3): 1563-1567. doi: 10.1021/ef800660m
[61] Yuan Q, Sun C Y, Liu B, et al, Methane recovery from natural gas hydrate in porous sediment using pressurized liquid CO2[J]. Energy Conversion and Management, 2013, 67: 257-264. doi: 10.1016/j.enconman.2012.11.018
[62] Chen J, Wang Y H, Lang X M, et al. Energy-efficient methods for production methane from natural gas hydrates[J]. Journal of Energy Chemistry, 2015, 24(5): 552-558. doi: 10.1016/j.jechem.2015.08.014
[63] Cottrell W F. Energy and Society: The Relation Between Energy, Social Change, and Economic Development[M]. New York: McGraw-Hill, 1955.
[64] Dale M, Krumdieck S, Bodger P. Net energy yield from production of conventional oil[J]. Energy Policy, 2011, 39(11): 7095-7102. doi: 10.1016/j.enpol.2011.08.021
[65] Reagan M. Sensitivity analysis of gas production from Class 2 and Class 3 hydrate deposits[C]//Offshore Technology Conference 2009. Houston, Texas: Offshore Technology Conference, 2009.
[66] Zhang Y, Li X S, Chen Z Y, et al. Effect of hydrate saturation on the methane hydrate dissociation by depressurization in sediments in a cubic hydrate simulator[J]. Industrial & Engineering Chemistry Research, 2015, 54(10): 2627-2637. doi: 10.1021/ie5042885
[67] Feng J C, Wang Y, Li X S, et al. Influence of hydrate saturation on methane hydrate dissociation by depressurization in conjunction with warm water stimulation in the silica sand reservoir[J]. Energy & Fuels, 2015, 29(12): 7875-7884. doi: 10.1021/acs.energyfuels.5b01970
[68] Tang L G, Li X S, Feng Z P, et al. Control mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs[J]. Energy & Fuels, 2007, 21(1): 227-233. doi: 10.1021/ef0601869
[69] Zhao J F, Fan Z, Dong H, et al. Influence of reservoir permeability on methane hydrate dissociation by depressurization[J]. International Journal of Heat and Mass Transfer, 2016, 103: 265-276. doi: 10.1016/j.ijheatmasstransfer.2016.05.111
[70] Li D X, Ren S R, Zhang L, et al. Dynamic behavior of hydrate dissociation for gas production via depressurization and its influencing factors[J]. Journal of Petroleum Science and Engineering, 2016, 146: 552-560. doi: 10.1016/j.petrol.2016.07.014
[71] Huang L, Su Z, Wu N Y. Evaluation on the gas production potential of different lithological hydrate accumulations in marine environment[J]. Energy, 2015, 91: 782-798. doi: 10.1016/j.energy.2015.08.092
[72] Huang L, Su Z, Wu N Y, et al. Analysis on geologic conditions affecting the performance of gas production from hydrate deposits[J]. Marine and Petroleum Geology, 2016, 77: 19-29. doi: 10.1016/j.marpetgeo.2016.05.034
[73] Yamamoto K, Nakatsuka Y, Sato R, et al. Geohazard Risk Evaluation and Related Data Acquisition and Sampling Program for the Methane Hydrate Offshore Production Test[M]//Meyer F. Frontiers in Offshore Geotechnics Ⅲ. London: CRC Press, 2015.
[74] Freij-Ayoub R, Tan C, Clennell B, et al. A wellbore stability model for hydrate bearing sediments[J]. Journal of Petroleum Science and Engineering, 2007, 57(1-2): 209-220. doi: 10.1016/j.petrol.2005.10.011
[75] Rutqvist J, Moridis G J, Grover T, et al. Coupled multiphase fluid flow and wellbore stability analysis associated with gas production from oceanic hydrate-bearing sediments[J]. Journal of Petroleum Science and Engineering, 2012, 92-93: 65-81. doi: 10.1016/j.petrol.2012.06.004
[76] Kakumoto M, Yoneda J, Miyazaki K, et al. Basic study on the frictional strength between the casing and cement in a methane hydrate production well: basic studies of well stability for methane hydrate development (Part 1)[J]. Journal of the Mining & Materials Processing Institute of Japan, 2013, 129(4): 116-123.
[77] Milkov A V, Dickens G R, Claypool G E, et al. Co-existence of gas hydrate, free gas, and brine within the regional gas hydrate stability zone at Hydrate Ridge (Oregon margin): evidence from prolonged degassing of a pressurized core[J]. Earth and Planetary Science Letters, 2004, 222(3-4): 829-843. doi: 10.1016/j.epsl.2004.03.028
[78] Wegner S A, Campbell K J. Drilling hazard assessment for hydrate bearing sediments including drilling through the bottom-simulating reflectors[J]. Marine and Petroleum Geology, 2014, 58: 382-405. doi: 10.1016/j.marpetgeo.2014.08.007
[79] Khabibullin T, Falcone G, Teodoriu C. Drilling through gas-hydrate sediments: managing wellbore-stability risks[J]. SPE Drilling & Completion, 2011, 26(2): 287-294. doi: 10.2118/131332-pa
[80] Hao S Q. A study to optimize drilling fluids to improve borehole stability in natural gas hydrate frozen ground[J]. Journal of Petroleum Science and Engineering, 2011, 76(3-4): 109-115. doi: 10.1016/j.petrol.2011.01.014
[81] Digby A J. Assessment and Quantification of the Hydrate Geohazard[C]//Offshore Technology Conference 2005. Houston, Texas: Offshore Technology Conference, 2005.
[82] Uchida S, Klar A, Yamamoto K. Sand production model in gas hydrate-bearing sediments[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86: 303-316. doi: 10.1016/j.ijrmms.2016.04.009
[83] 李彦龙, 刘乐乐, 刘昌岭, 等.天然气水合物开采过程中的出砂与防砂问题[J].海洋地质前沿, 2016, 32(7): 36-43. doi: 10.16028/j.1009-2722.2016.07005 LI Yanlong, LIU Lele, LIU Changling, et al. Sanding prediction and sand-control technology in hydrate exploitation: A review and discussion[J]. Marine Geology Frontiers, 2016, 32(7): 36-43. doi: 10.16028/j.1009-2722.2016.07005
[84] Akaki T, Kimoto S, Oka F. Dynamic analysis of hydrate-bearing seabed sediments considering methane gas production induced by depressurization[J]. Japanese Geotechnical Society Special Publication, 2016, 2(18): 676-680. doi: 10.3208/jgssp.JPN-134
[85] 房臣, 张卫东.天然气水合物的分解导致海底沉积层滑坡的力学机理及相关分析[J].海洋科学集刊, 2010(50): 154-161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001981600 FANG Cheng, ZHANG Weidong. Mechanism and analysis of landslide on the seabed due to the decomposition of gas hydrate[J]. Studia Marina Sinica, 2010(50): 154-161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001981600
[86] Hyodo M, Nakata Y, Yoshimoto N. Challenge for methane hydrate production by geotechnical engineering[J]. Japanese Geotechnical Society Special Publication, 2015, 2(1): 62-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_1736058
[87] Hyodo M, Yoneda J, Yoshimoto N, et al. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 2015, 53(2): 299-314. doi: 10.1016/j.sandf.2013.02.010
[88] McMullen N. How Hydrate Plugs are Remediated[M]//Sloan D, Koh C, Sum A K, et al. Natural Gas Hydrates in Flow Assurance. Amsterdam: Elsevier, 2011: 49-86.
[89] 魏合龙, 孙治雷, 王利波, 等.天然气水合物系统的环境效应[J].海洋地质与第四纪地质, 2016, 36(1): 1-13. http://d.old.wanfangdata.com.cn/Periodical/hyjs201302007 WEI Helong, SUN Zhilei, WANG Libo, et al. Perspective of the environmental effect of natural gas hydrate system[J]. Marine Geology and Quaternary Geology, 2016, 36(1): 1-13. http://d.old.wanfangdata.com.cn/Periodical/hyjs201302007
[90] Moridis G J, Reagan M T, Boswell R, et al. Preliminary evaluation of the production potential of recently discovered hydrate deposits in the Gulf of Mexico[C]//Offshore Technology Conference 2010. Houston, Texas: Offshore Technology Conference, 2010.
-
期刊类型引用(1)
1. 骆帅兵,张莉,王笑雪,余秋华,雷振宇,帅庆伟. 南海南部南安盆地新生代以来构造-沉积演化特征及区域成藏模式. 海洋地质与第四纪地质. 2023(04): 116-128 . 本站查看
其他类型引用(1)