Geomorphological survey of intertidal oyster reefs based on UAV Structure-from-Motion photogrammetry
-
摘要:
牡蛎礁是一种重要的海岸地貌系统,礁体的空间分布格局,深刻影响着周围的水动力和沉积动力过程,进而反作用于牡蛎礁自身演化。江苏海门蛎蚜山牡蛎礁为中国海岸重要且稀有的生态系统,近年来,沉积物覆盖和人为捕捞导致牡蛎礁退化严重。本文利用无人机对蛎蚜山牡蛎礁进行地貌观测,基于运动恢复结构(SfM,Structure from Motion)摄影测量技术重建出航拍区域的高分辨率三维模型,包括正射影像和数字高程模型(DEM),并对重建的模型进行目视解译和剖面分析。结果表明,位于航拍区域的牡蛎礁主要有三种形态:条带状、斑块状和环状。条带状牡蛎礁脊线整体上呈南北走向,可能由环状牡蛎礁退化或牡蛎的生物自组织过程形成。航拍区域的地貌面高差可达5 m以上,地势最高处高程为0.5 m(85高程,下同),最低处高程为−4.7 m。礁区内的礁体仍处于退化状态,其演化过程主要为:礁体表面出现坑洼→坑洼进一步扩张、延伸→形成溶槽→礁体分隔、分解,同时伴有沉积物对礁体的掩埋。本研究表明,无人机SfM技术可以高效获取牡蛎礁的地貌信息,为研究牡蛎礁演化过程提供了有力支持。
Abstract:Oyster reefs is an important coastal morphological system, the spatial distribution pattern of the reefs profoundly influences the surrounding hydrodynamic and sedimentary processes, which in turn affects the evolution of oyster reefs. The Liyashan oyster reef in Haimen, Jiangsu, is an important and rare ecosystem in the Chinese coast; however, it has been seriously degraded by sediment cover and human fishing in recent years. A geomorphological observation of the oyster reefs in Liyashan was carried out using an unmanned aerial vehicle (UAV). Based on the SfM (Structure from Motion) photogrammetry, high-resolution three-dimensional models of the aerial photography region were reconstructed, including orthophoto and digital elevation model (DEM). Then, the visual interpretation and profile analysis on the reconstructed models were conducted. Results show that the oyster reefs are mainly composed of three types in distribution shape: string, patch, and ring. The “string” oyster reef ridges are generally oriented north-south, likely were formed by the degradation of “ring” reefs or self-organization process of oysters. The elevation differences within the surveyed area could reach more than 5 m, the highest elevation was 0.5 m (1985 national elevation), while the lowest elevation was −4.7 m. The reefs are still in a degraded state, and the evolutionary process is mainly as follows: potholes appear on the surfaces of the reefs → further expansion and extension of potholes → formation of grooves→ segmentation and disintegration of the reefs, accompanied by sedimentary burial of the reefs. This study shows that the UAV SfM technique can efficiently obtain geomorphological data of oyster reefs, which provides a strong support for studying the evolution of oyster reefs.
-
黄海水团可分为沿岸水、中部冷水团和两者之间的混合水。沿岸水分布于黄海沿岸两侧,由于受大陆地表径流的影响,沿岸水混浊,透明度低,盐度通常低于31 psu[1],其分布范围夏季大而冬季小,但厚度则夏季浅而冬季深。黄海冷水团是一个季节性冷水团,其下层水具有低温、高盐的特征,盘踞在黄海中部50 m以深的水域[2]。冷水团在夏季尤为强盛,其边缘存在封闭型的温度强锋区,底层水盐度通常大于32 psu[3]。沿岸水与中部冷水团之间的混合水多呈过渡性质。
黄海的季节性变化显著,常出现季节性跃层,跃层生消过程明显[4]。夏半年水体常具有明显的三层结构,即上混合层、中温跃层和下均匀层[5]。除苏北近岸及黄海西南海域外,黄海温跃层普遍形成于4月,但强度较弱,通常为0.10~0.20 ℃/m,上界深度为5~10 m,厚度约为10 m;8月,黄海温跃层强度普遍在0.30 ℃/m以上,上界深度为5~20 m,厚度为10~20 m。陆架浅海区季节性温跃层的形成,不仅受制于海面热通量的日内变化[5-6],还与多种动力因素(风、波浪和潮流的混合效应)[5~11]或热力因素(如蒸发增盐或降温增密)所导致的水体垂向混合强度以及不同性状水团之间的水平对流作用有关。由于海水密度由温度和盐度控制,因此,温跃层通常与密度跃层同时出现。
海洋水体通常具有不均一性,在垂直于等密度面的方向上,每个水层的化学性质都会有所差异,出现DO、pH和营养盐等要素的化学分层现象。该现象常见于一些生物活动旺盛的季节或海区,比如珊瑚礁海域[12]、海草繁茂海域[13]。在北美加利福尼亚近岸的海带丛林,生态系统的光合作用使得水体DO和pH出现半日或全日的周期性变化;在水深7 m处,pH为8.07;至水深17 m处,pH可降低至7.87[14]。在美国东北陆架海域,借助于水下潜航器搭载的pH传感器,也可探测到垂向上pH值的变化[15]。
南黄海西部日照至连云港海域,是一个大型的开阔海湾(图1),水深在30 m以内,由苏北沿岸水控制[4, 16]。由于周边多为小型河流,地表径流量低[17],沿岸水受大陆径流的影响弱,水体盐度偏高,且较为稳定。春夏之交,是南黄海冬季混合水向夏季分层水转变的时期,也是南黄海温跃层形成的初始阶段。温跃层稳定性差,具有明显的日内短周期特征。潮流对水文参数的影响可能表现得更为突出。日照至连云港海域水体稳定,无明显径流干扰,这些有利条件也使得本区成为研究潮流作用对水体水文参数影响的理想海域。
本研究通过温盐深和海流同步定点调查,了解春季末(5月)日照至连云港海域的温度、盐度、浊度、pH和DO等水文参数及其垂直结构,分析温跃层和化学跃层的日内变化和生消过程,探讨潮流对跃层及水文参数变化的影响。
1. 数据与方法
2016年5月8日至24日,利用“向阳红07”考察船,在日照至连云港海域进行了温盐深和海流定点测量,共布设站位5个(图1),每个站位连续观测25 h,站位信息详见表1。温盐深测量采用美国SBE公司生产的SBE19 plus CTD水质剖面仪,通过电动绞车悬挂入水,感温1~3 min,从海面匀速降至海底,下放速度控制在1 m·s−1以内,随后再提升至海面。每个整点测量一次,水文采样频率为4~5 Hz,主要观测参数包括温度、盐度、浊度、DO和pH等,以仪器下降阶段获取的数据为正式测量值。温度测量的准确度为± 0.02 ℃,分辨率为0.005 ℃。盐度的准确度为± 0.02 psu,分辨率为0.005 psu。
表 1 观测站位信息一览表Table 1. The detailed information from the observation stations off the Rizhao-Lianyungang coast, western South Yellow Sea站位 北纬 东经 观测周期 阴历日期 潮周期 平均水深/m W1 34° 59′ 56.688" 119° 56′ 32.064" 5/08 07:00 – 5/09 07:00 初二、初三 大潮 23.2 W2 34° 49′ 37.164" 119° 29′ 56.508" 5/10 17:00 – 5/11 17:00 初四、初五 中潮 10.3 W3 35° 09′ 33.840" 119° 56′ 40.200" 5/17 14:00 – 5/18 14:00 十一、十二 小潮 26.7 W4 35° 20′ 46.968" 119° 56′ 36.924" 5/18 16:00 – 5/19 16:00 十二、十三 中潮 25.2 W5 34° 55′ 27.624" 119° 44′ 46.824" 5/23 10:00 – 5/24 11:00 十七、十八 大潮 21.2 海流测量采用美国Teledyne RD Instruments公司生产的Workhorse Sentinel 300 kHz声学多普勒流速剖面仪(ADCP),观测深度为3~40 m,固定安装在船右舷中间位置,换能器固定吃水1 m,观测层厚1 m,共分40层,除仪器本身盲区之外,所观测第一层的海流数据为海面以下2.72 m处,观测频率为1 Hz,每10分钟得到一个平均海流数据。当流速<100 cm·s−1时,流速测量的准确度为± 5 cm·s−1,流向的准确度为± 5°。调查期间,天气及海况良好,轻浪。该海域的海流以潮流占绝对优势,因此,本文ADCP数据均按照潮流来处理。
2. 结果与讨论
2.1 温度、盐度和浊度剖面特征
温度垂向剖面的日内变化显示,W2、W3、W4和W5站位,水体分层现象最为明显,从上向下可依次划分为上部混合层、温跃层和下部均匀层(图2);W1站位层化现象不明显。水体分层一般出现于下午约16时,延续至次日上午9时甚至10时左右,温跃层厚度为2~4 m,层位水深为4~7 m至7~10 m之间波动,跃层强度最大可达0.80 ℃/m(如W5站位5月23日10时曲线所示)。从上午约9时至下午约16时,由于太阳辐射作用及热量的向下传导,上混合层消失,温跃层可扩张至海面。
盐度的垂向变化仅见于上混合层和温跃层,下部深层水盐度垂向变化非常小(图3)。变化幅度最大的层位主要集中于表层和温跃层。表层海水受波浪和潮流影响很大,在潮流驱动下,外海高盐度水团与近岸低盐度水团之间的水平对流所引起的混合过程,使得盐度出现明显波动。在温跃层附近,由于相邻水层温度、盐度的差异,其混合过程常出现盐指现象[18]。当温度梯度较小、跃层较厚时,常出现一簇指状的盐度峰(或谷)值,比如,W3站位5月17日17时和23时的剖面(图3c);而当温度梯度大、跃层厚度薄时,常出现单一的盐度峰(或谷)值,比如,W4站位5月18日19时和19日0时剖面(图3d)、W5站位5月23日10时和16时剖面(图3e)。
虽然水体上层温度、盐度等日内变化明显,但跃层之下这些指标垂直分布呈均匀状态(图2,图3),表明深层水非常稳定,这里以水深20 m的日内平均值代表其温盐状况。W1站位平均水温12.67 ℃,W2站位(水深8 m处)17.00 ℃,W3站位13.32 ℃,W4站位12.96 ℃,W5站位15.26 ℃。除W2站位之外,随着时间序列的延长,温度总体呈上升趋势。在站位纬度相近的情况下,反映了5月8日至24日这段观测期内海面热输入的日益增强。W1站位平均盐度31.10 psu,W2站位(水深8 m处)30.70 psu,W3站位31.29 psu,W4站位31.58 psu,W5站位30.83 psu。除了W2和W5站位由于距离海岸较近、盐度偏低之外,显示深层水体盐度稳定。
水体浊度向下呈缓慢增加的趋势,接近海底浊度明显升高。以水深20 m的浊度日内平均值统计,W1站位7.6 NTU,W2站位(水深8 m处)32.2 NTU,W3站位3.2 NTU,W4站位2.8 NTU,W5站位5.4 NTU,近岸水体浊度明显上升。部分剖面显示跃层附近也存在明显的浊度梯度,表明相邻水层之间存在性质差异。
2.2 DO和pH剖面特征
DO垂向剖面一般具有双层结构,上部为富氧水,下部为低氧深层水。两者之间的界面有时可出现较高的DO梯度,指示存在跃层;有时则呈振荡降低的趋势,显示跃层不明显(图4)。以W1站位为例,在5月8日9时、13时和19时,DO跃层出现于水深12~14 m处。在跃层之上,白天DO浓度波动显著,但都保持在较高浓度水平;夜晚DO浓度明显降低。通常,氧的穿透深度随水深增加而逐渐降低,然而,W1站位的氧浓度峰值很少出现于表层(0~2 m)而是常见于次表层(2~14 m),最高可达约20 mg·L−1。在跃层之下,氧浓度通常保持在约4 mg·L−1,向下呈缓慢降低的趋势。在W1站位水温13 °C和盐度31 psu条件下,DO饱和度为8.68 mg·L−1[19]。白天次表层水广泛的DO过饱和现象,可能主要与藻类等浮游植物的光合作用有关。
pH跃层表现为垂向分布上的快速跳变,它有两种相反的模式,即向下正跳变和向下负跳变。前者出现于5月8日8时和5月9日0时、2时,后者出现于5月8日13时,强度可达0.03~0.04个pH单位(图5)。以W1站位为例,pH跃层出现于水深10~14 m处。pH跃层的存在表明,在下部深层水与上部温跃层之间存在弱的化学界面,这有助于维持深层水的低氧状态。
与温度剖面进行对比显示,DO跃层和pH跃层的深度均位于温跃层之下,表明两者的形成并不受温跃层控制。有时DO跃层和pH跃层同步出现在同一深度,比如在5月8日13时,但也有时两者并不同步,比如在5月8日9时和19时(图6)。上层水柱DO浓度的变化和pH跃层模式的日内转换,与大潮期间潮流驱动下水层之间水平对流的差异密切相关(详见下文分析)。
2.3 潮流特征
潮位变化曲线表明,本区为规则半日潮(图7)。在W1站位,观测期为阴历初二、初三,处于大潮期间,最高潮位2.21 m,最低潮位–2.26 m,潮差4.47 m。在W2站位,观测期为阴历初四、初五,处于中潮期间,最高潮位2.16 m,最低潮位–2.49 m,潮差4.65 m。在W3站位,观测期为阴历十一、十二,处于小潮期间,最高潮位1.37 m,最低潮位–1.07 m,潮差2.44 m。在W4站位,观测期为阴历十二、十三,处于中潮期间,最高潮位1.34 m,最低潮位–1.42 m,潮差2.76 m。在W5站位,观测期为阴历十七、十八,处于大潮期间,最高潮位2.01 m,最低潮位–1.92 m,潮差3.93 m。以上观测数据显示,近岸潮差明显大于离岸潮差。近岸站位W2、W5,落潮历时明显长于涨潮历时,其比值分别为1.21、1.34。离岸站位W1,落潮历时明显小于涨潮历时,其比值为0.86。离岸站位W3、W4,涨潮和落潮阶段历时相差不大。
以海面以下3.72 m处(第2层)ADCP数据为例,展示5个观测站位的潮流流速和流向的25小时变化曲线(图7)。潮流属规则半日潮流,以旋转流为主,在0~360°范围内呈逆时针旋转。涨潮流期间,潮流的方向从北向南旋转;落潮流期间,潮流的方向从南向北旋转。涨潮流多为西或西北向,落潮流多为东或东南向。水柱中潮流流速的分布多呈向下缓慢降低的趋势(图8a),潮流流向的垂直变化较小(图8b)。观测期间最大潮流流速约为100 cm·s−1,最低流速约为10 cm·s−1。
2.4 潮流对水体跃层和水文参数的影响
黄海上部混合层和温跃层主要由波浪及潮流的混合作用形成和维系[9]。在黄海西部近岸海域,水体表面边界层的深度和垂向混合强度主要受往复流和旋转流所控制[20]。大潮期间,潮流流速快,波浪和潮流的混合搅拌作用较强,表面边界层的深度加大,上部混合层扩张,温跃层向下迁移(比如W5站位(图2e)),同时跃层强度也会明显减弱(比如W1站位(图2a))。在小潮期间,波浪和潮流的混合搅拌作用较弱,表面边界层的深度减小,温跃层向上迁移(比如W2、W3站位(图2b、2c)),伴随着跃层强度的增加。
海面的潮流和波浪可以使表层海水发生垂直混合,进而产生上混合层,另一方面,在潮流驱动下,水团还会出现水平对流现象。由于水柱中潮流流速多呈向下降低的趋势(图8a),随着时间的积累,从上向下,不同水层之间的水平位移会越来越大。相对而言,相邻水层之间的垂向分子扩散及其所产生的混合作用是很慢的,因此,实际观测到的水文指标的垂向分布,比如,pH跃层的存在,以及pH跃层之上pH值随深度缓慢升高或降低的现象(图5,图6),可能主要反映了水平方向上相邻区域之间中下部水体化学性质的突变性(比如pH跃层)或渐变性差异。
虽然深层水垂直结构均匀,但其温度、盐度和pH的25小时时间序列曲线也存在着周期性波动(图9)。W2和W5站位水温的周期性变化最为明显;在W4站位,水温除了呈周期性波动之外,还明显叠加了线性升温的趋势,指示临近暖水的水平流入(图9d)。海水盐度的周期性波动最为典型,其变化趋势与温度曲线呈反相分布,即温度较高时,盐度较低;而温度较低时,盐度较高。将潮位25小时变化曲线与温盐曲线进行对比,可以发现它们的周期变化具有同步性。这表明,在天气和海况良好的情况下,深层水温度和盐度的变化主要是潮流驱动下水体水平运动的结果。该认识与Meng等[20]的数值分析结果相一致。此外,在潮流驱动下,深层水的pH也可能存在一定的周期性波动。
3. 结论
(1)南黄海西部日照至连云港海域,春季末(5月)广泛存在日内生消的季节性温跃层和化学跃层。温跃层厚度为2~4 m,层位水深为4~7 m至7~10 m,跃层强度最大可达0.80 ℃/m。在温跃层附近,由于上下层水体温度、盐度的差异,其混合过程常出现盐指现象。跃层之下的深层水温度、盐度垂直分布均匀,站位之间的水温差异主要反映了随着夏季的临近海面热输入的日益增强。
(2)DO垂向剖面一般具有双层结构,上部为富氧水,下部为低氧水,两者之间的界面可出现较高的DO梯度。白天水体次表层广泛的DO过饱和现象,可能主要与藻类等浮游植物的光合作用有关。pH跃层表现为垂向上的快速跳变,包括向下的正跳变和负跳变,强度最大值可达0.03~0.04个pH单位。DO跃层和pH跃层均位于温跃层之下,水深为10~14 m,两者的形成在时间上和深度上具有一定的同步性,且不受温跃层控制。
(3)在天气和海况良好的条件下,潮流是影响水体温度、盐度、DO和pH等水文参数变化的重要因素,也是影响温跃层稳定性的主要原因,主要表现为垂直方向上的混合作用和水平方向上的对流作用。小潮期间,温跃层稳定,强度较大,持续时间也较长。大潮期间,温跃层稳定性差,强度明显减弱。这表明,潮流的增强对温跃层有明显的抑制和破坏作用。深层水的温度、盐度等参数存在日内周期性变化,与潮位变化同步,是潮流驱动下水体水平对流的结果。
-
图 1 研究区位置
a:江苏海岸,红色框对应图b区域;b:小庙洪水道和蛎蚜山牡蛎礁,蓝色框对应蛎蚜山牡蛎礁,红色框为礁区的东部,对应图c无人机航拍区域;c:无人机航拍区域(底图为本研究中重建得到的正射影像),蓝色虚线框对应牡蛎礁密集区,黄色框为环状礁体上的验证点测量区域。
Figure 1. Location of the study area
a: Jiangsu coast, the red rectangle corresponds to area b; b: Xiaomiaohong channel and Liyashan oyster reef, the blue rectangle corresponds to Liyashan oyster reef, the red rectangle is the eastern part of the reef area, corresponding to the unmanned aerial vehicle (UAV) photography area in Figure 1c; c: UAV photography area (the base map is the orthophoto reconstructed in this study), the blue dashed rectangle corresponds to the oyster reef dense area, and the yellow rectangle is the measurement area of validation points on the “ring” reef.
图 2 验证点分布情况及精度对比
a:验证点分布;b-d:RTK实测高程(CGCS2000高程)同无控制点校正的DEM高程和有控制点校正的DEM高程对比;e:无控制点校正的DEM高程与RTK实测高程的相关性;f:有控制点校正的DEM高程与RTK实测高程的相关性。
Figure 2. Distribution of validation points and comparison of accuracy
a: distribution of validation points; b-d: comparison of RTK-measured elevation (CGCS2000 elevation) with DEM (digital elevation model) elevation without correction and the DEM elevation corrected against control points; e: correlation between the DEM elevation without correction and the RTK-measured elevation; f: correlation between the DEM elevation corrected against control points and the RTK measured elevation.
图 3 无人机航拍区域对应的DEM(85高程)
a:拉伸效果显示的DEM,L1-L7为跨越多条平行分布的条带状牡蛎礁的剖面线;b:Jenks自然间断点法划分的DEM,共分为5类。
Figure 3. DEM (1985 national elevation) corresponding to the UAV photography area
a: DEM (digital elevation model) with a stretched effect, where L1-L7 are profile lines across multiple parallel “string” oyster reefs; b: 5 categories of DEM classified by Jenks natural break method.
图 4 不同演化阶段的牡蛎礁体
a:礁体表面坑洼,b:坑洼扩张和延伸,c:溶槽分隔礁体,d:次生礁坪,e:礁块分解和掩埋,f:原生礁坪。
Figure 4. Oyster reefs at different stages of evolution
a: potholes on the surface of reef, b: expansion and extension of potholes, c: grooves separating the reef, d: secondary reef flat, e: breakup and burial of reef mass, f: proto-reef flat.
图 6 跨越平行分布的条带状牡蛎礁的剖面结果(85高程)
波峰上的尺寸表示礁体高度,箭头线之间的尺寸表示相邻条带状礁体的间距,箭头处为手动提取的礁体边缘位置。a-d: 分别对应贝壳堤弯口内的L1-L4剖面,e-g: 分别对应潮水湾南侧的L5-L7剖面。
Figure 6. Results of profile lines across parallel-distributed “string” oyster reefs (against the 1985 national elevation datum point of China)
Numbers on the crests indicate the height of the reefs. Numbers next to the arrow lines are the spacing between adjacent "string" reefs. Arrows indicate the manually extracted positions of the reef edges. a-d: correspond to L1-L4 profiles inside the shell embankment; e-g: correspond to L5-L7 profiles on the south of the tidal bay.
-
[1] Coen L D, Luckenbach M W. Developing success criteria and goals for evaluating oyster reef restoration: ecological function or resource exploitation?[J]. Ecological Engineering, 2000, 15(3-4):323-343. doi: 10.1016/S0925-8574(00)00084-7
[2] Chambers L G, Gaspar S A, Pilato C J, et al. How well do restored intertidal oyster reefs support key biogeochemical properties in a coastal lagoon?[J]. Estuaries and Coasts, 2018, 41(3):784-799. doi: 10.1007/s12237-017-0311-5
[3] Cressman K A, Posey M H, Mallin M A, et al. Effects of oyster reefs on water quality in a tidal creek estuary[J]. Journal of Shellfish Research, 2003, 22(3):753-762.
[4] Piazza B P, Banks P D, La Peyre M K. The potential for created oyster shell reefs as a sustainable shoreline protection strategy in Louisiana[J]. Restoration Ecology, 2005, 13(3):499-506. doi: 10.1111/j.1526-100X.2005.00062.x
[5] Scyphers S B, Powers S P, Heck Jr K L, et al. Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries[J]. PLoS One, 2011, 6(8):e22396. doi: 10.1371/journal.pone.0022396
[6] Quan W M, Zhu J X, Ni Y, et al. Faunal utilization of constructed intertidal oyster ( Crassostrea rivularis) reef in the Yangtze River estuary, China[J]. Ecological Engineering, 2009, 35(10):1466-1475. doi: 10.1016/j.ecoleng.2009.06.001
[7] Beck M W, Brumbaugh R D, Airoldi L, et al. Oyster reefs at risk and recommendations for conservation, restoration, and management[J]. BioScience, 2011, 61(2):107-116. doi: 10.1525/bio.2011.61.2.5
[8] Brumbaugh R D, Coen L D. Contemporary approaches for small-scale oyster reef restoration to address substrate versus recruitment limitation: a review and comments relevant for the Olympia oyster, Ostrea lurida Carpenter 1864[J]. Journal of Shellfish Research, 2009, 28(1):147-161. doi: 10.2983/035.028.0105
[9] Jackson J B C, Kirby M X, Berger W H, et al. Historical overfishing and the recent collapse of coastal ecosystems[J]. Science, 2001, 293(5530):629-637. doi: 10.1126/science.1059199
[10] 张忍顺. 江苏小庙洪牡蛎礁的地貌-沉积特征[J]. 海洋与湖沼, 2004, 35(1):1-7 doi: 10.3321/j.issn:0029-814X.2004.01.001 ZHANG Renshun. The geomorphology-sedimentology character of oyster reef in Xiaomiaohong tidal channel, Jiangsu province[J]. Oceanologia et Limnologia Sinica, 2004, 35(1):1-7. doi: 10.3321/j.issn:0029-814X.2004.01.001
[11] 张忍顺, 王艳红, 张正龙, 等. 江苏小庙洪牡蛎礁的地貌特征及演化[J]. 海洋与湖沼, 2007, 38(3):259-265 doi: 10.3321/j.issn:0029-814X.2007.03.012 ZHANG Renshun, WANG Yanhong, ZHANG Zhenglong, et al. Geomorphology and evolution of the Xiaomiaohong oyster reef off Jiangsu coast, China[J]. Oceanologia et Limnologia Sinica, 2007, 38(3):259-265. doi: 10.3321/j.issn:0029-814X.2007.03.012
[12] Colden A M, Fall K A, Cartwright G M, et al. Sediment suspension and deposition across restored oyster reefs of varying orientation to flow: implications for restoration[J]. Estuaries and Coasts, 2016, 39(5):1435-1448. doi: 10.1007/s12237-016-0096-y
[13] Grave C. Investigations for the Promotion of the Oyster Industry of North Carolina[M]. Washington: US Government Printing Office, 1904.
[14] Kennedy V S, Sanford L P. The morphology and physical oceanography of unexploited oyster reefs in North America[M]//Luckenbach M W, Mann R, Wesson J A. Oyster Reef Habitat Restoration: A Synopsis and Synthesis of Approaches. Gloucester Point: VIMS Press, 1999: 25-46.
[15] Smith G F, Roach E B, Bruce D G. The location, composition, and origin of oyster bars in mesohaline Chesapeake Bay[J]. Estuarine, Coastal and Shelf Science, 2003, 56(2):391-409. doi: 10.1016/S0272-7714(02)00191-9
[16] Walles B, Salvador de Paiva J, van Prooijen B C, et al. The ecosystem engineer Crassostrea gigas affects tidal flat morphology beyond the boundary of their reef structures[J]. Estuaries and Coasts, 2015, 38(3):941-950. doi: 10.1007/s12237-014-9860-z
[17] Woods H, HARGIS W J, Hershner C H, et al. Disappearance of the natural emergent 3-dimensional oyster reef system of the James River, Virginia, 1871-1948[J]. Journal of Shellfish Research, 2005, 24(1):139-142. doi: 10.2983/0730-8000(2005)24[139:DOTNED]2.0.CO;2
[18] Lenihan H S. Physical–biological coupling on oyster reefs: how habitat structure influences individual performance[J]. Ecological Monographs, 1999, 69(3):251-275.
[19] Koppel J, Rietkerk M, Dankers N, et al. Scale-dependent feedback and regular spatial patterns in young mussel beds[J]. The American Naturalist, 2005, 165(3):E66-E77. doi: 10.1086/428362
[20] van de Koppel J, Bouma T J, Herman P M J. The influence of local-and landscape-scale processes on spatial self-organization in estuarine ecosystems[J]. Journal of Experimental Biology, 2012, 215(6):962-967. doi: 10.1242/jeb.060467
[21] Ysebaert T, Walles B, Haner J, et al. Habitat modification and coastal protection by ecosystem-engineering reef-building bivalves[M]//Smaal A C, Ferreira J G, Grant J, et al. Goods and Services of Marine Bivalves. Cham: Springer, 2019: 253-273.
[22] Grabowski J H, Brumbaugh R D, Conrad R F, et al. Economic valuation of ecosystem services provided by oyster reefs[J]. Bioscience, 2012, 62(10):900-909. doi: 10.1525/bio.2012.62.10.10
[23] Zu Ermgassen P S E, Spalding M D, Grizzle R E, et al. Quantifying the loss of a marine ecosystem service: filtration by the eastern oyster in US estuaries[J]. Estuaries and Coasts, 2013, 36(1):36-43. doi: 10.1007/s12237-012-9559-y
[24] Baggett L P, Powers S P, Brumbaugh R D, et al. Guidelines for evaluating performance of oyster habitat restoration[J]. Restoration Ecology, 2015, 23(6):737-745. doi: 10.1111/rec.12262
[25] Barillé L, Prou J, Héral M, et al. Effects of high natural seston concentrations on the feeding, selection, and absorption of the oyster Crassostrea gigas (Thunberg)[J]. Journal of Experimental Marine Biology and Ecology, 1997, 212(2):149-172. doi: 10.1016/S0022-0981(96)02756-6
[26] Gernez P, Barillé L, Lerouxel A, et al. Remote sensing of suspended particulate matter in turbid oyster‐farming ecosystems[J]. Journal of Geophysical Research:Oceans, 2014, 119(10):7277-7294. doi: 10.1002/2014JC010055
[27] Huang W R, Hagen S C, Wang D B, et al. Suspended sediment projections in Apalachicola Bay in response to altered river flow and sediment loads under climate change and sea level rise[J]. Earth's Future, 2016, 4(10):428-439. doi: 10.1002/2016EF000384
[28] Windle A E, Poulin S K, Johnston D W, et al. Rapid and accurate monitoring of intertidal Oyster Reef Habitat using unoccupied aircraft systems and structure from motion[J]. Remote Sensing, 2019, 11(20):2394. doi: 10.3390/rs11202394
[29] Baggett L P, Powers S P, Brumbaugh R, et al. Oyster Habitat Restoration Monitoring and Assessment Handbook[M]. Arlington: The Nature Conservancy, 2014.
[30] Power A, Corley B, Atkinson D, et al. A caution against interpreting and quantifying oyster habitat loss from historical surveys[J]. Journal of Shellfish Research, 2010, 29(4):927-936. doi: 10.2983/035.029.0425
[31] Schill S R, Porter D E, Coen L D, et al. Development of an automated mapping technique for monitoring and managing shellfish distributions. A final report submitted to: NOAA/UNH cooperative institute for coastal and estuarine environmental technology (CICEET)[R]. Port Norris, 2006: 91.
[32] Rodriguez A B, Fodrie F J, Ridge J T, et al. Oyster reefs can outpace sea-level rise[J]. Nature Climate Change, 2014, 4(6):493-497. doi: 10.1038/nclimate2216
[33] Mancini F, Dubbini M, Gattelli M, et al. Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: the structure from motion approach on coastal environments[J]. Remote Sensing, 2013, 5(12):6880-6898. doi: 10.3390/rs5126880
[34] 全为民, 周为峰, 马春艳, 等. 江苏海门蛎岈山牡蛎礁生态现状评价[J]. 生态学报, 2016, 36(23):7749-7757 QUAN Weimin, ZHOU Weifeng, MA Chunyan, et al. Ecological status of a natural intertidal oyster reef in Haimen County, Jiangsu province[J]. Acta Ecologica Sinica, 2016, 36(23):7749-7757.
[35] Lin H J, Yu Q, Wang Y W, et al. Identification, extraction and interpretation of Multi-Period variations of coastal suspended sediment concentration based on unevenly spaced observations[J]. Marine Geology, 2022, 445:106732. doi: 10.1016/j.margeo.2022.106732
[36] Lin H J, Yu Q, Du Z Y, et al. Geomorphology and sediment dynamics of the Liyashan oyster reefs, Jiangsu Coast, China[J]. Acta Oceanologica Sinica, 2021, 40(10):118-128. doi: 10.1007/s13131-021-1866-3
[37] 全为民, 安传光, 马春艳, 等. 江苏小庙洪牡蛎礁大型底栖动物多样性及群落结构[J]. 海洋与湖沼, 2012, 43(5):992-1000 doi: 10.11693/hyhz201205017017 QUAN Weimin, AN Chuanguang, MA Chunyan, et al. Biodiversity and community structure of benthic macroinvertebrates on the Xiaomiaohong oyster reef in Jiangsu province, China[J]. Oceanologia et Limnologia Sinica, 2012, 43(5):992-1000. doi: 10.11693/hyhz201205017017
[38] 任美锷, 丁方叔, 万延森, 等. 江苏省海岸带和海涂资源综合调查报告[M]. 北京: 海洋出版社, 1986 REN Mei’e, DING Fangshu, WANG Yansen, et al. Comprehensive Survey of Coastal Zone and Intertidal Resources in Jiangsu Province: Report[M]. Beijing: China Ocean Press, 1986.
[39] Mian O, Lutes J, Lipa G, et al. Direct georeferencing on small unmanned aerial platforms for improved reliability and accuracy of mapping without the need for ground control points[C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Toronto, 2015: 397-402.
[40] Brunier G, Michaud E, Fleury J, et al. Assessing the relationship between macro-faunal burrowing activity and mudflat geomorphology from UAV-based Structure-from-Motion photogrammetry[J]. Remote Sensing of Environment, 2020, 241:111717. doi: 10.1016/j.rse.2020.111717
[41] Taddia Y, Pellegrinelli A, Corbau C, et al. High-resolution monitoring of tidal systems using UAV: a case study on Poplar Island, MD (USA)[J]. Remote Sensing, 2021, 13(7):1364. doi: 10.3390/rs13071364
[42] Jaud M, Grasso F, Le Dantec N, et al. Potential of UAVs for monitoring mudflat morphodynamics (Application to the seine estuary, France)[J]. ISPRS International Journal of Geo-Information, 2016, 5(4):50. doi: 10.3390/ijgi5040050
[43] Sanz-Ablanedo E, Chandler J H, Rodríguez-Pérez J R, et al. Accuracy of unmanned aerial vehicle (UAV) and SfM photogrammetry survey as a function of the number and location of ground control points used[J]. Remote Sensing, 2018, 10(10):1606. doi: 10.3390/rs10101606
[44] Ridge J T, Gray P C, Windle A E, et al. Deep learning for coastal resource conservation: automating detection of shellfish reefs[J]. Remote Sensing in Ecology and Conservation, 2020, 6(4):431-440. doi: 10.1002/rse2.134
[45] Morris R L, La Peyre M K, Webb B M, et al. Large‐scale variation in wave attenuation of oyster reef living shorelines and the influence of inundation duration[J]. Ecological Applications, 2021, 31(6):e02382. doi: 10.1002/eap.2382
-
期刊类型引用(5)
1. 徐斌,王元叶,程晨,王钟寅. 光学浊度计悬沙浓度观测方法研究. 水文. 2025(02): 23-28 . 百度学术
2. 林建伟,魏观渊,游远新,刘国昕,许文彬. 三沙湾悬浮泥沙运移分布及其对海上养殖的影响分析. 渔业研究. 2024(06): 664-674 . 百度学术
3. 杨传训,李勇,杨骥,舒思京. 机器学习模型的珠江口悬浮泥沙遥感反演与规律分析. 测绘通报. 2023(09): 117-123 . 百度学术
4. 甘双庆,朱龙海,张立奎,宋彦,胡日军,白杏,林超然,谢波. 蓬莱近岸海域夏季悬浮泥沙输运及控制因素. 海洋地质前沿. 2023(12): 12-25 . 百度学术
5. 伍先锋,胡兴艺,李广源,谭云辉. 基于红外光传感器的泥沙在线监测方法应用研究. 水利信息化. 2022(04): 41-44+61 . 百度学术
其他类型引用(1)