台湾东北部古海湾沉积特征

安振振, 李广雪, 丁咚, 徐继尚, 马妍妍, 闵建雄, 王丽艳, 张剑

安振振, 李广雪, 丁咚, 徐继尚, 马妍妍, 闵建雄, 王丽艳, 张剑. 台湾东北部古海湾沉积特征[J]. 海洋地质与第四纪地质, 2018, 38(2): 38-51. DOI: 10.16562/j.cnki.0256-1492.2018.02.004
引用本文: 安振振, 李广雪, 丁咚, 徐继尚, 马妍妍, 闵建雄, 王丽艳, 张剑. 台湾东北部古海湾沉积特征[J]. 海洋地质与第四纪地质, 2018, 38(2): 38-51. DOI: 10.16562/j.cnki.0256-1492.2018.02.004
AN Zhenzhen, LI Guangxue, DING Dong, XU Jishang, MA Yanyan, MIN Jianxiong, WANG Liyan, ZHANG Jian. Depositional characteristics of the paleo-gulf off northeastern Taiwan since the Last Glacial Maximum[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 38-51. DOI: 10.16562/j.cnki.0256-1492.2018.02.004
Citation: AN Zhenzhen, LI Guangxue, DING Dong, XU Jishang, MA Yanyan, MIN Jianxiong, WANG Liyan, ZHANG Jian. Depositional characteristics of the paleo-gulf off northeastern Taiwan since the Last Glacial Maximum[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 38-51. DOI: 10.16562/j.cnki.0256-1492.2018.02.004

台湾东北部古海湾沉积特征

基金项目: 

国家重点基础研究发展规划(973)项目 2005CB422304

“中国东部陆架边缘海海洋物理环境演变及其环境效应”项目 

详细信息
    作者简介:

    安振振(1991—),男,硕士生,主要从事海洋沉积研究,E-mail:deposition_an@126.com

    通讯作者:

    李广雪(1962—),教授,博士。E-mail: estuary@ouc.edu.cn

  • 中图分类号: P736.21

Depositional characteristics of the paleo-gulf off northeastern Taiwan since the Last Glacial Maximum

  • 摘要: 通过对台湾东北部古海湾及周边356个海底表层沉积样品的粒度分析及碎屑矿物分析,揭示了古海湾及周边陆架自末次盛冰期以来的沉积环境演变特征,并分析了古海湾的成因。结果表明,该古海湾及周边海域沉积环境的演变可划分为3个阶段:(1)末次盛冰期,浊流、滑坡事件在海湾边缘及陆架边缘频繁发生,可携带大量的陆源碎屑物质输运至古海湾内(B-3),下蚀其海床及下伏地层,并塑造了作为浊流通道的两个砾石条带,在B-3内部保留分选差、改造弱的沉积物。在此期间,潮流、波浪和跨陆架流在东亚冬季风的影响下严重侵蚀B-3的湾口及湾缘,并沉积大量的砂、石英及低含量的生物碎屑物质,石英/长石比值也较高; (2)末次冰消期,随着海平面的阶段性上升,古海岸线向陆大幅迁移,导致浊流强度减弱,潮流逐渐成为陆架区主要的作用营力,相关的潮流底应力可改造陆架沉积物,此时期,西部陆架含砾砂-砾质砂区(B-1)和北部陆架含砾砂-含砾泥质砂区(B-2)的地势差异及其所影响的水平海侵速度和潮波强度的差异是造就两者沉积组分、类型、石英、长石、岩屑和生物碎屑的含量及石英/长石比值差异的主因; (3)高水位时期,黑潮强度在本区增强,除侵蚀B-1底床,黑潮底层流也对B区的浅水地带进行冲刷,加之台湾暖流及沿岸流、长江冲淡水对该区的影响较小,使得B区细粒沉积物质含量较低,A区(北部陆架含砾泥质砂沉积区)细粒沉积广布,除与弱潮流作用相关外,弱的底层流的影响也是原因之一,同时来自台湾暖流可能携带部分细粒沉积物在此卸载。对于古海湾的成因而言,末次盛冰期频繁的浊流是将前更新世时期受湾内断裂作用而形成的半地堑地貌的海湾雏形进一步塑造成深凹地貌的主因,它进一步加剧了其深凹的地貌,在后期的冰消期和高水位时期,潮波系统及黑潮逐渐强盛,阻止了细粒沉积物的输入,保留了古海湾的深凹地貌。
    Abstract: Sediment types, grain size parameters and fragmental minerals of the 356 surface sediment samples from the paleo-gulf located off the northeastern Taiwan and surrounding shelves are studied for dynamic environments and origins. The evolution of the Holocene sedimentary dynamic environments of the gulf could be clearly divided into three phases. During the last glacial maximum (LGM), turbidity currents and landslides dominated the edge of the paleo-gulf (B-3). A great amount of terrigenous sediments rapidly poured into the Gulf. Seabed and underlying strata were eroded and two gravel belts formed as turbidity channels, and left behind poorly-sorted and inadequately reworked sediments. Tides, waves and cross-shelf currents, especially strengthened by the East Asian Winter Monsoon (EAWM), severely washed and eroded the edge and mouthof the B-3, where formed the sediments with high contents of sand and quartz, quartz/feldspar ratios, and little biodetritus; During the last deglaciation, owing to the periodic sea-level rises and significant coast retreat, turbidity currents weakened, and tidal currents became the major dynamic force on the shelf. Tidal bottom stress reworked the shelf sediments. Differences in sediment compositions, types, contents of quartz, feldspar, lithic fragments and biodetritus, quartz/feldspar ratios between(B-2)the western shelf pebbly-gravelly sand area (B-1) and the northern shelf pebbly sand-pebbly muddy sand area (B-2) reflect the difference in sea bottom topography which control the strength of tides and waves in addition to the speed of horizontal transgression; In the subsequent highstand period, the influence of Kurosio Current (KC) in the study area was increased. In addition to seafloor erosion, its bottom current also hindered the deposition of modern terrestrial sediments, and thus left behind coarse sediments in B. The deposition of fine-grained sediments was partly attributed to the weakening of the bottom current in A as well as local tides and waves. For the origin of the paleo-gulf, turbidity currents of the LGM certainly played an important role. They eroded the bottom deposits and strata, deepened the depressed geomorphology under the influence of the previous NW-trending fault activity; Moreover, strong hydrodynamics such as tide-wave system, the KC of subsequent periods prevented fine-grained sediments deposition in the B-3, and finally retained its depressed geomorphology.
  • 末次盛冰期时期,全球海平面降至现今水深120m以下[1],陆架大范围暴露,陆源沉积物可轻易跨过陆架,在边缘海、陆坡区卸载,这些松散陆源沉积可在多种因素的触发下引发浊流、滑坡事件,如坦桑尼亚上陆坡[2]、郁陵海盆[3]、巴布亚湾的潘多拉槽中部[4]多有体现(属巴布亚新几内亚)。末次盛冰期后,随着海平面的快速上升,原地地貌得以保留[5],海底的残留沉积暴露于海底表层[6, 7],记录了全球相关的气候变化,部分残留沉积在潮波的改造作用下可被塑造为潮流沙脊[8]。因此,从沉积动力的角度来看,海底的残留、改造沉积可分别反映末次盛冰期及后期的沉积环境。

    古海湾,顾名思义,为地质历史时期的海湾,或由于地质构造作用,或由于海平面变化等诸多原因潜没于水下,但原有的海湾形貌仍然保留。在全球的陆架边缘区域分布着大量的古海湾,多是在末次冰消期后,由于海平面的快速上升,其地貌得以保留所致。一般而言,其远离大陆,陆源沉积供应远少于近岸,冰消期以来的沉积地层较薄,表层沉积物也多以残留沉积为主。作为陆架边缘的古海湾,其沉积特征的演变既受全球性海平面变化的影响(多数记录末次盛冰期以来的海平面变迁),又受区域地貌、潮波等作用的限制,是研究末次盛冰期以来区域性沉积过程演化的重要场所。迄今,有关末次冰期以来陆架边缘海湾的沉积特征的研究较多,如探究法属狮子湾内末次冰期以来海平面的变化[9]、高能水动力影响下的浊流事件,末次冰消期以来巴布亚湾外陆架和陆坡处的沉积物的输运过程以及重建巴伦西亚湾外陆架区的水动力条件、沉积物输运过程[10]

    东海作为世界上陆架最宽的区域之一,其外陆架水深为60~200m,作为海陆交互的过渡地带,涉及东海第四纪古环境演变及沉积特征的研究颇丰,如探究东中国海的古海岸带及沉积框架[5, 11, 12],末次冰期以来季风与沉积过程[13, 14],物源与相关沉积环境[15-18]以及末次盛冰期以来古潮汐、潮流及潮流底应力的数值模拟[19-22]。然而,由于缺乏相关的研究资料,前人对该古海湾及周边陆架区自末次盛冰期以来的沉积环境演变尚未有详尽的研究。本文拟通过分析该古海湾及周边海域表层样品的粒度、组分及碎屑矿物成分,探讨末次盛冰期以来海平面变化、地形、潮波系统及黑潮等影响下沉积物的分布特征。

    在台湾东北部120km处,东海东南陆架边缘分布一个NW走向、簸箕形的古海湾,长轴约100km,湾内最大水深超过180m,湾缘约120m,海湾南侧水深较浅,浅滩发育。湾口陆坡上自西向东分布有东黄尾海底峡谷、第2赤尾海底峡谷、第1赤尾海底峡谷,浅滩之间发育的数条侵蚀深槽连通了海湾深水区与陆坡上的海底峡谷[23],钓鱼岛、赤尾屿分布于湾口处,冲绳海槽横亘湾口门外(图 1)。

    图  1  研究区构造图(A)及表层取样站位分布(B)(据Hsu等[24])
    黑色虚线代表走滑断裂,F为海湾内的走滑断裂;其中a,b,c分别对应东黄尾海底峡谷、第2赤尾海底峡谷、第1赤尾海底峡谷,形成于末次冰期的古河道(黄色阴影区)(Ujiié和Ujiié[26]),相关的钻孔包括EA05(余华等[27]),Q43(Lin等[28]),Oki02 (Zheng等[29]), E017 (Xiang等[30])
    Figure  1.  Tectonic framework and distribution of the surface samples of the paleo-gulf
    A, Tectonic framework of the study area modified from Hsu et al. (2001). The black dashed lines indicate strike-slip faults, F is a strike-slip faults in the paleo-gulf; B, Distribution of the surface samples (a, b, c represent the East Huangwei submarine canyon, the Second Chiwei submarine canyon, the First Chiwei submarine canyon, respectively). Drowned river valleys formed during glacial period (shaded yellow areas) are modified by Ujiié and Ujiié[26]. The reference cores include EA05 (Yu et al.[27]), Q43 (Lin et al[28].), Oki02 (Zheng et al[29].), E017 (Xiang et al[30])

    区内地形沟壑纵横,受制于冲绳海槽断裂系统的发育及区域构造差异,自西向东发育多处凹陷、隆起[24]。区内有两种断裂形式:一种为平行海槽走向的断裂系,另一种为与海槽走向相交的NW向横切断裂系,海湾北缘的F即是一条NW向断裂(图 1a)。上新世以来,东海区域NW向断裂沿走向活动时代具有往东南段变晚的特点[23]。王舒畋等[25]依据东海新构造运动的活动强弱进行了分区,其中湾口及陆坡、海槽区域属新构造运动强烈活动区,构造断裂活动强烈,沿断裂的近代海底峡谷发育,中、强地震活动频繁;西部陆架属新构造运动较强烈活动区,第四纪断裂构造较为发育,地震活动较频繁;向陆一侧的海湾及北部陆架属新构造运动相对平静区,未发现存在上新世以来的断裂痕迹及中、强地震活动现象。

    研究区现代流系复杂,其中黑潮对研究区的影响最大。黑潮主流在台湾东北部受陆架坡折带急剧弯曲的影响,流向由东北向转为东向[31],黑潮表层水穿过陆架坡折带后流入外陆架并与陆架低盐水混合,形成气旋式涡旋,黑潮次表层水与中层水在台湾东北陆架200m等深线进入陆架,形成终年不断的上升流,在涡旋的中心区域,上升流上涌形成冷涡。据报道,上升流与黑潮侵入陆架水带来丰富的营养物质,同时冷涡-上升流系统也会致使部分陆架沉积物离岸,向海槽输运,是西太平洋与中国东海物质交换的“旋转门”[32, 33]

    然而,末次盛冰期时,研究区的黑潮强度远弱于现今水平,黑潮是否迁移出冲绳海槽,目前尚未有定论。一种观点是末次盛冰期时,海平面降低,加之琉球-台湾大陆桥的出现,黑潮可能移出冲绳海槽,但具体时间各有差异[35-37];另一观点则认为末次盛冰期时黑潮强度有所减弱,但仍然在冲绳海槽内,只是主轴明显向海方向偏移,全新世后,海平面持续上升,黑潮强度增大,对冲绳海槽的影响加强[38, 39]。虽然末次盛冰期前后黑潮流路未有定论,但现有研究均表明,末次盛冰期前后,黑潮强度低,流路窄,而高水位时期,黑潮在研究区的强度增强,逐渐达到现今水平。

    1996年6—7月搭载勘407船进行底质采样,使用抓斗和箱式取样器采表层样356站位, 样品站位分布区域大致为24.5°~28°N、121.5°~125°E(图 1b)。2007年在中国海洋大学海洋地球科学学院实验室对表层沉积物样品进行了粒度分析及碎屑矿物鉴定。在粒度分析中,首先,分别采用10%的H2O2和10%的HCl,除掉样品中的有机质和碳酸盐,对细颗粒沉积物采用Mastersize-2000激光粒度仪测试,该仪器的测试粒径范围是0.02~2000μm;粗颗粒沉积物采用筛分法进行处理,即先将置于筛内的样品放置振筛机上振动10min,然后称量各个粒径筛中的沉积物质量。

    按中国《海洋调查海洋地质地球物理调查规范》(GB/T12763.8-2007)的相关规定,对碎屑矿物样品进行了处理和分析。首先,在样品中加入六偏磷酸钠使沉积物颗粒完全离散,提取63~125μm粒级部分,用蒸馏水清洗,烘干、称重,然后取样品1.5g,利用三溴甲烷(CHBr3,密度为2.88g/cm3)分选出轻重矿物,利用体视显微镜和偏光显微镜对300~500颗矿物颗粒进行鉴定,最后求取单矿物的颗粒百分含量。

    研究区海底沉积物复杂,鉴于古海湾及陆架区域存在砾石成分,因此在含砾石组分的站点采用含砾的Folk三角图分类法命名,在无砾石组分的站点采用无砾的Folk三角图进行命名[40](图 3),此方法可反映沉积区的动力学条件,由于陆坡区存在采样空白,该处的沉积物类型参照李广雪等[41]的中国东部海域海底沉积物类型图补充, 后者采用的是Shepard分类法, 按其分类, 此处均为粉砂, 相比于Folk分类法中粉砂的分类范围虽有些宽泛, 但总体上作为图件的补充尚可应用。

    图  3  Folk三角分类图解
    a为含砾的Folk三角图,图中的示例依次为:G-砾;sG-砂质砾;msG-泥质砂质砾;mG-泥砾;gS-砾质砂;gmS-砾质泥质砂;gM-砾质泥;(g)S-含砾泥;(g)mS-含砾泥质砂;(g)M-含砾泥;S-砂;mS-泥质砂;sM-砂质泥;M-泥。b为无砾Flok三角图,图中示例依次为:S-砂;zS-粉砂质砂;mS-泥质砂;cS-黏土质砂;sZ-砂质粉砂;sM-砂质泥;sC-砂质黏土;Z-粉砂;M-泥;C-黏土
    Figure  3.  Folk triangular diagram
    a. Folk triangular diagram for pebbles: G-gravel; sG-sandy gravel; msG-muddy sandy gravel; mG-muddy gravel; gS- gravelly sand; gmS-gravelly muddy sand; gM-gravelly mud; (g)S-pebbly sand; (g)mS-pebbly muddy sand; (g)M-pebbly mud; S-sand; mS-muddy sand; sM-sandy mud; M-mud. b pebble-free Folk triangular diagram: S-sand; zS-silty sand; mS-muddy sand; cS-clayey sand; sZ-sandy silt; sM-sandy mud; sC-sandy clay; Z-silt; M-mud; C-clay

    表层沉积物可分为砾质砂、砾质泥质砂、含砾砂、含砾泥、含砾泥质砂、砂、粉砂质砂、泥质砂、砂质粉砂、粉砂、砂质泥、泥12种类型(图 2),其中含砾砂(49.4%)、含砾泥质砂(10.7%)、砾质砂(8.1%)、泥(11.0%)为主要沉积物,依据研究区沉积类型的差异,将研究区划分为:A北部陆架含砾泥质砂沉积区、B陆架含砾砂区、C陆坡砂质泥沉积区、D海槽泥质沉积区,根据B区不同区域沉积类型的差异,又可划分3个亚区:B-1西部陆架含砾砂-砾质砂沉积区、B-2北部陆架含砾砂-含砾泥质砂沉积区、B-3古海湾多类型沉积区。在下文的研究中,我们主要针对A、B区展开研究。

    图  2  研究区流系示意图(据文献[34])
    其中黄色为陆地,蓝色为海洋,蓝色越深,深度越大
    Figure  2.  Sketch map of the current system in the study area(Diekmann et al[34])
    yellow represents land, blue represents ocean and its depth is lager as this blue become darker
    图  4  表层沉积物类型
    (黑色虚线为沉积区界线;A:北部陆架含砾泥质砂区;B-1:西部陆架含砾砂-砾质砂区;B-2:北部陆架含砾砂-含砾泥质砂区;B-3:古海湾多类型沉积区;C:陆坡砂质泥区;D:海槽泥质区)
    Figure  4.  Types of the surface sediment
    A. northern shelf pebbly muddy sand area; B-1.western shelf pebbly sand-gravelly sand area; B-2. northern shelf pebbly sand-pebbly muddy sand area; B-3.paleo-gulf multiple sedimentary composition area; C. continental slope sandy mud area; D. the Okinawa Trough mud area. The black dashed line represents the boundary line of the sediment areas

    区内表层沉积物砾、砂广布,现代水动力条件无法将近岸的粗粒沉积物远程输运至此。根据湾内钻孔Q43(26°33.1401′N、124°12.7107′E, 水深139.8m)[28]及陆架区EA05 (27°21′N、122°46′E, 水深99.9m)[27] (图 1b)所发表的年代数据(表 1),利用附件中的年代校正曲线,Q43孔和EA05孔上部的沉积速率分别为12.2和104cm/ka,我们据此推测Q43孔和EA05孔的表层沉积物年代分别为14793、6872cal.aBP。此外,Q43孔表层岩性为青灰色粉砂质砂,含丰富的生物碎屑,代表了低海面滨岸相沉积(图 5),EA05表层沉积物的岩性大致也代表了类似的沉积环境。根据以上证据,古海湾内表层沉积当属末次盛冰期低海面时期的产物,陆架区的表层沉积属于冰消期海侵时的改造沉积。

    表  1  Q43孔、EA05孔的AMS14C年代数据
    Table  1.  AMS14C age data for core Q43 and EA05
    钻孔 深度/cm 常规AMS 14C年龄/aBP 校正日历年龄/cal.aBP 测年材料
    Q43 36 15 320±370 17 915 贝壳
    155 23 600±450 27 642 贝壳
    282 8 670±370 9 593 有机碳
    316 8 930±330 9 921 有机碳
    EA05 1293 18 920±720 22 236 有机碳
    1923 20 430±630 24 003 有机碳
    2393 22 000±710 25 816 有机碳
    下载: 导出CSV 
    | 显示表格
    图  5  Q43孔柱状岩性及沉积相(据文献[28],绿点为测年位置)
    岩性描述与沉积划分:U1:0~160cm, 青灰色粉砂质细砂,含丰富的生物碎屑,为低海面滨岸相沉积;U2:160~230cm,浅褐色贝壳砂砾层,含有丰富的贝壳碎片,为潮间带沉积;U3:230~376cm, 暗灰色黏土质粉砂, 夹浅灰色粉砂质细砂薄层, 为潮下带沉积; U4:376~395cm,岩性由浅褐色粉砂逐渐过渡为贝壳砂砾层,为潮间带沉积
    Figure  5.  Lithology and sedimentary facies of Q43 (modified from Lin et al[28].) green points are dating positions

    研究区沉积物组分的空间分布差异明显(图 6)。A区沉积组分复杂,砾石、砂、粉砂、黏土均有;B-1区以砂、砾石为主;在B-2区,砂为主要组分,砾石含量高值区分布于F延伸线上,砾石含量低于B-1区,局部含有少量粉砂、黏土,沉积组分复杂;B-3内F的东侧, 砂含量较高,砾石、粉砂、黏土几乎不发育,F西缘的深水区,无砾石组分,存在一砂、粉砂高值闭合区,并含有8%泥质沉积,海湾西缘以砾石、砂质组分为主。F附近及海湾西缘分布两条砾石带。自湾缘至湾内,细粒组分随水深逐渐增多。

    图  6  沉积物粒度组分分布
    (a:砾石;b:砂;c:粉砂;d:黏土)
    Figure  6.  Composition of sediments
    (a, gravel; b, sand; c, silt; and d, mud)

    生物碎屑颗粒主要是软体动物贝壳碎片, 分布十分规律(图 7),B-1内的生物碎屑含量低;而A、B-2、B-3内的生物碎屑较为丰富,尤其是前两者,其生物碎屑含量约为15%~55%;在B-3区,海湾西缘生物碎屑不发育,由海湾西缘至断裂带附近深水区,生物碎屑含量逐渐增至50%。

    图  7  生物碎屑含量
    Figure  7.  Percentages of biodetritus in the surface sediment.

    沉积物的粒度参数可反映沉积环境及其运移趋势,如平均粒径可判定沉积动力的强弱及相关的输运趋势,峰度和偏度可判定沉积物的改造状况。

    研究区内沉积物的平均粒径(图 8a)为0.84~8.03Φ,其中,A区的平均粒径约3~4Φ;B-1、B-2的粒径较粗,平均值均为2~3Φ,B-3的平均粒径约为2~5Φ,自B-1、B-2至B-3及其深水区,平均粒径逐渐变细。区内沉积物峰态值(图 8b)为0~8.89。A、B-2区峰度非常尖锐;相较而言,B-1、B-3区峰态值较低,峰度中等—尖锐。区内偏态(图 8c-0.64~0.78,为很负偏—很正偏。A区正偏态—很正偏态,偏态值为0.3~0.7,相对而言,B-2区偏态分布不连续且对应的值较低,为负偏态;B-1区则呈现相反的分布特征,偏态分布连续且表现为正偏态;B-3区的偏态分布复杂,F东侧湾缘的偏态值低于西侧湾缘,自湾缘至湾内深水区,偏态值逐渐增大,东侧的砾石带上的偏态值较高。

    图  8  粒径参数
    (a:平均粒径/Φ;b:峰态;c:偏态)
    Figure  8.  Distributions of the grain size parameters of the surface sediment
    a, mean size (Mz); b, kurtosis (Kg); and c, skewness (Ski)

    在表层沉积物中,主要碎屑矿物为石英、长石、岩屑(图 9abd),轻矿物含量占绝对优势(图 9)。B-1的石英、长石、岩屑含量普遍较高,呈带状分布,分布较为连续;A、B-2中三者的含量较前者均低,分布杂乱无序;B-3内的石英、长石、岩屑含量低于陆架区域,自陆架至湾内深水区,含量呈舌状递减。值得一提的是,石英含量沿着东侧砾石带及其向海的延伸方向上较高。

    图  9  碎屑矿物含量
    (a:石英;b:长石;c:石英/长石;d:岩屑)
    Figure  9.  Percentage of fragmental minerals in the surface sediment
    (a, quartz; b, feldspar; c, quartz/feldspar; and d, lithic fragments)

    通常,在远距离的搬运或强水动力作用下,长石含量会降低,石英的含量相对富集。东海外陆架老的残留沉积中,石英/长石比值>1.1,这种沉积保留了高速流水环境的古记录[42]图 6c表明全区绝大多数区域的石英/长石比值均>1.1。B-1石英/长石值最低, 而A、B-2以及B-3区东侧砾石带的石英/长石值明显高。

    沉积物类型、粒度特征主要受控于物源、沉积过程中动力变迁及环境等诸多因素的影响,碎屑矿物的分布特征也保存了沉积物输运的一些记录,通过分析沉积物类型、组分、粒度及碎屑矿物在空间上的分布及变化,可揭示沉积物的输运趋势、水动力的演变过程。

    末次盛冰期时东海海平面降至-135m以上[5, 8],外陆架水退成陆,海湾内存有部分海水,此时海湾边缘及湾口处于滨岸环境。自B-3边缘至深水区,粉砂、黏土组分逐渐增多,主要的沉积物类型也由砾质砂、含砾砂逐渐转变为泥质较多的泥质砂、含砾泥、含砾泥质砂,表明B-3区的沉积物分选较差;对于深水区而言,沉积物峰态值低,指示该区沉积物改造不充分。自B-1、B-2至B-3,长石、岩屑含量逐渐呈舌状递减,在强水动力下较稳定的石英含量在两条砾石带及其延伸方向上的海底峡谷则相对较高,因此,B-3内的沉积物可能经历了长距离的输运;沿着东侧砾石带及其延伸方向上的海底峡谷,沉积物显示为非常正偏态,粗粒组分较多,而相关的石英/长石比值较高,应为高速流水所致。以上特征表明B-3沉积物经历了高速水动力的输运及不充分的改造作用,可能为浊流或高浊度重力流所致。值得一提的是,区内的两条砾石带的位置对应于末次冰期时形成的古河道,这两者或为浊流所塑造的浊流通道(图 1b)。该区附近的钻孔及相关的地震资料也表明,在海底峡谷附近及其终端,末次盛冰期的浊积层、浊积扇较发育。Xiang等[30]和Shao等[43]报导在E017(图 1b)和ECS12A(27.44°N、126.41°E, 水深1201m)约19cal.kaBP处发现了数处浊积层;Zheng等[29]推测Oki02(图 1b)内19.2~17.0 cal.aBP的高沉积速率可能为高浊度重力流所致;B-3湾口的地震剖面也指示了晚更新世地层中滑塌和滑坡事件频发[44],根据这些证据,我们认为浊流、滑坡是B-3区较为重要的搬运方式。

    末次盛冰期时,古长江口靠近冲绳海槽中部[12],与其他古河道一样(图 1b),是浊流重要的物质来源[43],通过短途输运可在陆架边缘卸载大量的陆源碎屑物质[34, 45, 46];海湾与周边陆架高差达60m,湾口毗邻陡峻的陆坡,峡谷发育(图 10),为浊流的发育提供了有利的地形条件。受东亚冬季风的影响[47, 48],该时期的波浪作用强烈,可侵蚀B-3和陆架边缘的松散沉积物,使其地层失稳,引发滑塌,并最终演化为浊流和滑坡。同时,台风、强风暴可加剧波浪这一作用,使得原本积聚在陆架边缘的陆源沉积极易滑塌,引发浊流、滑坡事件。此外,强烈的地震也是引发该地区浊流、滑坡事件的重要因素[49]。因此,在以上充足的物质来源、有利的地势条件及外界触发因素如波浪、风暴、台风以及地震的影响下,末次盛冰期期间,浊流和滑坡事件在B-3边缘频繁发生,携带大量的陆源碎屑物输至B-3内,带来复杂的沉积组分,同时下切其下伏地层,并发育砾石带,在原地形成小型冲沟,并逐步将其塑造为浊流通道[5]

    图  10  海湾及周边区域的地形梯度图
    (梯度图的地理坐标实际上是直角坐标系表示,在求算梯度时是水深值与直角坐标系的对应数值的比值,单位是无量纲)
    Figure  10.  Terrain gradient map of the paleo-gulf and its surrounding area
    (This terrain gradient represents the ratio of the water depth to a related coordinate value in the rectangular coordinate system, whose unit is dimensionless. The 120-m, 100-m and 70-m isobaths indicate rapid transgressions during the 19ka-MWP and MWP-1A, respectively)

    在B-3湾缘及湾口,砾石和砂组分含量较高,砾质砂含量高,表明该区曾处于强烈的水动力条件;相较B-3的深水区,其平均粒径粗,偏态近乎对称,表明B-3沉积物分选较好,连同高含量的石英及石英/长石高值,指示该区经历了强水动力诸如强潮、波的充分冲刷或改造。该时期,黑潮向琉球群岛偏转[35],在B-3内的通量较低,影响弱[36],当地半日潮强度远大于全日潮,尽管其最大振幅不过90cm[20],不过,由于海湾与海槽相连,可受到西太平洋潮波的影响[50],尤其在该期强盛的东亚冬季风影响下,滨岸带的潮波剧烈淘洗湾缘沉积物,将粉砂、黏土挟至B-3深水区,B-3湾缘的砾石、砂含量增多。该区的生物碎屑含量较少,这也可能反映了潮、波动力较强,不适于贝类生物栖息(图 7)。

    由于B-3湾口区浅,浊流会逐渐减缓并在此卸载部分沉积物,其中细粒沉积物可能会因为湾口无长距离浅水陆架的消波作用而易受波浪、潮流的淘洗[51],并带至他处;再者,末次盛冰期时,强盛的东亚冬季风可增强沿跨陆架流的冲刷强度[17],在原地保留粗粒沉积物。

    在冰消期初始阶段(19ka-MWP[52])及18~15cal. kaBP,海平面经历了快速、慢速的上升期[53]。在此期间,东海海平面分别上升至现今125和110m等深线处[5],在我们的研究中也有所体现:120m等深线附近地形梯度较大(图 10),表明B-3湾口及湾缘经历了快速海侵,保留了原有地貌,而100和120m等深线之间地形梯度小,地形较平坦,则指示了慢速的海侵(图 10)。当海平面快速上升时,海岸线在短期内快速后退[54],海水不能及时将河口泥沙输送到整个陆架,也无法大规模改造低海面时期的沉积物[41],取而代之的是在B-3湾口处保留改造沉积,石英和长石(通常赋存于粗粒沉积)含量较高(图 9);此外,海平面的快速上升增强了B-3内潮波的浅水效应, M2潮波振幅达到200 cm左右, 潮波波长变短, 同潮时线显著密集[20, 55],这意味着潮流流速加大,可强烈冲刷B-3浅水区的沉积,湾缘高含量的粗粒沉积(图 6)、石英和长石组分(图 9)即是例证;在慢速的海侵时期,B-3浅水地带水深多在40m左右,一系列的潮流沙脊群在此发育[8],这表明潮流(往复流)逐渐成为研究区主导作用营力[56, 57]。事实上,该时期此处的潮流强于现今[21],相关的潮流底应力可侵蚀B-3浅水区先前的沉积物,尤其在东亚冬季风的加强下。此外,东亚冬季风还可增强跨陆架流的强度[18],同潮流一道,携走B-3浅水区的细粒物质。

    14.5~13.7kaBP期间,海平面于95~78m快速上升(MWP-1A事件)[53, 58],东海海平面亦在72~110m间快速上升[5],整个海湾潜没于水下。100m等深线附近的地形梯度较高,且100~70m之间的海底地形凹坑广布(图 10),指示该区经历了快速的海侵作用。该时期,快速上升的海平面可通过高速水流间接地侵蚀陆架沉积[59]。随着海平面的快速上升,东海陆架上的潮流作用强度增大,潮流底床应力随之增大,在海平面到达-90m、-75m时,潮流在B-1、B-2部分区域产生的底床应力均达到1N/m2以上[21],这足以改造东海陆架在末次盛冰期时形成的蓬松沉积物[60],将细粒物质携带至他处,在原地留下较多的砂质组分。

    不过,B-1和B-2区表层沉积物的分布特征差异较大。在B-1区, 砾石、砂组分较多,粒径粗(图 8a),分选好。此外,B-1区的正偏态表明该区经历了充分的改造;低含量的生物碎屑(图 7)表明B-1水动力较强,不适合贝类栖息。B-1地形梯度大,地势陡峻,使当地水深变化快,当海平面上升时,海侵的水平推进距离短,波浪和潮流向陆方向作用范围窄, 从而形成较强的水动力环境,可充分改造、分选B-1的沉积物;而且,B-1区的石英、长石和岩屑含量高且分布连续,石英/长石比值较低,表明B-1的水平海侵速度低于B-2,这可解释为两地海侵速度一致时,B-1较大的地形梯度可使B-1水平海侵速度低,海水对B-1海底的冲刷力度也弱。

    B-2区沉积组分复杂,沉积物分选差,B-2区偏度值较低且分布不连续,石英、长石、岩屑的含量较低且分布无序,表明该区沉积物经历了不充分的改造作用,而B-2的石英/长石比值高,意味着该区水流速度快。相对于B-1,B-2的地形梯度小(图 10),使水平海侵速度高且快,可冲蚀长石,造成石英/长石比值较高。B-2地形梯度小,向陆方向的潮波区域相对就大,从而间接地削弱了潮波的强度,使其分选作用弱,尤其在快速的海侵作用下,更难以及时对沉积物进行分选。B-2区生物碎屑含量高,可能指示该区水动力弱,适宜贝类生存,或是由于快速海侵时期,海侵的水平速度较快,将下伏地层中的生物碎屑刨蚀出来。

    在冰消期晚期,随着海岸线向陆迁移,向冲绳海槽内输运的陆源碎屑物质减少[12],浊流减弱[43]。然而,B-1和B-2区沉积物中仍然保存有粗粒碎屑沉积组分,细粒物质较少,潮流的作用是主因,尤其是在MWP-1A与MWP-1B之间,东海海平面上升缓慢并逐步到达现今60m等深线附近[61],此时B-1和B-2的水深为30~50m。而该区发育的大量的潮流沙脊[8]通常形成于水深30~50m间[22],与此时B-1和B-2的水深一致,这意味着这些潮流沙脊形成于此阶段。Uehara和Saito[21]也指出该时期该处的强潮流底应力可达2.0N/m2,因此,潮流作用仍然是海水所影响到的陆架区的主要作用营力,伴随着风暴作用,可广泛改造陆架上先前的沉积物,阻止细粒沉积物在此沉积,并可将细粒沉积物输运至冲绳海槽,使B-1和B-2区砂质沉积物广布。

    高水位时期,海平面急剧上升,海平面在7kaBP左右到达现今位置[11]。对于A区沉积物而言,其主要的沉积类型为含有较多粉砂和黏土的含砾泥质砂,沉积物分选较差,因此A区沉积物的尖峰态、正偏态并非强水动力的改造所致,应为细粒沉积物较多,造成沉积物粒径范围变宽。该时期,伴随着海平面的持续上升,陆源粗粒碎屑物质的输入减少,石英、长石、岩屑含量较低(图 9)。该时期中国东部边缘海的潮波系统基本形成[19],潮流底应力极大值相应地随之向陆迁移[21],由于水深较大,潮流难以改造A区沉积物,部分细粒物质得以在先前的改造沉积上沉积。

    B-1、B-2及B-3的浅水区仍以粗粒组分为主,这可能与黑潮及东海环流系统相关。该时期,黑潮强度增大并逐渐发育为陆架边缘区的主要水动力[9, 34, 62]。黑潮在此形成终年存在的冷涡-上升流系统,有研究指出,该系统在100m水深以下皆有分布[33, 62],可剧烈冲刷陆架边缘并可将陆架物质搬运至海槽内[32],导致B-1砾石、砂较丰富,粒度粗。尽管上升流可将海槽区丰富的营养盐带至陆架区,并促进水体中生物的发育,然而,B-1生物碎屑颗粒的含量极少,究其原因,不外乎B-1的水动力条件较强,生物沉积难以在原地存留,同时,冬季,台湾暖流主要沿着50m等深线向东北运动,流幅较窄,低温低盐的浙闽沿岸流主要局限于20m以浅海域;夏季,台湾暖流在表层主要平行岸界流动,但在27°N附近,其分支向东汇入黑潮,而陆架区75m以深的层位主要还是受黑潮的影响[63],辽阔的东海陆架使得长江物源物质仅可输运至123.5°E,难以抵达研究区,为B-1区带来丰富的细粒沉积及生物沉积。台湾暖流与黑潮流经研究区,但水深100m的区域仍然以来自黑潮次表层水为主,其主轴流速约1m/s,主轴边缘的流速也将近0.3m/s[64],更有研究模拟指出,在27°N以南,50m以下层位有大量黑潮水进入东海陆架,以0.3m/s作为黑潮流区,发现其流幅宽度可达130km,在27°~28.5°N之间,黑潮也有明显入侵陆架的趋势[63],因此,除了台湾暖流、长江冲淡水难以影响到B区,强大的底层流也是B区难以沉积来自中国大陆的细粒沉积物的重要原因,可阻止长江源细粒物质在此沉积[15]。据东海陆架沉积物中210Pb和137Cs的含量的研究得知[65],台湾源的细粒沉积物在B区也难以停留,而是沉积于底层流下游区。相对地,A区的底层流强度较弱[64],保留了部分细粒沉积,同时,台湾暖流的东支在冬季于27°N附近汇入黑潮主流,携带的部分现代陆源的细粒沉积物可能卸载于此,在该区沉积少量的粉砂、黏土级组分,峰度非常尖锐。

    目前,涉及该古海湾的成因尚少,有研究指出,根据现有的相关地震资料,前更新世时期的NW向走滑断层控制了该古海湾的成因,类似于鱼山-久米断裂带[66],长期的北、南盘差异性的升、降是造成该区形成半地堑式洼地地貌的基础,继而塑造成古海湾的雏形[23]

    在构造作用的大背景下,末次盛冰期时期,频发的滑坡、浊流事件则是塑造海湾地貌的另一重要原因。作为浊流的源头,海湾内的沉积物以浊流的形式将湾内及其边缘沉积物自海湾边缘经过海湾内部输送至海底峡谷乃至陆坡及海槽内,严重冲蚀了海湾内部地层,这是古海湾内部两条砾石带形成的重要原因,造成了海湾内部深凹的地貌形态,同时,浊流在海底峡谷处的输移,还会因浊流在湾口处东黄尾海底峡谷、第2赤尾海底峡谷、第1赤尾海底峡谷的上溯侵蚀作用,造成这些海底峡谷向陆架方向伸展,间接地拓宽了湾口的宽度,也相继增大了湾口局部区域的深度,加剧了湾口地貌形态的侵蚀,是湾口区浅滩之间深凹地貌形成的主因,使湾内与海底峡谷的联系更加畅通,形成天然的浊流通道,反过来又促使湾内物质更易向陆坡及海槽内更加便易地输运,使湾内物质难以沉积,古海湾得以形成。末次冰消期以来,随着海平面的不断上升,海岸向陆迁移,河口亦随之向陆移动,来自中国大陆的陆源碎屑物质急剧减少,古海湾内的浊流事件也随之减少,对古海湾内深凹地貌的塑造作用也减弱。然而,由于长江等大陆的大量陆源物质难以跨越辽阔的东海陆架,该区在末次冰消期以来尚未沉积大量的沉积物,同时,黑潮、底层流、冷涡-上升流系统的“屏障”作用,既阻止了中国大陆细粒沉积物的沉积,也使台湾源的沉积物在此处难以停留,没有在此地形成可观的全新世地层,由此,古海湾深凹地貌得以保留。

    (1) 古海湾及周边海域的沉积环境自末次盛冰期以来大致可划分为3个阶段:①末次盛冰期时,东海海平面降至最低,古长江口位于古海湾附近,可在此处卸载大量的陆源碎屑物质,加之陡峻的地势条件、波浪、东亚冬季风、台风和风暴、地震,使陆架边缘及海湾边缘浊流及滑坡事件频发,造成B-3内部沉积组分复杂,并在内部塑造了以两条砾石带为主的浊流通道;此外,潮流及其底应力、波浪及强跨陆架流在东亚冬季风的影响下可剧烈侵蚀B-3的湾缘及湾口,使其沉积物粗化,石英、长石、岩屑含量高,而生物碎屑含量低,石英/长石比值较高;②末次冰消期,随着海平面的上升,浊流逐渐减弱。在其早期,波浪、潮流底应力及跨陆架流在东亚冬季风的影响下依然强劲,冲刷B-3湾口及湾缘,沉积物进一步粗化;晚期,随着海平面的不断上升,潮流逐渐成为B-1和B-2的主要作用营力,其潮流底应力可改造陆架区沉积。此外,B-1和B-2区差异性的地势及其所影响的水平海侵速度及潮波强度造就了两地区石英、长石、岩屑、生物碎屑含量及分布的差异;③高水位期,黑潮成为影响陆架边缘沉积的主要水动力。冷涡-上升流系统强烈冲刷B-1,进一步粗化其沉积物,且生物沉积难以存留。强劲的黑潮底层流冲蚀B-1、B-2及B-3浅水区,加之台湾暖流、浙闽沿岸流、长江冲淡水在该区的影响较弱,现代沉积物难以在此沉积,保留了末次盛冰期的残留沉积及后期的改造沉积,不过,在A区较多的细粒沉积物除与潮流影响较弱相关,同时也与底层流较弱的影响相关,台湾暖流携带的细粒沉积物也可能在此处卸载,在该区沉积了部分粉砂、黏土组分。

    (2) 除受前更新世时期NW向走滑断裂的控制外,末次盛冰期频繁的浊流及滑坡是塑造该古海湾深凹地貌的又一因素,它冲蚀古海湾内部沉积,下切下伏地层,进一步加剧了其深凹的地貌,在后期的冰消期和高水位时期,虽然浊流减弱,潮波系统及黑潮却逐渐强盛,阻止了细粒沉积物的输入,使古海湾的深凹地貌得以保留。

  • 图  1   研究区构造图(A)及表层取样站位分布(B)(据Hsu等[24])

    黑色虚线代表走滑断裂,F为海湾内的走滑断裂;其中a,b,c分别对应东黄尾海底峡谷、第2赤尾海底峡谷、第1赤尾海底峡谷,形成于末次冰期的古河道(黄色阴影区)(Ujiié和Ujiié[26]),相关的钻孔包括EA05(余华等[27]),Q43(Lin等[28]),Oki02 (Zheng等[29]), E017 (Xiang等[30])

    Figure  1.   Tectonic framework and distribution of the surface samples of the paleo-gulf

    A, Tectonic framework of the study area modified from Hsu et al. (2001). The black dashed lines indicate strike-slip faults, F is a strike-slip faults in the paleo-gulf; B, Distribution of the surface samples (a, b, c represent the East Huangwei submarine canyon, the Second Chiwei submarine canyon, the First Chiwei submarine canyon, respectively). Drowned river valleys formed during glacial period (shaded yellow areas) are modified by Ujiié and Ujiié[26]. The reference cores include EA05 (Yu et al.[27]), Q43 (Lin et al[28].), Oki02 (Zheng et al[29].), E017 (Xiang et al[30])

    图  3   Folk三角分类图解

    a为含砾的Folk三角图,图中的示例依次为:G-砾;sG-砂质砾;msG-泥质砂质砾;mG-泥砾;gS-砾质砂;gmS-砾质泥质砂;gM-砾质泥;(g)S-含砾泥;(g)mS-含砾泥质砂;(g)M-含砾泥;S-砂;mS-泥质砂;sM-砂质泥;M-泥。b为无砾Flok三角图,图中示例依次为:S-砂;zS-粉砂质砂;mS-泥质砂;cS-黏土质砂;sZ-砂质粉砂;sM-砂质泥;sC-砂质黏土;Z-粉砂;M-泥;C-黏土

    Figure  3.   Folk triangular diagram

    a. Folk triangular diagram for pebbles: G-gravel; sG-sandy gravel; msG-muddy sandy gravel; mG-muddy gravel; gS- gravelly sand; gmS-gravelly muddy sand; gM-gravelly mud; (g)S-pebbly sand; (g)mS-pebbly muddy sand; (g)M-pebbly mud; S-sand; mS-muddy sand; sM-sandy mud; M-mud. b pebble-free Folk triangular diagram: S-sand; zS-silty sand; mS-muddy sand; cS-clayey sand; sZ-sandy silt; sM-sandy mud; sC-sandy clay; Z-silt; M-mud; C-clay

    图  2   研究区流系示意图(据文献[34])

    其中黄色为陆地,蓝色为海洋,蓝色越深,深度越大

    Figure  2.   Sketch map of the current system in the study area(Diekmann et al[34])

    yellow represents land, blue represents ocean and its depth is lager as this blue become darker

    图  4   表层沉积物类型

    (黑色虚线为沉积区界线;A:北部陆架含砾泥质砂区;B-1:西部陆架含砾砂-砾质砂区;B-2:北部陆架含砾砂-含砾泥质砂区;B-3:古海湾多类型沉积区;C:陆坡砂质泥区;D:海槽泥质区)

    Figure  4.   Types of the surface sediment

    A. northern shelf pebbly muddy sand area; B-1.western shelf pebbly sand-gravelly sand area; B-2. northern shelf pebbly sand-pebbly muddy sand area; B-3.paleo-gulf multiple sedimentary composition area; C. continental slope sandy mud area; D. the Okinawa Trough mud area. The black dashed line represents the boundary line of the sediment areas

    图  5   Q43孔柱状岩性及沉积相(据文献[28],绿点为测年位置)

    岩性描述与沉积划分:U1:0~160cm, 青灰色粉砂质细砂,含丰富的生物碎屑,为低海面滨岸相沉积;U2:160~230cm,浅褐色贝壳砂砾层,含有丰富的贝壳碎片,为潮间带沉积;U3:230~376cm, 暗灰色黏土质粉砂, 夹浅灰色粉砂质细砂薄层, 为潮下带沉积; U4:376~395cm,岩性由浅褐色粉砂逐渐过渡为贝壳砂砾层,为潮间带沉积

    Figure  5.   Lithology and sedimentary facies of Q43 (modified from Lin et al[28].) green points are dating positions

    图  6   沉积物粒度组分分布

    (a:砾石;b:砂;c:粉砂;d:黏土)

    Figure  6.   Composition of sediments

    (a, gravel; b, sand; c, silt; and d, mud)

    图  7   生物碎屑含量

    Figure  7.   Percentages of biodetritus in the surface sediment.

    图  8   粒径参数

    (a:平均粒径/Φ;b:峰态;c:偏态)

    Figure  8.   Distributions of the grain size parameters of the surface sediment

    a, mean size (Mz); b, kurtosis (Kg); and c, skewness (Ski)

    图  9   碎屑矿物含量

    (a:石英;b:长石;c:石英/长石;d:岩屑)

    Figure  9.   Percentage of fragmental minerals in the surface sediment

    (a, quartz; b, feldspar; c, quartz/feldspar; and d, lithic fragments)

    图  10   海湾及周边区域的地形梯度图

    (梯度图的地理坐标实际上是直角坐标系表示,在求算梯度时是水深值与直角坐标系的对应数值的比值,单位是无量纲)

    Figure  10.   Terrain gradient map of the paleo-gulf and its surrounding area

    (This terrain gradient represents the ratio of the water depth to a related coordinate value in the rectangular coordinate system, whose unit is dimensionless. The 120-m, 100-m and 70-m isobaths indicate rapid transgressions during the 19ka-MWP and MWP-1A, respectively)

    表  1   Q43孔、EA05孔的AMS14C年代数据

    Table  1   AMS14C age data for core Q43 and EA05

    钻孔 深度/cm 常规AMS 14C年龄/aBP 校正日历年龄/cal.aBP 测年材料
    Q43 36 15 320±370 17 915 贝壳
    155 23 600±450 27 642 贝壳
    282 8 670±370 9 593 有机碳
    316 8 930±330 9 921 有机碳
    EA05 1293 18 920±720 22 236 有机碳
    1923 20 430±630 24 003 有机碳
    2393 22 000±710 25 816 有机碳
    下载: 导出CSV
  • [1]

    Siddall M, Rohling E J, Almogi-Labin A, et al. Sea-level fluctuations during the last glacial cycle[J]. Nature, 2003, 423(6942): 853-858. doi: 10.1038/nature01690

    [2]

    Liu X T, Rendle-Bühring R, Henrich R. Climate and sea-level controls on turbidity current activity on the Tanzanian upper slope during the last deglaciation and the Holocene[J]. Quaternary Science Reviews, 2016, 133: 15-27. doi: 10.1016/j.quascirev.2015.12.002

    [3]

    Lee H J, Chough S K, Yoon S H. Slope-stability change from late pleistocene to holocene in the Ulleung Basin, East Sea (Japan Sea)[J]. Sedimentary Geology, 1996, 104(1-4): 39-51. doi: 10.1016/0037-0738(95)00119-0

    [4]

    Jorry S J, Droxler A W, Mallarino G, et al. Bundled turbidite deposition in the central Pandora Trough (Gulf of Papua) since Last Glacial Maximum: Linking sediment nature and accumulation to sea level fluctuations at millennial timescale[J]. Journal of Geophysical Research: Earth Surface, 2008, 113(F1): F01S19.

    [5]

    Li G X, Li P, Liu Y, et al. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum[J]. Earth-Science Reviews, 2014, 139: 390-405. doi: 10.1016/j.earscirev.2014.09.007

    [6]

    Niino H, Emery K O. Sediments of shallow portions of East China Sea and South China Sea[J]. Geological Society of America Bulletin, 1961, 72(5): 731-762. doi: 10.1130/0016-7606(1961)72[731:SOSPOE]2.0.CO;2

    [7]

    Emery K O. Relict sediments on continental shelves of world[J]. AAPG Bulletin, 1968, 52(3): 445-464.

    [8]

    Zhao R B, Sun H T, Wu Y S, et al. Distribution, formation and evolution of sand ridges on the East China Sea shelf[J]. Science in China Series D: Earth Sciences, 2010, 53(1): 822-828.

    [9]

    Dennielou B, Jallet L, Sultan N, et al. Post-glacial persistence of turbiditic activity within the Rhne deep-sea turbidite system (Gulf of Lions, Western Mediterranean): Linking the outer shelf and the basin sedimentary records[J]. Marine Geology, 2009, 257(1-4): 65-86. doi: 10.1016/j.margeo.2008.10.013

    [10]

    Ribó M, Puig P, Urgeles R, et al. Spatio-temporal evolution of sediment waves developed on the Gulf of Valencia margin (NW Mediterranean) during the Plio-Quaternary[J]. Marine Geology, 2016, 378: 276-291. doi: 10.1016/j.margeo.2015.11.011

    [11]

    Saito Y, Katayama H, Ikehara K, et al. Transgressive and highstand systems tracts and post-glacial transgression, the East China Sea[J]. Sedimentary Geology, 1998, 122(1-4): 217-232. doi: 10.1016/S0037-0738(98)00107-9

    [12]

    Ujiié H, Hatakeyama Y, Gu X X, et al. Upward decrease of organic C/N ratios in the Okinawa Trough cores: proxy for tracing the post-glacial retreat of the continental shore line[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 165(1-2): 129-140. doi: 10.1016/S0031-0182(00)00157-7

    [13]

    Xu Z K, Li T G, Chang F Q, et al. Sediment provenance discrimination in northern Okinawa Trough during the last 24 ka and paleoenvironmental implication: rare earth elements evidence[J]. Journal of Rare Earths, 2012, 30(11): 1184-1190. doi: 10.1016/S1002-0721(12)60202-6

    [14]

    Youn J, Kim T J. Geochemical composition and provenance of muddy shelf deposits in the East China Sea[J]. Quaternary International, 2011, 230(1-2): 3-12. doi: 10.1016/j.quaint.2009.11.001

    [15]

    Dou Y G, Yang S Y, Liu Z X, et al. Provenance discrimination of siliciclastic sediments in the middle Okinawa Trough since 30ka: Constraints from rare earth element compositions[J]. Marine Geology, 2010, 275(1-4): 212-220. doi: 10.1016/j.margeo.2010.06.002

    [16]

    Dou Y Y, Yang S Y, Liu Z X, et al. Clay mineral evolution in the central Okinawa Trough since 28ka: Implications for sediment provenance and paleoenvironmental change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 288(1-4): 108-117. doi: 10.1016/j.palaeo.2010.01.040

    [17]

    Li T G, Xu Z K, Lim D, et al. Sr-Nd isotopic constraints on detrital sediment provenance and paleoenvironmental change in the northern Okinawa Trough during the late Quaternary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 430: 74-84. doi: 10.1016/j.palaeo.2015.04.017

    [18]

    Xu G, Liu J, Pei S F, et al. Sources and geochemical background of potentially toxic metals in surface sediments from the Zhejiang coastal mud area of the East China Sea[J]. Journal of Geochemical Exploration, 2016, 168: 26-35. doi: 10.1016/j.gexplo.2016.06.003

    [19]

    Lin H, Lu G N, Song Z Y, et al. Modeling the tide system of the East China Sea with GIS[J]. Marine Geodesy, 1999, 22(2): 115-128. doi: 10.1080/014904199273533

    [20] 闾国年, 林珲, 宋志尧, 等.末次冰期最盛时期以来中国东部边缘海潮波系统演变过程的模拟研究[J].海洋地质与第四纪地质, 2000, 20(4): 1-7. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200004001

    LV Guonian, LIN Hui, SONG Zhiyao, et al. Modeling of the tide wave system changes in the marginal seas adjacent to eastern China since the last full glacial period[J]. Marine Geology & Quaternary Geology, 2000, 20(4): 1-7. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200004001

    [21]

    Uehara K, Saito Y. Late Quaternary evolution of the Yellow/East China Sea tidal regime and its impacts on sediments dispersal and seafloor morphology[J]. Sedimentary Geology, 2003, 162(1-2): 25-38. doi: 10.1016/S0037-0738(03)00234-3

    [22]

    Chen Q Q, Zhu Y R. Holocene evolution of bottom sediment distribution on the continental shelves of the Bohai Sea, Yellow Sea and East China Sea[J]. Sedimentary Geology, 2012, 273-274: 58-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=28769bc40e94cd726baf2020bc63e97d

    [23] 李家彪.东海区域地质[M].海洋出版社, 2008.

    LI Jiabiao. The Regional Geology of the East China Sea[M]. China Ocean Press, 2008.

    [24]

    Hsu S K, Sibuet J C, Shyu C T. Magnetic inversion in the East China Sea and Okinawa Trough: tectonic implications[J]. Tectonophysics, 2001, 333(1-2): 111-122. doi: 10.1016/S0040-1951(00)00270-5

    [25] 王舒畋, 李斌.东海新构造与新构造运动[J].海洋地质与第四纪地质, 2010, 30(4): 141-150. http://d.old.wanfangdata.com.cn/Periodical/dzdz201403012

    WANG Shutian, LI Bin. Neotectonic features and movement in the East China Sea[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 141-150. http://d.old.wanfangdata.com.cn/Periodical/dzdz201403012

    [26]

    Ujiié H, Ujiié Y. Late Quaternary course changes of the Kuroshio Current in the Ryukyu Arc region, northwestern Pacific Ocean[J]. Marine Micropaleontology, 1999, 37(1): 23-40. doi: 10.1016/S0377-8398(99)00010-9

    [27] 余华, 刘振夏, 熊应乾, 等.末次盛冰期以来东海陆架南部EA05岩心地层划分及其古环境意义[J].中国海洋大学学报:自然科学版, 2006, 36(4): 545-550. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb200604006

    YU Hua, LIU Zhenxia, XIONG Yingqian, et al. Stratigraphy of Core EA05 from southern East China Sea Continental Shelf since the last glacial maximum and its paleo-environment implication[J]. Periodical of Ocean University of China, 2006, 36(4): 545-550. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb200604006

    [28]

    Lin X T, Li W R, Du S J, et al. Heavy mineral stratigraphy of sediments from the southern outer shelf of the East China Sea since the last glaciation using fuzzy C-means cluster method[J]. Chinese Journal of Oceanology and Limnology, 2010, 28(1): 183-189. doi: 10.1007/s00343-010-9292-y

    [29]

    Zheng X F, Li A C, Wan S M, et al. ITCZ and ENSO pacing on East Asian winter monsoon variation during the Holocene: sedimentological evidence from the Okinawa Trough[J]. Journal of Geophysical Research: Oceans, 2014, 119(7): 4410-4429. doi: 10.1002/2013JC009603

    [30]

    Xiang R, Sun Y B, Li T G, et al. Paleoenvironmental change in the middle Okinawa Trough since the last deglaciation: Evidence from the sedimentation rate and planktonic foraminiferal record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 243(3-4): 378-393. doi: 10.1016/j.palaeo.2006.08.016

    [31]

    Hsueh Y. The Kuroshio in the East China Sea[J]. Journal of Marine Systems, 2000, 24(1-2): 131-139. doi: 10.1016/S0924-7963(99)00083-4

    [32]

    Hsu S C, Lin F J, Jeng W L, et al. The effect of a cyclonic eddy on the distribution of lithogenic particles in the southern East China Sea[J]. Journal of Marine Research, 1998, 56(4): 813-832. doi: 10.1357/002224098321667387

    [33]

    Lee S, Y Huh C A, Su C C, et al. Sedimentation in the Southern Okinawa Trough: enhanced particle scavenging and teleconnection between the Equatorial Pacific and western Pacific margins[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(11): 1769-1780. doi: 10.1016/j.dsr.2004.07.008

    [34]

    Diekmann B, Hofmann J, Henrich R, et al. Detrital sediment supply in the southern Okinawa Trough and its relation to sea-level and Kuroshio dynamics during the late Quaternary[J]. Marine Geology, 2008, 255(1-2): 83-95. doi: 10.1016/j.margeo.2008.08.001

    [35]

    Ujiié Y, Ujiié H, Taira A, et al. Spatial and temporal variability of surface water in the Kuroshio source region, Pacific Ocean, over the past 21, 000 years: evidence from planktonic foraminifera[J]. Marine Micropaleontology, 2003, 49(4): 335-364. doi: 10.1016/S0377-8398(03)00062-8

    [36]

    Jian Z M, Wang P X, Saito Y, et al. Holocene variability of the Kuroshio current in the Okinawa Trough, northwestern Pacific Ocean[J]. Earth and Planetary Science Letters, 2000, 184(1): 305-319. doi: 10.1016/S0012-821X(00)00321-6

    [37]

    Li T G, Liu Z X, Hall M A, et al. Heinrich event imprints in the Okinawa Trough: evidence from oxygen isotope and planktonic foraminifera[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 176(1-4): 133-146. doi: 10.1016/S0031-0182(01)00332-7

    [38]

    Xu X D, Yamasaki M, Oda M, et al. Comparison of seasonal flux variations of planktonic foraminifera in sediment traps on both sides of the Ryukyu Islands, Japan[J]. Marine Micropaleontology, 2005, 58(1): 45-55. doi: 10.1016/j.marmicro.2005.09.002

    [39]

    Ijiri A, Wang L J, Oba T, et al. Paleoenvironmental changes in the northern area of the East China Sea during the past 42, 000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(3-4): 239-261. doi: 10.1016/j.palaeo.2004.12.028

    [40]

    Folk R L, Andrews P B, Lewis D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand Journal of Geology and Geophysics, 1970, 13(4): 937-968. doi: 10.1080/00288306.1970.10418211

    [41] 刘勇.中国东部海域海底沉积物成因环境图[M].北京:科学出版社, 2005.

    LI Guangxue, YANG Zigeng, LIU Yong. Formation Environment of the Seafloor Sediment in the East China Seas[J]. Beijing: Science Press, 2005.

    [42] 王先兰, 马克俭, 陈建林, 等.东海碎屑矿物特征的研究[J].中国科学: B辑, 1985, 15(5): 474-482. http://d.old.wanfangdata.com.cn/Periodical/cjxb201605009

    WANG Xianlan, MA Kejian, CHEN Jianlin, et al. Detrital minerals in the surface sediments of East China Sea Shelf and thier geological significance[J]. Science of China (Series B), 1985, 15(5): 474-482. http://d.old.wanfangdata.com.cn/Periodical/cjxb201605009

    [43]

    Shao H B, Yang S Y, Cai F, et al. Sources and burial of organic carbon in the middle Okinawa Trough during late Quaternary paleoenvironmental change[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 118: 46-56. doi: 10.1016/j.dsr.2016.10.005

    [44] 李西双, 刘保华, 吴金龙, 等.冲绳海槽西部陆坡地震相模式与沉积体系[J].海洋与湖沼, 2004, 35(2): 120-129. doi: 10.3321/j.issn:0029-814X.2004.02.003

    LI Xishuang, LIU Baohua, WU Jinlong, et al. Seismic reflection facies and deposit systems in the west slope of the Okinawa Trough[J]. Oceanologia et Limnologia Sinica, 2004, 35(2): 120-129. doi: 10.3321/j.issn:0029-814X.2004.02.003

    [45]

    Dou Y G, Yang S Y, Liu Z X, et al. Sr-Nd isotopic constraints on terrigenous sediment provenances and Kuroshio Current variability in the Okinawa Trough during the late Quaternary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 365-366: 38-47. doi: 10.1016/j.palaeo.2012.09.003

    [46]

    Dou Y G, Yang S Y, Shi X F, et al. Provenance weathering and erosion records in southern Okinawa Trough sediments since 28ka: Geochemical and Sr-Nd-Pb isotopic evidences[J]. Chemical Geology, 2016, 425: 93-109. doi: 10.1016/j.chemgeo.2016.01.029

    [47]

    Wei K Y. Environmental changes during the late quaternary in Taiwan and adjacent seas: an overview of recent results of the past decade[J]. Western Pacific Earth Sciences, 2002, 2(2): 149-160.

    [48]

    Chang Y P, Chen M T, Yokoyama Y, et al. Monsoon hydrography and productivity changes in the East China Sea during the past 100000 years: Okinawa Trough evidence (MD012404)[J]. Paleoceanography and Paleoclimatology, 2009, 24(3): PA3208.

    [49]

    Huh C A, Su C C, Liang W T, et al. Linkages between turbidites in the southern Okinawa Trough and submarine earthquakes[J]. Geophysical Research Letters, 2004, 31(12): L12304. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2004GL019731

    [50]

    Liu Z X, Berné S, Saito Y, et al. Internal architecture and mobility of tidal sand ridges in the East China Sea[J]. Continental Shelf Research, 2007, 27(13): 1820-1834. doi: 10.1016/j.csr.2007.03.002

    [51]

    Wellner R W, Bartek L R. The effect of sea level, climate, and shelf physiography on the development of incised-valley complexes: a modern example from the East China Sea[J]. Journal of Sedimentary Research, 2003, 73(6): 926-940. doi: 10.1306/041603730926

    [52]

    Clark P U, Mccabe A M, Mix A C, et al. Rapid rise of sea level 19, 000 years ago and its global implications[J]. Science, 2004, 304(5674): 1141-1144. doi: 10.1126/science.1094449

    [53]

    Lambeck K, Rouby H, Purcell A, et al. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(43): 15296-15303. doi: 10.1073/pnas.1411762111

    [54]

    Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea[J]. Marine Geology, 2004, 209(1-4): 45-67. doi: 10.1016/j.margeo.2004.06.009

    [55]

    Katsuto U. Tidal changes in the Yellow/East China Sea caused by the rapid sea-level rise during the Holocene[J]. Science in China Series B: Chemistry, 2001, 44(S1): 126-134. doi: 10.1007/BF02884818

    [56]

    Berné S, Vagner P, Guichard F, et al. Pleistocene forced regressions and tidal sand ridges in the East China Sea[J]. Marine Geology, 2002, 188(3-4): 293-315. doi: 10.1016/S0025-3227(02)00446-2

    [57]

    Liu Z X, Berne S, Saito Y, et al. Quaternary seismic stratigraphy and paleoenvironments on the continental shelf of the East China Sea[J]. Journal of Asian Earth Sciences, 2000, 18(4): 441-452. doi: 10.1016/S1367-9120(99)00077-2

    [58]

    Fairbanks R G. A 17, 000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation[J]. Nature, 1989, 342(6250): 637-642. doi: 10.1038/342637a0

    [59]

    Steinke S, Hanebuth T J, Vogt C, et al. Sea level induced variations in clay mineral composition in the southwestern South China Sea over the past 17, 000 yr[J]. Marine Geology, 2008, 250(3-4): 199-210. doi: 10.1016/j.margeo.2008.01.005

    [60]

    Oguri K, Matsumoto E, Saito Y, et al. Evidence for the offshore transport of terrestrial organic matter due to the rise of sea level: the case of the East China Sea continental shelf[J]. Geophysical Research Letters, 2000, 27(23): 3893-3896. doi: 10.1029/2000GL011690

    [61]

    Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85(3-4): 208-224. doi: 10.1016/j.geomorph.2006.03.023

    [62]

    Tang T Y, Tai J H, Yang Y J. The flow pattern north of Taiwan and the migration of the Kuroshio[J]. Continental Shelf Research, 2000, 20(4-5): 349-371. doi: 10.1016/S0278-4343(99)00076-X

    [63] 鲍献文, 林霄沛, 吴德星, 等.东海陆架环流季节变化的模拟与分析[J].中国海洋大学学报:自然科学版, 2005, 35(3): 349-356. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb200503001

    BAO Xianwen, LIN Xiaopei, WU Dengxing, et al. Simulation and analysis of shelf circulation and its seasonal variability in the east China Sea[J]. Periodical of Ocean University of China, 2005, 35(3): 349-356. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb200503001

    [64]

    Yang D Z, Yin B S, Liu Z L, et al. Numerical study of the ocean circulation on the East China Sea shelf and a Kuroshio bottom branch northeast of Taiwan in summer[J]. Journal of Geophysical Research: Oceans, 2011, 116(C5): C0515. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2010JC006777

    [65]

    Su C C, Huh C A. 210 Pb, 137 Cs and 239, 240 Pu in East China Sea sediments: sources, pathways and budgets of sediments and radionuclides[J]. Marine Geology, 2002, 183(1-4): 163-178. doi: 10.1016/S0025-3227(02)00165-2

    [66]

    Gungor A, Lee G H, Kim H J, et al. Structural characteristics of the northern Okinawa Trough and adjacent areas from regional seismic reflection data: geologic and tectonic implications[J]. Tectonophysics, 2012, 522-523: 198-207. doi: 10.1016/j.tecto.2011.11.027

  • 期刊类型引用(2)

    1. 宋金民,刘树根,李智武,夏舜,冯宇翔,杨迪,叶玥豪,邵兴鹏,王斌,王佳蕊,金鑫,任杉,杨绍海,罗平. 川西地区中三叠统雷口坡组四段古海湾特征及其油气地质意义. 石油勘探与开发. 2024(06): 1291-1303 . 百度学术
    2. SONG Jinmin,LIU Shugen,LI Zhiwu,XIA Shun,FENG Yuxiang,YANG Di,YE Yuehao,SHAO Xingpeng,WANG Bin,WANG Jiarui,JIN Xin,REN Shan,YANG Shaohai,LUO Ping. Characteristics and hydrocarbon geological significances of paleo-bay in the fourth member of Middle Triassic Leikoupo Formation, western Sichuan Basin, SW China. Petroleum Exploration and Development. 2024(06): 1492-1506 . 必应学术

    其他类型引用(1)

图(10)  /  表(1)
计量
  • 文章访问数:  2883
  • HTML全文浏览量:  680
  • PDF下载量:  60
  • 被引次数: 3
出版历程
  • 收稿日期:  2017-04-16
  • 修回日期:  2017-05-30
  • 刊出日期:  2018-04-27

目录

/

返回文章
返回