中国海域油气资源潜力分析与黄东海海域油气资源调查进展

陈建文, 梁杰, 张银国, 杨长清, 袁勇, 许明, 王建强, 雷宝华, 李刚, 杨艳秋, 杨传胜, 孙晶

陈建文, 梁杰, 张银国, 杨长清, 袁勇, 许明, 王建强, 雷宝华, 李刚, 杨艳秋, 杨传胜, 孙晶. 中国海域油气资源潜力分析与黄东海海域油气资源调查进展[J]. 海洋地质与第四纪地质, 2019, 39(6): 1-29. DOI: 10.16562/j.cnki.0256-1492.2019112001
引用本文: 陈建文, 梁杰, 张银国, 杨长清, 袁勇, 许明, 王建强, 雷宝华, 李刚, 杨艳秋, 杨传胜, 孙晶. 中国海域油气资源潜力分析与黄东海海域油气资源调查进展[J]. 海洋地质与第四纪地质, 2019, 39(6): 1-29. DOI: 10.16562/j.cnki.0256-1492.2019112001
CHEN Jianwen, LIANG Jie, ZHANG Yinguo, YANG Changqing, YUAN Yong, XU Ming, WANG Jianqiang, LEI Baohua, LI Gan, YANG Yanqiu, YANG Chuansheng, SUN Jing. Regional evaluation of oil and gas resources in offshore China and exploration of marine Paleo-Mesozoic oil and gas in the Yellow Sea and East China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(6): 1-29. DOI: 10.16562/j.cnki.0256-1492.2019112001
Citation: CHEN Jianwen, LIANG Jie, ZHANG Yinguo, YANG Changqing, YUAN Yong, XU Ming, WANG Jianqiang, LEI Baohua, LI Gan, YANG Yanqiu, YANG Chuansheng, SUN Jing. Regional evaluation of oil and gas resources in offshore China and exploration of marine Paleo-Mesozoic oil and gas in the Yellow Sea and East China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(6): 1-29. DOI: 10.16562/j.cnki.0256-1492.2019112001

中国海域油气资源潜力分析与黄东海海域油气资源调查进展

基金项目: 国家地质调查专项“崂山隆起构造沉积条件地质调查”(DD20190818),“南黄海油气资源调查”(DD20160152),“NHH海域油气资源普查”(GZH200800503),“东海陆架盆地西部坳陷带含油气远景调查评价”(1212010310403),“东海陆架西部和DNB油气资源调查”(DD20160153),“东海南部MJ-JL凹陷中生界油气资源调查”(DD20190211)
详细信息
    作者简介:

    陈建文(1965—),男,博士,研究员,主要从事海域油气资源调查评价与研究工作,E-mail:jwchen2012@126.com

  • 中图分类号: P744.4

Regional evaluation of oil and gas resources in offshore China and exploration of marine Paleo-Mesozoic oil and gas in the Yellow Sea and East China Sea

  • 摘要: 2019年是青岛海洋地质研究所重建40周年。40年来,研究所根据公益性油气资源调查的基本定位,按照“立足黄东海、面向中国海、辐射全球海”的空间业务布局,紧密围绕国家和社会重大需求、瞄准国际海洋科技前沿,以摸清中国海域油气资源家底、掌握资源分布状况、实现新区新层系油气突破、服务国家能源战略和海洋强国战略为己任,持续开展了中国海域油气资源区域评价与黄东海盆地油气资源调查,大体分为海域及邻区沉积盆地对比研究、中国海域区域评价战略研究和黄东海海域新区新层系油气资源调查3个阶段。先后主持编制了中国海域沉积盆地分布图和油气资源勘探开发(动态)形势图,开展了海域及邻区含油气盆地对比、中国海域油气勘探开发形势动态分析和油气资源区域评价战略研究、黄东海海域油气资源调查研究与评价,取得了一批原创性的成果。主要体现在:①海域油气资源早期评价技术和沉积盆地深部地震探测技术取得突破性进展;②中国海域油气资源丰富,下一步的调查与勘探方向包括:新层系、近海天然气、富生烃凹陷潜山油气藏、南海深水油气、南海生物礁和非常规天然气;③明确了南黄海盆地的基底性质、海相盆地地层层序和构造区划、侏罗纪前陆盆地特征、海相盆地的油气地质条件和有利区带;④明确了东海中生代盆地的地层层序、盆地结构和两期盆地性质、“大东海”中生代地层分布特征、中生界油气地质条件和有利区带;⑤发现了南黄海古生界古油藏。上述成果和认识为海洋油气资源调查与勘探的下一步工作奠定了坚实的基础。
    Abstract: 40 years have passed since the reestablishment of the Qingdao Institute of Marine Geology in 1979. In the past 40 years, following the basic objective to carry out public oil and gas surveys in China seas and global waters with the Yellow Sea and East China Sea as major targets so as to meet the increasing demand of energy resources of the nation and society, the institute has devoted a lot to the studies on hydrocarbon resource generation and distribution patterns in China seas, upon the international frontiers of marine science and technology. A great number of breakthroughs have been achieved, such as the discovery of new oil and gas horizons and districts. Under the guidance of national energy strategy and the task to make China a strong marine power, the Institute has persisted in regional evaluation of oil and gas resources in China seas, in particular in the Yellow Sea and East China Sea. The research can be roughly subdivided into three stages: the first stage focusing on comparison of offshore and neibouring basins; the second stage focusing on the study of regional evaluation strategies of China seas and the third stage focusing on new horizons and new districts in the Yellow Sea and East China Sea. A map series on distribution of sedimentary basins in China seas and a set of dynamic situation map of oil and gas exploration and development in China Sea were compared and published successively. During the period, following achievements are necessary to be mentioned: (1) Breakthroughs in early stage oil and gas evaluation technology and the deep seismic detection technology for offshore sedimentary basins; (2) Resource assessment in China seas. Data proves that China is rich in marine oil and gas. And the next cycle of survey and exploration should be placed in the new horizons, such as gas offshore, buried hills oil and gas resources in the hydrocarbon-rich sags, oil and gas in deepwaters, organic reefs in the South China Sea and unconventional gas; (3) Further understandings of basic geology, such as, basement properties, marine stratigraphic sequences, tectonic division, characteristics of Jurassic foreland basins, marine basin hydrocarbon geologic conditions and favorable zones in the South Yellow Sea basins; (4) Solution of some specific geological problems related to oil and gas accumulation. Such as, Mesozoic stratigraphic sequences, two-stage basin architecture, basin properties, Mesozoic stratigraphic distribution patterns and the discovery of " Great East China Sea”, Mesozoic hydrocarbon geologic conditions and favorable zones in the East China Sea; (5) Discovery of Paleozoic reservoirs. These achievements and discoveries have laid a solid foundation for the future oil and gas geological survey and exploration in China seas.
  • 甲烷好氧氧化作用是由甲烷氧化细菌介导下甲烷和氧分子分别作为电子供体和电子受体的生物地球化学反应[1],主要发生于海底表层沉积物和海水中,是影响海洋生态系统、控制温室气体排放的重要生化过程[2-3]。海洋泄露环境中,不同泄露位置、泄露时刻或纵深层位的甲烷好氧氧化强度存在显著差异,每天每平方米的氧化速率跨度可从几个纳摩尔到几百个毫摩尔,与之相应的甲烷氧化菌群落结构也不尽相同[4],造成这一现象的原因可能是海底不同区域位置的环境因子差异。

    前人曾通过模拟不同的温度[5-6]、压力[7]、甲烷浓度[8]或营养源[9]等参数条件,探究了不同环境因子条件下气体氧化速率及其对应的微生物群落结构。除此之外,一些实验研究还发现氧浓度也是影响甲烷好氧氧化过程的重要参数之一。首先,从微生物角度而言,氧浓度对甲烷氧化菌的群落结构和活性都存在十分重要的影响。不同甲烷氧化菌具有不同的最适氧浓度范围,其浓度范围差异较大,当氧浓度偏离最适范围时,其微生物活性及甲烷氧化潜力将受到显著抑制。例如Methylosinus trichosporium的最适氧浓度范围较大,跨度为1.6%~18%,而Methylosoma difficile sp. nov.对氧浓度要求较为苛刻,最适氧浓度仅为2%左右[10]。在极端低氧生境中,大部分氧化菌如MethylococcusMethylomonas等通常处于休眠状态,仅有Candidatus Methylomirabilis oxyferea等少数氧化菌仍可借助自身的氧转化机制存活,进而发生甲烷氧化反应[1]。其次,从甲烷氧化速率角度而言,氧浓度对甲烷氧化菌的影响将直接导致其甲烷氧化潜力的差异。前人对不同生态系统的实验研究中发现,氧浓度对甲烷氧化速率的影响规律不一。例如,某树叶堆肥低氧培养(1.5%)下甲烷氧化速率高于高氧培养(10.5%)[11],而某稻田土在高氧条件(19.2%)下的氧化速率却显著高于低氧条件(1.1%)[12],推测认为氧浓度对甲烷氧化的影响可能还受其他环境因素的限制。但是,以上实验研究使用的菌群大都来自湖泊、草原、水稻田等环境,指示陆地生态系统规律,海洋和陆地两种不同环境系统的原位微生物组成存在较大不同,两种生境的菌群特性及其甲烷氧化特征可能并不一致[1]

    海水溶解氧主要来源于大气和海洋植物光合作用,受海洋环流、海洋生物、气候以及大陆径流等多重因素影响,海水溶解氧的分布十分复杂[13]。溶解氧具有一定的垂向分布特征,通常由表层海-气界面平衡状态(约200 μmol/L)叠加植物光合作用增长至最高值(约250 μmol/L),随后急剧降低至最小值(约100 μmol/L),进而逐渐随深度回升至表层氧浓度[14-15]。总体来看,海洋生境氧浓度分布虽较为复杂,但是总体呈现低氧的生境特点。海洋低氧生境与低温、高压、高盐等生境特点相耦合的环境背景下,已发现的甲烷氧化菌多以Methylocicrobium属、Methylococcus属、Methylocaldum属、Methylobacter属和Methylocystis属等I 型氧化菌为主[16],它们是海洋生境的优势菌群。Vekemann等[17]曾利用海底沉积物样品实验模拟了不同氧浓度(1%O2和20%O2)的甲烷氧化过程,发现低氧下氧化速率相对较高,但并未从微生物角度分析其中缘由。

    氧浓度等环境因子对甲烷好氧氧化影响的相关研究,大多来自于湖泊、草原等陆地生态系统,海洋生境中甲烷好氧氧化研究相对较弱。那么,氧浓度对来自海洋生境的甲烷氧化过程有何影响?氧化菌群落结构、生长繁殖情况及甲烷氧化速率如何表现?为解决以上问题,本文通过室内模拟实验手段,利用来自海底油气泄露区的新鲜沉积物样品作为甲烷氧化菌的菌种来源,模拟不同氧浓度条件下的甲烷好氧氧化过程,分析氧浓度对甲烷氧化菌的群落结构和生长繁殖情况的影响规律,探讨不同氧浓度下的甲烷氧化潜力。

    实验菌种来自我国东部渤海湾沙垒田油气渗漏区的表层沉积物(38°16′52.827′′N、118°53′56.893′′W),水深22.7 m。现场测试获得沉积物pH值和氧化还原电位分别为7.57和−29 mV,海底底层溶氧量(DO)年平均值为6.61 mg/L。样品采集方式为遥控潜水式箱形采样器,沉积物重约2.0 kg,避光4 ℃密封贮存。在实验工作前,已通过预培养试验验证了沉积物样品中含有丰富的活性甲烷好氧氧化菌。关于沉积物来源和采集过程的更多细节可详见Li等[8]

    实验所采用的气体包括高纯CH4、O2和N2,纯度均为99.999%。实验中微生物培养液为人工配制海水,配比为NaCl 26.5 g/L,MgCl2 24 g/L,KCl 0.73 g/L,MgSO4 3.3 g/L,NaHCO3 0.2 g/L,CaCl2 1.1 g/L,NaBr 0.28 g/L,pH为7.5。

    根据海洋含氧量特征,本研究将海洋环境分为完全无氧、含微量氧、相对富氧3个氧浓度条件。另外,为了考察海洋来源的甲烷氧化菌在极端富氧环境中的表现,同时考虑甲烷好氧氧化反应的化学计量比,实验还模拟了一种极端富氧条件。因此,实验中共设计4个氧浓度条件:0%O2(实验i)、1%O2(实验ii)、10%O2(实验iii)、50%O2(实验iv),依次对应了完全无氧、含微量氧、相对富氧以及极端富氧的氧浓度条件。其中,实验i(0%O2)体系中,在顶空无氧气供给的基础上,实验还在溶液中额外添加了Na2S试剂,直至氧化还原电位ORP达到约−200 mV以达到完全无氧。实验ii(1%O2)的设定用于模拟海底含微量氧环境,经实验室测定得知,1%O2顶空条件下溶液的氧化还原电位约为−50 mV,其氧浓度条件与渤海与采样位置的原始生存环境(−29 mV)最为接近。实验iii(10%O2)用于模拟海水表层、富氧的南极中层水等相对富氧的氧浓度环境[18]。实验iv(50%O2)中O2含量显著高于大气O2浓度,属于极端富氧环境。各实验分别设置了两个平行实验组。顶空气体中,甲烷分压设定为10%,另外还额外注入高纯氮气作为压力补偿气体,防止后续实验中频繁取气操作造成实验体系真空。根据微需氧微生物培养方法及前期预试验,1%O2与10%O2实验体系需定期补充O2(2 mL/d),使系统内O2浓度保持相对稳定,该补气操作所产生的压力波动较小(<0.002 MPa),可忽略不计。本实验中还设置了一个空白组(50%O2无CH4),在无CH4供应条件下仅充入50% O2,用于观察沉积物中有机质发生完全氧化作用所产生的O2损耗量和CO2产生量。各实验组的具体设定情况详见表1

    表  1  甲烷好氧氧化实验设计方案
    Table  1.  Experimental design for aerobic methane oxidation
    实验组O2浓度底物配比气体配比
    i0%O211 g沉积物+30 mL海水20 mLCH4+180 mLN2
    ii1%O212.7 g沉积物+30 mL海水20 mLCH4+2 mLO2+178 mLN2
    iii10%O211.9 g沉积物+30 mL海水20 mLCH4+20 mLO2+160 mLN2
    iv50%O212.0 g沉积物+30 mL海水20 mLCH4+100 mLO2+80 mLN2
    空白组50%O211.9 g沉积物+30 mL海水100 mLO2+100 mLN2
    下载: 导出CSV 
    | 显示表格

    实验具体操作步骤如下,每个实验组首先称取约12 g的沉积物样品与30 mL人工海水(V/V接近1/1)进行混匀,注入120 mL玻璃钳口瓶中,随后进行N2洗气操作以除去瓶内空气,丁基橡胶塞密封后用针管连接真空泵进行抽真空处理。按照实验方案分别向各实验组充入实验气体和 N2补充气。另外,我们在实验体系中加入了刃天青显色剂,根据显色程度对实验体系O2浓度情况进行辅助观察。将配制好的8组实验样品分别倒置放于恒温培养摇床中进行恒温避光培养。

    实验过程中定期对顶空气体进行取样及组分测定分析。气体取样间隔为3~7天,由气相色谱配套使用的样品锁定型微量进样针(Hamilton 81056型,100 μL)直接扎取取样,单次取样量50 μL。CH4、CO2的气体组分分析采用即取即测方式,所采用仪器为毛细管分流-氢火焰离子化检测器/热导检测器并联气相色谱仪(GC-FID/TCD,Trace GC Ultra型,Thermo)。色谱柱为HP-PLOT/Q(30 m×0.32 mm×20 μm),载气He(99.999%)。仪器参数为:进样口温度200 ℃,分流比10:1,柱流速3 mL/min,柱箱温度140 ℃(维持4 min)。FID温度280 ℃,氢气、空气、尾吹气流速分别为40、450、40 mL/min。气体测定的相对标准偏差为1.6%~5.0%,方法检出限为0.0003~0.046 mol/mol。依据检测得到的气体百分比例(mol%)、体系压力值、温度值、血清瓶顶空体积等参数代入理想气体状态方程,计算得出CH4、CO2的气体含量(μmol)。

    甲烷好氧氧化化学反应方程式:

    $$ {\rm{C}}{{\rm{H}}_4} + 2{{\rm{O}}_2} \to {\rm{C}}{{\rm{O}}_2} + 2{{\rm{H}}_2}{\rm{O}} $$

    甲烷好氧氧化速率(methane oxidation rate,MOR)计算公式为:

    $$ {\rm{MOR = }}\frac{{{{[{\rm{C}}{{\rm{H}}_{\rm{4}}}]}_{i - t - }}{{[{\rm{C}}{{\rm{H}}_{\rm{4}}}]}_i}}}{{dw \times t}}\;\;\;\left[ {{{\text{ µmol}}}/{\rm{gd}}{{\rm{w/d}}}} \right] $$

    其中,t为本次取样与前一次取样的时间间隔(d),i为本次取样时刻对应的实验天数,[CH4]i为第i天的顶空CH4含量(μmol),[CH4]i-t为前一次取样获得的CH4含量,dw为实验体系中的沉积物干重(g)。以上所采用的MOR计算方法与Wegener 和Boetius[19]类似。经样品烘干称重,计算获得沉积物含水率为17.5%。

    对初始样品及不同实验组反应后样品的甲烷好氧氧化菌开展高通量测序和实时荧光定量(qPCR),对比微生物群落组成变化及生长繁殖情况。首先,分别对初始样品及实验开展后的沉积物样品进行取样,取样量为3~5 g。其中实验开展后的沉积物样品由沉积物-培养液的混合泥浆离心获得(9 000 r·min−1,10 min)。沉积物样品保存在−20 ℃待测。

    沉积物总DNA抽提采用E.Z.N.A@Soil DNA提取试剂盒(Omega Biotech,美国),抽提步骤按照试剂盒说明书进行。总DNA采用1%琼脂糖凝胶电泳进行检测,使用Nano Drop 2000(Thermo)对DNA纯度及浓度进行检测,−20 ℃保存备用。

    利用ABI GeneAmp ® 9700型PCR扩增仪对甲烷好氧氧化菌pmoA功能基因进行PCR扩增,反应体系为20 μL,包括5×FastPfu Bulfer 4 μL,2.5 mM dNTPs 2 μL,上游和下游引物(5 μM)各0.8 μL,FastPfu Polymerase 0.4 μL,Bovine Serum Albumin Solution(BSA)0.2 μL,模板 DNA 10 ng,补ddH2O至20 μL。甲烷氧化菌pmoA功能基因采用引物为189F和mb661[20]。甲烷氧化菌16S rRNA扩增反应条件为:95 ℃变性3 min,40个循环:95 ℃变性 30 s,55 ℃退火 30 s,72 ℃延伸 45 s,最后72 ℃延伸 10 min。

    PCR扩增产物采用AxyPrep DNA凝胶回收试剂盒切胶回收(AXYGEN公司,美国),Tris-HCl洗脱,随后采用2%琼脂糖凝胶电泳进行检测,使用Illumina-Miseq平台(PE300)进行高通量测序分析。使用Uparse软件,在97%的相似水平下对甲烷氧化菌pmoA基因序列进行OTU聚类,选取OTU中出现频数最高的序列作为OTUs代表性核酸序列,将这些核酸序列转化为蛋白序列后,与NCBI数据库进行比对注释,统计各样本在属分类水平上甲烷好氧氧化菌群落组成及相对丰度等信息。本研究所测定的甲烷好氧氧化菌pmoA基因序列的登录号为SRP189409。

    甲烷好氧氧化菌pmoA基因拷贝数由实时荧光定量qPCR测试技术获得(Real-time PCR,博日9600plus型荧光定量PCR仪),pmoA基因qPCR所用引物与PCR扩增引物相同。采用MG96+ PCR仪进行qPCR扩增,反应条件为:95 ℃,5 min;95 ℃,30 s,56 ℃,30 s,72 ℃,1 min,35个循环。扩增结束后用1%琼脂糖凝胶电泳检测扩增结果,将qPCR产物进一步纯化后与质粒载体Pmd18-T连接,蓝白斑筛选法选取阳性克隆提取质粒。以10倍稀释构建好的各质粒(90 μL稀释液+10 μL质粒),通过预实验分别选取标准品的10−2~10−7稀释液用于制备标准曲线。以梯度稀释的16S rRNA基因质粒标准品为模板,进行荧光定量PCR检测。定量PCR试剂为ChamQ SYBR color qPCR Master Mix(2X),反应体系20 μL: 2X ChamQ SYBR Color Qpcr Master Mix 10 μL,上游和下游引物(5 μM)各0.8 μL,模板DNA 2 μL。荧反应条件:95 ℃变性5 min,40个循环:95 ℃变性 5 s,56 ℃退火 30 s,72 ℃延伸 40 s。每个样品设置3个平行,根据标准曲线换算pmoA基因拷贝数。

    实验测得的顶空CH4(μmol%)和CO2(μmol)的含量数据显示,各平行实验组的数据平行性良好,为方便对比,我们采用各平行实验组的平均值来呈现不同氧浓度下气体含量的变化趋势(图1)。

    图  1  甲烷好氧氧化过程中CH4和CO2含量变化趋势图
    a.0%O2实验组和空白组,b.1%O2实验组,c.10%O2实验组,d.50%O2实验组。
    Figure  1.  Tendency diagrams of content variations of CH4 (μmol%) and CO2 (μmol) from aerobic methane oxidation
    a.0%O2 treatment and the blank, b.1%O2 treatment, c.10%O2 treatment, d.50%O2 treatment.

    其中,实验i(0%O2)顶空CH4含量变化较少,CH4含量减少量约为4.0 μmol%,且主要发生在实验前期,后期CH4含量几乎未变化。另外3组实验中CH4含量变化则相对较为明显,且显示出相似的变化趋势,大致可分为两个阶段(图1):初期快速变化阶段,甲烷含量急剧减少,对应了3个甲烷消耗过程的叠加,即CH4的快速溶解、沉积物吸附以及微生物好氧氧化作用;后期平稳变化阶段,甲烷减少幅度趋于平稳,对应了甲烷微生物好氧氧化过程。这一变化趋势在CH4的含量变化速率数据中体现得更为直观(表2),因此,初期快速变化阶段甲烷的消耗速率不能代表甲烷氧化菌所产生的氧化速率,实验中甲烷好氧氧化速率由甲烷含量进入后期平稳变化阶段获得。

    表  2  不同氧浓度实验过程中的甲烷氧化速率
    Table  2.  Methane reduction rate from each experiment at different oxygen concentrations
    μmol/gdw/d
    天数实验ii-#1(1%O2实验ii-#2(1%O2实验iii-#1(10%O2实验iii-#2(10%O2实验iv-#1(50%O2实验iv-#2(50%O2
    甲烷含量快速变化阶段
    1
    36.076.6541.5631.133.803.64
    422.4215.9011.5911.28
    甲烷含量平稳变化阶段
    40.350.28
    73.267.541.522.100.360.20
    164.404.750.180.240.080.15
    233.152.363.614.970.210.20
    302.363.153.965.28
    373.153.942.400.240.12
    443.944.72
    513.012.960.440.29
    MOR平均值*3.334.202.323.000.280.21
      注:#1和#2分别指的是各实验中的两个平行实验组;MOR平均值*是由甲烷含量处于平稳变化阶段的气体减少速率取平均值获得。
    下载: 导出CSV 
    | 显示表格

    好氧氧化产物CO2含量的增长趋势与CH4百分含量降低趋势相对应(图1),侧面反映了各实验组甲烷的好氧氧化情况。首先,空白组(50%O2无CH4)中所测得CO2的最终产生量为240 μmol,来自于沉积物有机质发生的完全氧化作用,实验组所测得的CO2均由有机质氧化作用与甲烷好氧氧化作用叠加产生。实验组CO2含量结果显示,实验i(0%O2)的CO2增加量较少(29.1 μmol),甚至少于空白组,可见无氧环境下有机质与甲烷的氧化作用微乎其微。其次为实验iv(50%O2),由于CH4未完全氧化,其CO2产生量也相对较少,仅为210 μmol。实验ii(1%O2)与实验iii(10%O2)CH4均完全氧化,其CO2产量相对最多。其中实验iii(10%O2)的CO2产生量最大(1 518 μmol),略高于实验ii(1%O2)的CO2产生量(1 246 μmol),可能是由于实验iii(10%O2)中氧气含量相对充足,有机质氧化作用产生的CO2量偏多。

    由甲烷含量进入平稳变化阶段的MOR计算结果显示(表2图2),不同氧浓度下的平行实验组平行性良好。其中,实验i(0%O2)CH4含量的平稳变化阶段中,CH4含量几乎未变化,MOR可视为零,即未发生微生物好氧氧化过程。实验ii(1%O2)两组平行实验中MOR 在2.36~7.54 μmol/gdw/d范围内,实验iii(10% O2)MOR为0.18~5.28 μmol/gdw/d,实验iv(50% O2)AeOM(CH4)为0.08~0.44 μmol/gdw/d。由此获得实验ii(1%O2)两个平行实验组的平均MOR相对最高,分别为3.33和4.20 μmol/gdw/d,相对而言,实验iii(10%O2)的MOR较低(2.32和3.00 μmol/gdw/d),实验iv(50%O2)的MOR则相对最低,平均值分别为0.20和0.29 μmol/gdw/d。

    图  2  不同氧浓度实验过程中的甲烷好氧氧化速率
    Figure  2.  Methane reduction rate from each experiment at different oxygen concentrations

    各实验组的甲烷氧化情况从氧化结束时间上也有所体现。首先,在实验监测期内,实验i(0%O2)和实验iv(50%O2)中CH4均未完全消耗,而实验ii(1%O2)和实验iii(10%O2)中CH4已消耗殆尽。但是,与MOR结果相反,实验iii(10%O2)的CH4完全氧化结束时间最短(37 d),实验ii(1%O2)氧化结束时间为58 d。这是由于实验iii(10%O2)在初期快速变化阶段的CH4减少量(61.5%和46.8%)明显高于实验ii(1%O2)(17.0%和14.2%),使得实验iii(10%O2)在后期氧化阶段实际发生氧化的CH4总量偏少,从而导致实验iii(10%O2)在氧化结束时间上快于实验ii(1%O2)。

    甲烷好氧氧化菌pmoA基因Illumina高通量测序共获得了89 693条高质量序列,以97%相似度划分得到共176个OTUs。α-多样性分析结果显示(表3),各样品文库的覆盖率(Coverage)均高于99.99%,意味着该测序结果包含了大部分的甲烷氧化菌群落,能够体现不同样品中甲烷氧化菌群落的真实情况。其中,Chao1指数与OTU数量对应相等,数据显示,除了空白组(50% O2无CH4)对应样品中OTU数量略高于初始样品外,其余实验组结束后OTU数量(<10)均较实验前明显减少,说明实验i—iv样品中甲烷好氧氧化菌丰度相对较低。Shannon指数结果显示,实验i与空白组样品的Shannon指数(>1)高于初始样品(0.8),而实验ii—iv样品的Shannon指数(<1)却较初始样品变小,反映了实验ii—iv氧化结束后甲烷好氧氧化菌多样性趋于降低的特征。

    表  3  甲烷好氧氧化菌pmoA基因α-多样性指数分析
    Table  3.  Analysis of α-diversity index of pmoA gene of methanotrophs
    样品名称序列/条97%相似水平
    OTUsShannon指数Chao 1指数覆盖率
    初始样品14023570.8570.9999
    实验i(0%O21004091.291.0000
    实验ii(1%O21020550.451.0000
    实验iii(10%O22200150.751.0000
    实验iv(50%O21969470.170.9999
    空白组13730931.7930.9999
    下载: 导出CSV 
    | 显示表格

    图3所示,将相对丰度高于1%的13个OTUs的代表序列进行属和种水平的物种注释。本研究中所测得的甲烷氧化菌包括MethylocystisMethylobacterMethlocaldum 3种类型,其中Methylocystis隶属于II型甲烷氧化菌(α-Proteobacteria),MethylobacterMethylocaldum属于I型甲烷氧化菌(γ- Proteobacteria)。初始样品pmoA序列中II型甲烷氧化菌Methlocystis(OTU93)的占比仅为1.9%,其余的则为非甲烷氧化菌(例如Rhodospirillaceae等)或其他在目前数据库中无法注释的序列。甲烷好氧氧化发生后,实验i—iv中所有pmoA序列都一致隶属于I型甲烷氧化菌Methylobacter属,其中实验i(0%O2)中包含了Methylobacter luteus(OTU4、5)和Methylobacter whittenburyi(OTU6、7、8)两个菌种类型,两个类型的所占比例较为接近,分别为48.5%和51.0%。但在实验ii—iv中两种类型的占比优势相差较大,其中实验ii(1%O2)中Methylobacter luteus则为优势菌种,所占比例为87.8%实验iii(10%O2)和实验iv(50%O2)中Methylobacter whittenburyi分别高达80.9%和99.1%。另外,空白组中除了包含Methylobacter之外,还包含Methlocaldum属,与实验组相似的是,Methylobacter属占比相对较高(80.1%),Methlocaldum属含量仅为2.3%。

    图  3  不同氧浓度甲烷好氧氧化过程中甲烷氧化菌群落组成
    Figure  3.  Methanotrophic community from aerobic methane oxidation at different oxygen concentrations

    qPCR测定结果显示,每个样品中pmoA基因拷贝数的3个测定结果平行性良好,取其平均值作为甲烷氧化菌总丰度进行下一步数据分析。结果显示,与初始样品相比(4.2×104 copies g−1),实验ii—iv中pmoA基因的丰度呈现出不同程度的增加态势(图4表4)。其中,实验ii(1% O2)中甲烷氧化菌丰度最高,pmoA基因拷贝数为1.9×109 copies g−1,其次是实验iii(10% O2),其pmoA基因拷贝数为2.3×108 copies g−1,实验iv(50% O2)中pmoA基因拷贝数(4.1×107 copies g−1)较初始样品增长了,3个数量级。另外,实验i(0% O2)与空白组(50% O2无CH4)中pmoA基因拷贝数相近,分别为3.2×105和1.7×105 copies g−1,实验结束后pmoA增长程度十分微弱。

    图  4  不同氧浓度甲烷好氧氧化过程中的甲烷氧化菌丰度变化情况
    标注数字为不同氧化实验后pmoA基因拷贝数的增加量。
    Figure  4.  Abundances of methanotrophs from aerobic methane oxidation at different oxygen concentrations
    The marked number is the increased copies of pmoA gene after different oxidation experiments.
    表  4  不同实验组的甲烷氧化菌总丰度、各菌种的绝对丰度#和平均MOR*
    Table  4.  Abundances of methanotrophs, each species# and average MOR*
    菌群类别OTU编号实验i(0%O2)实验ii(1%O2)实验iii(10%O2)实验iv(50%O2)空白组
    甲烷氧化菌总丰度/(copies/g)所有OTU3.2×1051.9×1092.3×1084.1×1071.7×105
    methylobacter leteus绝对丰度/(copies/g)OTU4、51.5×1051.7×1094.4×1073.1×1052.9×104
    methylobacter whittenburyi绝对丰度/(copies/g)OTU6、7、81.6×1052.3×1081.9×1084.0×1071.1×105
    Methylocaldum绝对丰度/(copies/g)OTU2900003.9×103
    Methylocystis绝对丰度/(copies/g)OTU9300000
    平均MOR*/(μmol/gdw/d)3.772.660.25
      注:平均MOR*是由不同氧浓度实验中两个平行实验组得到的平均氧化速率;菌种的绝对丰度#=甲烷氧化菌总丰度×菌种所占百分比,百分比由高通量测序获得。
    下载: 导出CSV 
    | 显示表格

    首先,所有实验组i—iv中甲烷氧化菌群落结构均发生了一致性的变化,即氧化实验结束后,样品中甲烷氧化菌的多样性明显降低,表明不同反应条件下均存在具有明显优势的氧化菌菌群,并且优势菌群均由初始样品的II型氧化菌(Methylocystis属)转变为I型氧化菌(Methylobacter属),意味着在本研究的甲烷好氧氧化过程中,II型甲烷氧化菌并不具有甲烷氧化活性,而是由I型甲烷氧化菌从初始休眠状态的极低含量值迅速生长繁殖成为优势氧化菌菌群,这一现象在前人对稻田土好氧-厌氧界面甲烷好氧氧化菌pmoA基因转录组研究中也有相似发现[21],可能与低氧条件下I型甲烷氧化菌的发酵代谢密切相关[10, 22]

    将气体测定结果与微生物数据进行综合分析表明,甲烷氧化速率与甲烷氧化菌生长繁殖情况对应较好,从不同角度反映了各实验组的甲烷氧化情况(表4)。其中,实验i(0%O2)样品与初始样品相比,甲烷组分变化量和甲烷氧化菌pmoA基因丰度数据都显示出较为微弱的变化,但甲烷氧化菌群落结构显示,实验i(0%O2)中甲烷氧化菌的群落组成与其他实验组相似,均由初始样品的II型氧化菌转变为I型氧化菌。在实验i(0%O2)初期,沉积物与无色培养液混合后上清液迅速变为粉色,几天后逐渐恢复无色,这意味着沉积物样品可能本身携带了微量氧,这些微量氧能够为氧化菌提供短暂的复活时间,进而使得实验结束后氧化菌群落结构发生变化。但是由于实验i后续近30 d的实验中顶空甲烷含量始终趋于稳定,且氧化菌pmoA基因丰度(3.2×105 copies/g soil)与空白对照组(1.7×105 copies/g soil)相近,较初始样品(4.2×104 copies/g soil)来说变化十分微弱,因此,我们推测在0%O2无氧体系中并未发生甲烷好氧氧化反应。

    将1%O2、10%O2和50%O2实验体系中的MOR和甲烷氧化菌pmoA基因丰度数据对比发现(表4),MOR随氧浓度增加逐渐减弱,MOR(1%O2)与MOR(50%O2)相差近15倍。相应地,甲烷氧化菌丰度亦与氧浓度呈现负相关关系,3个氧浓度梯度下pmoA基因拷贝数均差一个数量级,综合判定表明1%O2体系中甲烷好氧氧化作用最为强烈,其次为10%O2和50%O2体系。甲烷氧化菌群落组成结果表明,在属分类水平上,1%O2、10%O2和50%O2体系氧化菌组成较为一致,均为Methylobacter属,比例分别为99.9%、99.6%和99.9%。但在种分类水平上,3组实验的氧化菌组成差异较大。其中,1%O2体系甲烷氧化菌Methylobacter leteus(OTU4、5)比例(87.8%)明显高于10%O2体系(18.7%),而1%O2体系Methylobacter whittenburyi(OTU6、7、8)比例(12.2%)则明显低于10%O2体系(80.9%),而Methylobacter whittenburyi在50%O2体系下的占比可达99.1%。整体来看,Methylobacter leteus的占比随氧浓度升高逐渐减少,而Methylobacter whittenburyi与之相反,其占比反而随氧浓度升高而增加,显然Methylobacter leteus的变化趋势与MOR较为一致。不同菌种的绝对丰度(表4)对比分析发现,Methylobacter leteus比例虽与氧浓度呈正相关关系,但其绝对丰度随氧浓度增加呈现出明显降低趋势,这是由于3个氧浓度体系中氧化菌总丰度不同所导致的。经前人验证,在各样本间进行微生物数据对比分析时,尤其是微生物总丰度相差较大的情况下,需将测序与定量结果相结合,估算并采用各菌种的绝对丰度进行分析[23-24]。由此看来,与Methylobacter leteus相同,Methylobacter whittenburyi的生长繁殖情况与不同氧浓度下MOR的变化趋势也是一致的。综上所述,MOR和甲烷氧化菌的生长繁殖情况将随氧浓度增加呈现明显降低趋势,氧浓度越高,氧化菌生长繁殖越慢,所产生的甲烷氧化作用愈为微弱。

    从各实验体系中甲烷氧化菌群落组成特征分析发现,海洋生境中的甲烷好氧氧化作用对氧浓度的响应特征可能具有某些特殊性。本实验中不同氧浓度体系下Methylobacter leteus是主要的优势菌群,甲烷氧化作用在不同氧浓度下的表现与Methylobacter leteus生理生态特征的关系最为紧密。前人曾报道低氧生境常见甲烷氧化菌之一Methylobacter leteus的最适氧浓度区间为5%~20%,其氧化活性将随氧浓度的降低受到明显的抑制[10]。然而,本次研究中Methylobacter leteus则表现不同,在1%O2微量氧条件下的菌落活性明显优于10%O2和50%O2富氧环境条件,而1%O2氧浓度体系与样品取样位置的原位氧浓度环境最为接近,这意味着来自海洋低氧生境的Methylobacter leteus在与原位生境接近的微量氧条件下发挥出相对较大的甲烷氧化活性。这可能是由于在海底低氧叠加高盐、低温、高压等特殊海洋生境的长期驯化下[25]Methylobacter leteus可能表现出不同的生理生态特征,从而导致并未在其最适氧浓度范围内表现出最佳氧化活性。但需要注明的是,实验可能存在实施时间或实施量的尺度问题,如果在给定条件下实施更为长期的氧化实验对甲烷氧化菌进行驯化,那么实验给定条件可能将成为下一个所谓的“原始生境”。同时,在50%O2较高氧浓度条件下氧化作用较为微弱的原因还可能是充足的氧供给使得甲烷氧化过程的中间产物或代谢产物(例如甲醇、甲醛等)浓度过高,以致具有“毒性”,从而抑制了甲烷氧化菌的生长繁殖[17]。此外,前人曾提到氧浓度对MOR的影响是非常复杂的,可能受到营养源浓度、甲烷浓度等其他环境因子的影响[12, 26],但本次实验中并未涉及这些变量,在对于海洋生境甲烷好氧氧化作用的进一步研究中应加强这方面的实验工作。

    (1)完全无氧条件(0%O2)中不能发生甲烷好氧氧化作用,甲烷氧化速率及甲烷氧化菌总丰度随氧浓度升高而降低,当氧浓度由1%升高至50%时,甲烷氧化速率减弱了约15倍,甲烷氧化菌总丰度降低了两个数量级。

    (2)甲烷氧化菌优势菌种为I型氧化菌Methylobacter leteusMethylobacter whittenburyi。氧浓度由1%升高至50%时,Methylobacter leteus的占比由87.8%降低为0.8%,Methylobacter whittenburyi则相反,从18.7%升至99.1%。但两者的绝对数量均随着氧浓度增加呈现出不同程度的降低态势。

    (3)本实验中甲烷好氧氧化作用的最适氧浓度条件为1%O2体系,该条件与采样位置的原始生存环境最为接近,但与优势氧化菌Methylobacter属的已知最适氧浓度(5%~20%)并不一致。原因可能是在海底低氧条件叠加低温、高压等特殊生境的长期驯化下,甲烷氧化菌的最适氧浓度条件将发生变化,逐渐趋于其原始生存环境。

  • 图  1   中国海域沉积盆地分布图

    Figure  1.   Distribution map of sedimentary basins in China seas

    图  2   南黄海盆地构造位置及古陆核范围(据文献[32,39])

    Figure  2.   Tectonic location of the South Yellow Sea Basin and the extent of paleo-continent nucleus(from references [32,39])

    图  3   南黄海海相中―古生界地震层序及地质属性标定(据参考文献[32]修改)(S1至S7为南黄海海相中―古生界地震层序,T2相当于新近系底界,B1至B3为3套典型地震反射标志层组)

    Figure  3.   Paleozoic seismic sequences and their geological attributes on Laoshan uplift at the South Yellow Sea(modified from [32])(S1 to S7 are the seismic sequences of marine Paleozoic-Mesozoic, T2 is the bottom boundary of Neogene, the B1 to B3 are the three typical seismic markers)

    图  4   南黄海盆地中―古生界构造单元划分图

    Figure  4.   Tectonic division map of Paleozoic-Mesozoic in South Yellow Sea Basin

    图  5   过RC20-2-1井地震剖面解释图

    Figure  5.   The interpreted seismic section across Well RC20-2-1

    图  6   南黄海盆地中生代前陆盆地发育阶段演化图(据参考文献[138]修改)

    Figure  6.   Schematic diagrams showing the Mesozoic evolution of the South Yellow Sea foreland basin(modified from reference [138])

    图  7   南黄海盆地挤压构造模式图(据参考文献[32])

    Figure  7.   Model of extrusion structure at the South Yellow Sea Basin(from reference [32])

    图  8   东海晚三叠世—中侏罗世活动大陆边缘挤压坳陷型盆地(据文献[48])

    1-软流圈,2-大陆岩石圈,3-大洋岩石圈,4-前中生代基底,5-晚三叠世―中侏罗世沉积,6-闽浙隆起带,7-陆缘隆起带,8-海沟俯冲带

    Figure  8.   Compressional depression basin on active continental margin during Late Triassic-Middle Jurassic in East China Sea(from reference [48])

    1-asthenosphere, 2-continental lithosphere, 3-ocean lithosphere, 4-pre-Mesozoic basement, 5-Late Triassic-Middle Jurassic sediments, 6-MinZhe uplift zone, 7-continental margin uplift, 8-trench subduction zone

    图  9   晚侏罗世—白垩纪伸展断陷型盆地(据文献[48])

    1-软流圈,2-大陆岩石圈,3-大洋岩石圈,4-前中生代基底,5-晚三叠世―中侏罗世沉积,6-晚侏罗世—白垩纪沉积,7-闽浙隆起带,8-陆缘隆起带,9-低凸起,10-海沟俯冲带

    Figure  9.   Extensional graben basins in Late Jurassic to Cretaceous(from reference [48])

    1-asthenosphere, 2-continental lithosphere, 3-ocean lithophere, 4-pre-Mesozoic basement, 5-Late Triassic-Middle Jurassic sediments, 6-Late Jurassic-Cretaceous sediments, 7-MinZhe uplift zone, 8-continental margin uplift, 9-low uplift, 10-trench subduction zone

    表  2   中国海域沉积盆地

    Table  2   A summary of sedimentary basins in China seas

    海域盆地名称
    渤海和黄东海渤海盆地、北黄海盆地、南黄海盆地 东海陆架盆地、冲绳海槽盆地、台西盆地
    南海台西南盆地、珠江口盆地、北部湾盆地、笔架盆地、笔架南盆地、尖峰北盆地、双峰盆地、西沙海槽盆地、琼东南盆地、莺歌海盆地、中建南盆地、排波盆地、西北巴拉望盆地、礼乐盆地、万安盆地、南薇西盆地、南薇东盆地、永署盆地、九章盆地、安渡北盆地、曾母盆地、北康盆地、南沙海槽盆地和文莱沙巴盆地
    下载: 导出CSV

    表  3   中国海域主要盆地类型划分(据文献[53]修改)

    Table  3   Basin types of major basins in China seas(Modified from [53])

    盆地类型盆地划分
    陆内裂谷盆地渤海湾盆地、北黄海盆地、南黄海盆地、北部湾盆地
    陆缘裂谷盆地东海陆架盆地、台西盆地、台西南盆地、珠江口盆地、琼东南盆地
    走滑拉张盆地莺歌海盆地、中建南盆地、万安盆地
    弧后盆地冲绳海槽盆地
    前弧盆地文莱沙巴盆地
    前陆盆地曾母盆地
    裂离陆块盆地北康盆地、南薇盆地、礼乐盆地、南薇西盆地、南薇东盆地、
    永署盆地、九章盆地、安渡北盆地、西北巴拉望盆地、
    深海堆积盆地笔架盆地、笔架南盆地、尖峰北盆地、双峰盆地、西沙海槽盆地、排波盆地
    下载: 导出CSV

    表  4   南黄海盆地海相中―古生界构造单元划分表(据参考文献[32, 40])

    Table  4   Tectonic units of the marine Meso-Paleozoic in the South Yellow Sea Basin(from references [32, 40])

    基本构造单元二级构造带三级构造带总体特征
    南黄海盆地青岛断褶带南倾断裂较发育,常与北倾断裂形成地堑或地垒构造,
    中―古生代海相地层齐全、厚度大、变形较弱,以隔档式构造为主。
    崂山断隆带高石稳定带深大断裂不发育,浅层断裂较少,正逆共存。中―古生代海相地层层序完整,
    变形较弱,构造以宽缓褶皱或断鼻、断块为主。
    青峰变形带盖层滑脱型逆掩推覆体系,断裂发育,地层褶皱变形较强烈,古生界发育完整,分布广泛。
    烟台冲断带高角度基底卷入式逆冲,断裂北倾为主,发育逆冲断块,上古生界剥蚀严重,下古生界分布相对稳定。
    下载: 导出CSV
  • [1] 彭世福, 郭振轩. 中国海域油气勘探开发形势图说明书 [R]. 青岛: 地质矿产部海洋地质研究所, 1984.

    PENG Shifu, GUO Zhenxuan. Specification of situation map of oil and gas exploration and development in the China Sea[R]. Qingdao: Institute of Marine geology, Ministry of Geology and Mineral Resources, 1984.

    [2] 陈国威. 中国海域含油气盆地的基本特征[J]. 海洋地质与第四纪地质, 1986, 6(4):31-36. [CHEN Guowei. Main characteristics of hydrocarbon-bearing basins in China seas [J]. Marine Geology & Quaternary Geology, 1986, 6(4): 31-36.
    [3] 蔡乾忠. 中国海域及邻区主要含油气盆地与成藏地质条件[J]. 海洋地质与第四纪地质, 1998, 18(4):1-10. [CAI Qianzhong. Primary hydrocarbon-bearing basins and the pool forming conditions in China seas and adjacent regions [J]. Marine Geology & Quaternary Geology, 1998, 18(4): 1-10.
    [4] 戴春山. 中国海域含油气盆地群和早期评价技术 [M]. 北京: 海洋出版社, 2011.

    DAI Chunshan. Oil and Gas Basin Group of China Seas and Early Resource Assessment Techniques[M]. Beijing: Ocean Press, 2011.

    [5] 戴春山, 刘伊克, 陈建文, 等. 海上油气资源区域快速综合评价技术[J]. 海洋地质与第四纪地质, 2001, 21(4):79-82. [DAI Chunshan, LIU Yike, CHEN Jianwen, et al. Fast comprehensive assessment techniques for offshore hydrocarbon resources [J]. Marine Geology & Quaternary Geology, 2001, 21(4): 79-82.
    [6]

    Dai C S, Lin F, Chen J W, et al. Techniques for Quick, Comprehensive Assessment of Offshore Petroleum Resources, in Offshore Geology of China [M]. Beijing: China Ocean Press, 2003, 173-178.

    [7] 郭振轩. 新生代盆地图 [M] //刘光鼎. 中国海域及邻区地质地球物理图集. 北京: 科学出版社, 1993: 74-75.

    GUO Zhenxuan. Cenozoic basin maps[M]//LIU Guangding. Geological and Geophysical Maps in China Sea and Around Area. Beijing: Science Press, 1993: 74-75.

    [8] 肖国林. 应用GIS建立中国海域油气资源地理信息系统的思路[J]. 海洋地质动态, 1999(4):1-3, 5. [XIAO Guolin. The thinking of geographic information system of oil and gas resources with GIS in China seas [J]. Marine Geology Letters, 1999(4): 1-3, 5.
    [9] 肖国林. 基于GIS技术的中国海域油气资源可视化数据库的设计与实现——以黄海盆地油气勘查可视化数据库为例[J]. 海洋地质动态, 2002, 18(11):39-42. [XIAO Guolin. Design and realization of visualized dataset of china sea area petroleum resources on the basis of GIS technique [J]. Marine Geology Letters, 2002, 18(11): 39-42. doi: 10.3969/j.issn.1009-2722.2002.11.015
    [10] 陈建文, 肖国林, 刘守全, 等. 中国海域油气资源勘查战略研究[J]. 海洋地质与第四纪地质, 2003, 23(4):77-82. [CHEN Jianwen, XIAO Guolin, LIU Shouquan, et al. Strategy of oil and gas resources explorations in China seas [J]. Marine Geology & Quaternary Geology, 2003, 23(4): 77-82.
    [11]

    Chen J W, Xiao G L, Liu S Q, et al. Strategy of Oil and Gas Exploration in China’s Sea Areas, in Offshore Geology of China [M]. Beijing: China Ocean Press, 2003: 163-172.

    [12] 戴春山, 李刚, 蔡峰, 等. 黄海前第三系及油气勘探方向[J]. 中国海上油气(地质), 2003, 17(4):225-231. [DAI Chunshan, LI Gang, CAI Feng, et al. The pretertiary and its hydrocarbon exploration targets in Yellow Sea [J]. China Offshore Oil and Gas (Geology), 2003, 17(4): 225-231.
    [13] 戴春山, 杨艳秋, 闫桂京. 南黄海中-古生代海相残留盆地埋藏生烃史模拟及其意义[J]. 石油天然气地质, 2005, 26(1):49-56. [DAI Chunshan, YANG Yanqiu, YAN Guijing. Modelling of burial and hydrocarbon-generation histories of Meso-Paleozoic marine residual basins in South Yellow Sea and its geologic significance [J]. Oil & Gas Geology, 2005, 26(1): 49-56.
    [14] 李刚, 陈建文, 肖国林, 等. 南黄海海域的海相中-古生界油气远景[J]. 海洋地质动态, 2003, 19(8):12-16. [LI Gang, CHEN Jianwen, XIAO Guolin, et al. Petroleum prospect of marine paleozoic in the south Yellow Sea [J]. Marine Geology Letters, 2003, 19(8): 12-16. doi: 10.3969/j.issn.1009-2722.2003.08.004
    [15]

    Cai F, Dai C S, Chen J W, et al. Hydrocarbon potential of Pre-cenozoic Strata in the north Yellow Sea Basin [C] //Offshore Geology of China. Beijing: China Ocean Press, 2003: 187-200.

    [16]

    LI G, Chen J W, Qu X Y. Hydrocarbon prospects of Mesozoic terrestrial Faciese in the Yellow Sea [C] //Offshore Geology of China. Beijing: China Ocean Press, 201-210.

    [17] 李刚, 张燕, 陈建文, 等. 黄海海域陆相中生界地震反射特征及靶区优选[J]. 中国海洋大学学报, 2004, 34(6):1069-1074. [LI Gang, ZHANG Yan, CHEN Jianwen, et al. Seismic reflection characteristics and selection of hydrocarbon prospective areas in the terrestrial Mesozoic strata of the Yellow Sea [J]. Periodical of Ocean University of China, 2004, 34(6): 1069-1074.
    [18] 曲希玉, 陈建文, 徐淑艳, 等. 南黄海盆地北部坳陷白垩系地震相分析[J]. 世界地质, 2005, 24(2):129-136. [QU Xiyu, CHEN Jianwen, XU Shuyan, et al. Cretaceous seismic facies analysis of northern South Yellow Sea Basin [J]. Global Geology, 2005, 24(2): 129-136. doi: 10.3969/j.issn.1004-5589.2005.02.005
    [19] 曲希玉, 刘立, 陈建文, 等. 南黄海盆地北部坳陷白垩系沉积特征[J]. 吉林大学学报(地球科学版), 2005, 35(4):443-448. [QU Xiyu, LIU Li, CHEN Jianwen, et al. Sedimentary characteristics for the cretaceous strata in the northern depression of the south Yellow Sea Basin [J]. Journal of Jilin University (Earth Science Edition), 2005, 35(4): 443-448.
    [20] 陈建文, 李刚, 陈国威. 东海陆架盆地西部坳陷带的中生界和古新统油气远景[J]. 海洋地质动态, 2003, 19(8):17-19. [CHEN Jianwen, LI Gang, CHEN Guowei. Petroleum prospects of Mesozoic and paleocene in the western depression of the East China Sea Shelf Basin [J]. Marine Geology Letters, 2003, 19(8): 17-19. doi: 10.3969/j.issn.1009-2722.2003.08.005
    [21] 肖国林, 陈建文, 闫桂京. 东海陆架盆地的第三系煤成气[J]. 海洋地质动态, 2003, 19(8):20-23. [XIAO Guolin, CHEN Jianwen, YAN Guijing. Tertiary coal-related gas in the East China Sea Shelf Basin [J]. Marine Geology Letters, 2003, 19(8): 20-23. doi: 10.3969/j.issn.1009-2722.2003.08.006
    [22] 闫桂京, 肖国林, 陈建文, 等. 基隆凹陷油气资源潜力[J]. 海洋地质动态, 2003, 19(8):24-26. [YAN Guijing, XIAO Guolin, CHEN Jianwen, et al. Potentials of petroleum resources in Jilong Depression [J]. Marine Geology Letters, 2003, 19(8): 24-26. doi: 10.3969/j.issn.1009-2722.2003.08.007
    [23] 陈建文. 南黄海前第三系油气前景研究项目设计书(2005年)[R]. 青岛: 青岛海洋地质研究所, 2005.

    CHEN Jianwen. Project design document of oil and gas prospects of Pre-Tertiary in South Yellow Sea (2005) [R]. Qingdao: Qingdao Institute of Marine Geology, 2005.

    [24] 陈建文, 吴志强, 李慧君, 等. 南黄海前第三系油气前景研究2006年工作总结[R]. 青岛: 青岛海洋地质研究所, 2007.

    CHEN Jianwen, WU Zhiqiang, LI Huijun, et al. 2006 work summary of oil and gas prospects of Pre-Tertiary in South Yellow Sea [R]. Qingdao: Qingdao Institute of Marine Geology, 2007.

    [25] 陈建文, 吴志强, 李慧君, 等. 南黄海前第三系油气前景研究2007年工作总结[R]. 青岛: 青岛海洋地质研究所, 2008.

    CHEN Jianwen, WU Zhiqiang, LI Huijun, et al. 2007 work summary of oil and gas prospects of Pre-Tertiary in South Yellow Sea [R]. Qingdao: Qingdao Institute of Marine Geology, 2008.

    [26] 陈建文, 李慧君, 吴志强, 等. 南黄海前第三系油气前景研究成果报告[R]. 青岛: 青岛海洋地质研究所, 2010.

    CHEN Jianwen, WU Zhiqiang, LI Huijun, et al. Results report of oil and gas prospects of Pre-Tertiary in South Yellow Sea [R]. Qingdao: Qingdao Institute of Marine Geology, 2010.

    [27] 陈建文, 施剑, 张异彪, 等. 地震调查技术突破南黄海海相中—古生界成像技术瓶颈[J]. 地球学报, 2017, 38(6):847-858. [CHEN Jianwen, SHI Jian, ZHANG Yibiao, et al. The application of " HRS” seismic exploration technology to making breakthrough of the seismic imaging " Bottleneck” of the marine Mesozoic-Paleozoic strata in the South Yellow Sea Basin [J]. Acta Geoscientica Sinica, 2017, 38(6): 847-858. doi: 10.3975/cagsb.2017.06.01
    [28] 陈建文, 张异彪, 刘俊, 等. 南黄海" 高富强”地震勘查技术及其应用[J]. 海洋地质前沿, 2016, 32(10):9-17. [CHEN Jianwen, ZHANG Yibiao, LIU Jun, et al. The " HRS” seismic exploration technology and its application in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(10): 9-17.
    [29] 陈建文, 施剑, 刘俊, 等. 南黄海海相中-古生界地震地质条件[J]. 海洋地质前沿, 2016, 32(10):1-8. [CHEN Jianwen, SHI Jian, LIU Jun, et al. Seismic geological conditions of the marine Meso-paleozoic in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(10): 1-8.
    [30] 陈建文, 梁杰, 施剑, 等. 南黄海海相中-古生界地震探测技术突破技术瓶颈[J]. 中国地质调查成果快讯, 2016, 3(4):18-21. [CHEN Jianwen, LIANG Jie, SHI Jian, et al. Breakthrough of the seismic exploration technology of the marine Mesozoic-Paleozoic strata in the South Yellow Sea Basin [J]. Results Express of China Geological Survey, 2016, 3(4): 18-21.
    [31] 张海啟, 陈建文, 李刚, 等. 地震调查在南黄海崂山隆起的发现及其石油地质意义[J]. 海洋地质与第四纪地质, 2009, 29(3):107-113. [ZHANG Haiqi, CHEN Jianwen, LI Gang, et al. Discovery from seismic survey in laoshan uplift of the south Yellow Sea and the significance [J]. Marine Geology & Quaternary Geology, 2009, 29(3): 107-113.
    [32] 陈建文, 雷宝华, 梁杰, 等. 南黄海盆地油气资源调查新进展[J]. 海洋地质与第四纪地质, 2018, 38(3):1-23. [CHEN Jianwen, LEI Baohua, LIANG Jie, et al. New progress of petroleum resources survey in South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 1-23.
    [33]

    Chen J W, Xu M, Lei B H, et al. Prospective prediction and exploration situation of marine Mesozoic-Paleozoic oil and gas in the South Yellow Sea [J]. China Geology, 2019, 2(1): 67-84. doi: 10.31035/cg2018072

    [34] 陈建文. 下扬子地块南黄海海相层系具备良好的油气形成条件[J]. 中国地质调查成果快讯, 2016, 2(12):1-5. [CHEN Jianwen. Good oil and gas formation conditions of marine strata in the South Yellow Sea Basin of Lower Yangtze Block [J]. Results Express of China Geological Survey, 2016, 2(12): 1-5.
    [35] 陈建文, 张银国, 欧光习, 等. 南黄海古生界油气多期成藏的包体证据[J]. 海洋地质前沿, 2018, 34(2):69-70. [CHEN Jianwen, ZHANG Yinguo, OU Guangxi, et al. The inclusion evidences of multi-accumulation of Paleozoic in South Yellow Sea [J]. Marine Geology Frontiers, 2018, 34(2): 69-70.
    [36] 陈建文, 张银国, 欧光习. 南黄海崂山隆起志留系古油藏的深部烃源证据[J]. 海洋地质前沿, 2019, 35(1):74-76. [CHEN Jianwen, ZHANG Yinguo, OU Guangxi, et al. Evidence of deep hydrocarbon sources from the Silurian Paleo-reservoir in the Laoshan uplift of the South Yellow Sea [J]. Marine Geology Frontiers, 2019, 35(1): 74-76.
    [37]

    Zhang Y G, Chen J W, Liang J, et al. Evidence of the existence of paleo reservoirs in Laoshan Uplift of the South Yellow Sea Basin [J]. China Geology, 2018, 1(4): 566-567. doi: 10.31035/cg2018067

    [38] 陈建文. 南黄海海相中生界—古生界具有形成大型油气田的物质基础[J]. 中国地质调查成果快讯, 2016, 2(12):6-10. [CHEN Jianwen. Material base of great resources in marine Mesozoic-Paleozoic in the South Yellow Sea Basin [J]. Results Express of China Geological Survey, 2016, 2(12): 6-10.
    [39] 陈建文, 龚建明, 李刚, 等. 南黄海盆地海相中—古生界油气资源潜力巨大[J]. 海洋地质前沿, 2016, 32(1):1-7. [CHEN Jianwen, GONG Jianming, LI Gang, et al. Great resources potential of the marine Mesozoic-Paleozoic in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(1): 1-7.
    [40] 陈建文, 何玉华, 肖国林, 等. 南黄海海域油气资源普查成果报告[R]. 青岛: 青岛海洋地质研究所, 2017.

    CHEN Jianwen, HE Yuhua, XIAO Guolin, et al. Oil and gas resource general survey of the South Yellow Sea[R]. Qingdao: Qingdao Institute of Marine Geology, 2017.

    [41] 陈建文, 梁杰, 张银国, 等. 南黄海崂山隆起高参1井井位论证报告[R]. 青岛: 青岛海洋地质研究所, 2017.

    CHEN Jianwen, LIANG Jie, ZHANG Yinguo, et al. Gaocan 1 well location demonstration report in Laoshan uplift, South Yellow Sea[R]. Qingdao: Qingdao institute of Marine Geology, 2017.

    [42] 杨长清, 杨传胜, 孙晶, 等. 东海陆架盆地南部中生代演化与动力学转换过程[J]. 吉林大学学报: 地球科学版, 2019, 49(1):139-153. [YANG Changqing, YANG Chuansheng, SUN Jing, et al. Mesozoic evolution and dynamics transition in southern Shelf Basin of the East China Sea [J]. Journal of Jilin University: Earth Science Edition, 2019, 49(1): 139-153.
    [43] 杨长清, 杨传胜, 李刚, 等. 东海陆架盆地南部中生代构造演化与原型盆地性质[J]. 海洋地质与第四纪地质, 2012, 32(3):109-115. [YANG Changqing, YANG Chuansheng, LI Gang, et al. Mesozoic tectonic evolution and prototype basin characters in the southern East China Sea Shelf Basin [J]. Marine Geology & Quaternary Geology, 2012, 32(3): 109-115.
    [44] 李刚, 龚建明, 杨长清, 等. " 大东海”中生代地层分布——值得关注的新领域[J]. 海洋地质与第四纪地质, 2012, 32(3):98-104. [LI Gang, GONG Jianming, YANG Changqing, et al. Stratigraphic features of the Mesozoic " great East China Sea”-- a new exploration field [J]. Marine Geology & Quaternary Geology, 2012, 32(3): 98-104.
    [45] 杨长清, 韩宝富, 杨艳秋, 等. 东海陆架盆地中生界油气调查进展与面临的挑战[J]. 海洋地质前沿, 2017, 33(4):1-8. [YANG Changqing, HAN Baofu, YANG Yanqiu, et al. Oil and gas exploration in the Mesozoic of East China Sea Shelf Basin: progress and challenges [J]. Marine Geology Frontiers, 2017, 33(4): 1-8.
    [46] 杨传胜, 杨长清, 李刚, 等. 东海陆架盆地中-新生界油气勘探研究进展与前景分析[J]. 海洋地质与第四纪地质, 2018, 38(2):136-147. [YANG Chuansheng, YANG Changqing, LI Gang, et al. Prospecting of Meso-cenozoic hydrocarbon in the East China Sea Shelf Basin [J]. Marine Geology & Quaternary Geology, 2018, 38(2): 136-147.
    [47] 杨长清, 李刚, 龚建明, 等. 中国东南海域中生界油气地质条件与勘探前景[J]. 吉林大学学报: 地球科学版, 2015, 45(1):1-12. [YANG Changqing, LI Gang, GONG Jianming, et al. Petroleum geological conditions and exploration prospect of the Mesozoic in southeast China Sea area [J]. Journal of Jilin University: Earth Science Edition, 2015, 45(1): 1-12.
    [48] 杨长清, 杨艳秋, 孙晶, 等. 东海陆架盆地西部和DNB油气资源调查[R]. 青岛: 青岛海洋地质研究所. 2019.

    YANG Changqing, YANG Yanqiu, SUN Jing, et al. Oil and gas resources survey in the west and southeast of East China Sea Shelf Basin [R]. Qingdao: Qingdao Institute of Marine Geology, 2019.

    [49] 肖国林, 孙长虹, 郑浚茂. 北黄海盆地东部前中生界基底特征[J]. 现代地质, 2005, 19(2):261-266. [XIAO Guolin, SUN Changhong, ZHENG Junmao. Pre-Mesozoic basement characteristics in the eastern depression of the north Yellow Sea Basin [J]. Geoscience, 2005, 19(2): 261-266. doi: 10.3969/j.issn.1000-8527.2005.02.015
    [50] 肖国林, 蔡来星, 郭兴伟, 等. 北黄海盆地东部坳陷勘探突破对我国近海残留" 黑色侏罗系”油气勘探的启示[J]. 吉林大学学报: 地球科学版, 2019, 49(1):115-130. [XIAO Guolin, CAI Laixing, GUO Xingwei, et al. Exploration Enlightenment on Residual " Black Jurassic” in Chinese offshore from exploration breakthrough in Eastern Sag of the North Yellow Sea Basin [J]. Journal of Jilin University: Earth Science Edition, 2019, 49(1): 115-130.
    [51] 陈建文, 梁杰, 张银国, 等. 南黄海油气资源调查进展报告(2017)[R]. 青岛: 青岛海洋地质研究所, 2017.

    CHEN Jianwen, LIANG Jie, ZHANG Yinguo, et al. Progress report of oil and gas resource survey in the South Yellow Sea [R]. Qingdao: Qingdao Institute of Marine Geology, 2017.

    [52] 陈建文, 梁杰, 张银国, 等. 南黄海油气资源调查成果报告[R]. 青岛: 青岛海洋地质研究所, 2019.

    CHEN Jianwen, LIANG Jie, ZHANG Yinguo, et al. Report of oil and gas resources survey in the South Yellow Sea [R]. Qingdao: Qingdao Institute of Marine Geology, 2019.

    [53] 蔡乾忠. 中国海域油气地质学 [M]. 北京: 海洋出版社, 2005: 1-406.

    CAI Qianzhong. Oil & Gas Geology in China Sea [M]. Beijing: Ocean Press, 2005: 1-406.

    [54] 国土资源部油气储量评审办公室. 全国石油天然气探明地质储量评审表 [R]. 北京, 2008-2017.

    Oil and Gas Reserves Assessment Office in Ministry of Land and Resources. Assessment table of oil and gas explored reserves in China [R]. Beijing, 2008-2017.

    [55] 国土资源部信息中心. 全国油气矿产储量通报 [R]. 2008-2017.

    Information Center in Ministry of Land and Resources. Bulletin of oil and gas reserves in China [R]. 2008-2017.

    [56] 谢玉洪. 中国海洋石油总公司油气勘探新进展及展望[J]. 中国石油勘探, 2018, 23(1):27-35. [XIE Yuhong. New progress and prospect of oil and gas exploration of China National Offshore Oil Corporation [J]. China Petroleum Exploration, 2018, 23(1): 27-35.
    [57] 朱伟林, 张功成, 钟锴. 中国海洋石油总公司" 十二五”油气勘探进展及" 十三五”展望[J]. 中国石油勘探, 2016, 21(4):1-12. [ZHU Weilin, ZHANG Gongcheng, ZHONG Kai. Oil and gas exploration progress of China National Offshore Oil Corporation during the 12th Five-Year Plan and the prospect during the 13th Five-Year Plan [J]. China Petroleum Exploration, 2016, 21(4): 1-12. doi: 10.3969/j.issn.1672-7703.2016.04.001
    [58] 朱伟林. 中国近海油气勘探的回顾与思考[J]. 中国工程科学, 2011, 13(5):4-9. [ZHU Weilin. China offshore oil and gas exploration: review and thinking [J]. Engineering Sciences, 2011, 13(5): 4-9. doi: 10.3969/j.issn.1009-1742.2011.05.001
    [59] 朱伟林. 中国近海油气勘探进展[J]. 中国工程科学, 2010, 12(5):18-24. [ZHU Weilin. Advancements of oil and gas exploration in China offshore area: overview and perspective [J]. Engineering Sciences, 2010, 12(5): 18-24. doi: 10.3969/j.issn.1009-1742.2010.05.003
    [60] 赵青芳, 李双林, 温珍河, 等. 北黄海盆地LV井侏罗系烃源岩特征及油源对比[J]. 沉积学报, 2016, 34(4):794-802. [ZHAO Qingfang, LI Shuanglin, WEN Zhenhe, et al. Geochemical characteristics of Jurassic source rocks from well LV and Oil-source correlation in north Yellow Sea Basin [J]. Acta Sedimentologica Sinica, 2016, 34(4): 794-802.
    [61] 梁杰, 温珍河, 肖国林, 等. 北黄海盆地东部坳陷储层特征及影响因素[J]. 海洋地质与第四纪地质, 2013, 33(2):111-119. [LIANG Jie, WEN Zhenhe, XIAO Guolin, et al. Reservoir characteristics and influential factors in the Eastern depression of the north Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2013, 33(2): 111-119.
    [62] 刘守全, 蔡乾忠, 莫杰. 中国海域油气勘探的新领域——应当重视海域中生界油气资源[J]. 中国地质, 2001, 28(11):4-9. [LIU Shouquan, CAI Qianzhong, MO Jie. A new field of petroleum exploration in sea areas of China-Attention should be paid to Mesozoic marine petroleum resources [J]. Chinese Geology, 2001, 28(11): 4-9. doi: 10.3969/j.issn.1000-3657.2001.11.002
    [63] 陈建文. 南黄海崂山隆起海相中—古生界发现多个大型圈闭构造[J]. 海洋地质前沿, 2016, 32(4):69-70. [CHEN Jianwen. Many large trap structures develop in the marine Mesozoic-Paleozoic strata in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(4): 69-70.
    [64] 高乐. 东海陆架中生代残余盆地特征及勘探方向探讨[J]. 中国海上油气, 2005, 17(3):148-152. [GAO Le. Mesozoic remnant basin characteristics and hydrocarbon exploration direction on East China Sea Shelf [J]. China Offshore oil and Gas, 2005, 17(3): 148-152. doi: 10.3969/j.issn.1673-1506.2005.03.002
    [65] 刘建华, 黎明碧, 方银霞. 东海陆架盆地海相中生界及其与邻近古海洋关系探讨[J]. 热带海洋学报, 2005, 24(2):1-7. [LIU Jianhua, LI Mingbi, FANG Yinxia. Mesozoic strata in East China Sea Shelf Basin and their relationship with adjacent palaeo seas [J]. Journal of Tropical Oceanography, 2005, 24(2): 1-7. doi: 10.3969/j.issn.1009-5470.2005.02.001
    [66] 唐建. 东海及邻近地区中生代沉积地层展布研究[D]. 上海: 同济大学, 2007.

    TANG Jian. Distribution research of Mesozoic strata in East China Sea and around[D]. Shanghai: Tongji University, 2007.

    [67] 蔡乾忠, 刘守全, 莫杰. 寻找海相油气新领域———从南海北部" 残留特提斯”谈起[J]. 中国海上油气(地质), 2000, 14(3):157-162. [CAI Qianzhong, LIU Shouquan, MO Jie. Search for new domains of marine-origin petroleum: " remained tethys” in the northern South China Sea [J]. China Offshore Oil and Gas (Geology), 2000, 14(3): 157-162.
    [68] 龚再升. 中国近海含油气盆地新构造运动与油气成藏[J]. 地球科学—中国地质大学学报, 2004, 29(5):513-517. [GONG Zaisheng. Neotectonics and petroleum accumulation in offshore Chinese Basins [J]. Earth Science—Journal of China University of Geosciences, 2004, 29(5): 513-517.
    [69] 龚再升. 中国近海含油气盆地新构造运动和油气成藏[J]. 石油与天然气地质, 2004, 25(2):133-138. [GONG Zaisheng. Neotectonic movement and hydrocarbon accumulation in petroliferous basins, offshore China [J]. Oil & Gas Geology, 2004, 25(2): 133-138. doi: 10.3321/j.issn:0253-9985.2004.02.003
    [70] 龚再升. 中国近海新生代盆地至今仍然是油气成藏的活跃期[J]. 石油学报, 2005, 26(6):1-6. [GONG Zaisheng. Cenozoic China offshore basins keeping active hydrocarbon accumulation to present [J]. Acta Petrolei Sinica, 2005, 26(6): 1-6. doi: 10.3321/j.issn:0253-2697.2005.06.001
    [71] 龚再升, 王国纯. 渤海新构造运动控制晚期油气成藏[J]. 石油学报, 2001, 22(2):1-7. [GONG Zaisheng, WANG Guochun. Neotectonism and late hydrocarbon accumulation in Bohai Sea [J]. Acta Petrolei Sinica, 2001, 22(2): 1-7. doi: 10.3321/j.issn:0253-2697.2001.02.001
    [72] 龚再升. 中国近海盆地晚期断裂活动和油气成藏[J]. 中国石油勘探, 2004, 9(2):12-19. [GONG Zaisheng. Late-stage fault activities and oil and gas reservoir formation of China’s Offshore Basins [J]. China Petroleum Exploration, 2004, 9(2): 12-19. doi: 10.3969/j.issn.1672-7703.2004.02.002
    [73] 肖国林, 陈建文. 中国近海的天然气勘探[J]. 海洋地质动态, 2003, 19(8):47-52. [XIAO Guolin, CHEN Jianwen. Natural gas exploration of offshore China [J]. Marine Geology Letters, 2003, 19(8): 47-52. doi: 10.3969/j.issn.1009-2722.2003.08.012
    [74] 张功成, 苗顺德, 陈莹. " 源热共控”中国近海天然气富集区分布[J]. 天然气工业, 2013, 33(4):1-17. [ZHANG Gongcheng, MIAO Shunde, CHEN Ying. Distribution of gas enrichment regions controlled by source rocks and geothermal heat in China offshore basins [J]. Natural Gas industry, 2013, 33(4): 1-17. doi: 10.3787/j.issn.10000976.2013.04.001
    [75] 张功成, 陈国俊, 张厚和, 等. " 源热共控”中国近海盆地油气田" 内油外气”有序分布[J]. 沉积学报, 2012, 30(1):1-19. [ZHANG Gongcheng, CHEN Guojun, ZHANG Houhe, et al. Regular distribution of inside-oil fields and outside-gas fields controlled by source rocks and heat in China offshore basins [J]. Acta Sedimentologica Sinica, 2012, 30(1): 1-19.
    [76] 张功成. 中国近海天然气地质特征与勘探新领域[J]. 中国海上油气, 2005, 17(5):289-296. [ZHANG Gongcheng. Geological features and new exploration realms of offshore gas in China [J]. China Offshore Oil and Gas, 2005, 17(5): 289-296. doi: 10.3969/j.issn.1673-1506.2005.05.001
    [77] 董伟良. 南海西部莺-琼盆地天然气勘探领域分析[J]. 天然气工业, 1999, 19(1):7-11. [DONG Weiliang. An analysis of the natural gas exploration areas in Ying Qiong Basin in western South China Sea [J]. Natural Gas Industry, 1999, 19(1): 7-11. doi: 10.3321/j.issn:1000-0976.1999.01.003
    [78] 陈伟煌, 何家雄, 夏斌. 莺—琼盆地天然气勘探回顾与存在的主要问题及进一步勘探的建[J]. 天然气地球科学, 2005, 16(4):412-415. [CHEN Weihuang, HE Jiaxiong, XIA Bin. Review and proposal upon offshore gas exploration in Yingqiong Basin [J]. Natural Gas Geoscience, 2005, 16(4): 412-415. doi: 10.3969/j.issn.1672-1926.2005.04.003
    [79] 林兴荣, 孙志鹏. 文昌A凹陷天然气成藏条件[J]. 天然气工业, 1999, 19(1):47-51. [Lin Xingrong, Sun Zhipeng. Conditions of forming gas reservoirs in Wenchang Sag A [J]. Natural Gas Industry, 1999, 19(1): 47-51. doi: 10.3321/j.issn:1000-0976.1999.01.013
    [80] 甘军, 张迎朝, 邓勇, 等. 珠江口盆地西部文昌A凹陷古近系天然气富集主控因素与勘探方向[J]. 中国海上油气, 2009, 21(6):367-371. [GAN Jun, ZHANG Yingzhao, DENG Yong, et al. Main controls over Palaeogene natural gas accumulation and its exploration direction in Wenchang A Sag, the western Pearl River Mouth Basin [J]. China Offshore Oil and Gas, 2009, 21(6): 367-371. doi: 10.3969/j.issn.1673-1506.2009.06.002
    [81] 谢玉洪. 中国海洋石油总公司油气勘探新进展及展望[J]. 中国石油勘探, 2018, 23(1):26-35. [XIE Yuhong. New progress and prospect of oil and gas exploration of China National Offshore Oil Corporation [J]. China Petroleum Exploration, 2018, 23(1): 26-35. doi: 10.3969/j.issn.1672-7703.2018.01.003
    [82] 王建强, 赵青芳, 董和平, 等. 海域油气勘探开发形势分析与战略研究2019年成果报告[R]. 青岛: 青岛海洋地质研究所, 2019.

    WANG Jianqiang, ZHAO Qingfang, DONG Heping, et al. 2019 Report of situation analysis strategic research in seas[R]. Qingdao: Qingdao Institute of Marine Geology, 2019.

    [83] 周心怀, 张如才, 李慧勇, 等. 渤海湾盆地渤中凹陷深埋古潜山天然气成藏主控因素探讨[J]. 中国石油大学学报: 自然科学版, 2017, 41(1):42-50. [ZHOU Xinhuai, ZHANG Rucai, LI Huiyong, et al. Major controls on natural gas accumulations in deep-buried hills in Bozhong Depression, Bohai Bay Basin [J]. Journal of China University of Petroleum, 2017, 41(1): 42-50.
    [84] 薛永安. 渤海海域深层天然气勘探的突破与启示[J]. 天然气工业, 2019, 39(1):11-20. [XUE Yong'an. The breakthrough of the deep-buried gas exploration in the Bohai Sea area and its enlightenment [J]. Natural Gas Industry, 2019, 39(1): 11-20. doi: 10.3787/j.issn.1000-0976.2019.01.002
    [85] 薛永安, 李慧勇. 渤海海域深层太古界变质岩潜山大型凝析气田的发现及其地质意义[J]. 中国海上油气, 2018, 30(3):1-9. [XUE Yong'an, LI Huiyong. Large condensate gas field in deep Archean metamorphic buried hill in Bohai Sea: Discovery and geological significance [J]. China Offshore Oil and Gas, 2018, 30(3): 1-9.
    [86] 陈建文. 深水盆地油气勘探新领域[J]. 海洋地质动态, 2003, 19(8):38-41. [CHEN Jianwen. New exploration domain for oil and gas in deep water basins [J]. Marine Geology Letters, 2003, 19(8): 38-41. doi: 10.3969/j.issn.1009-2722.2003.08.010
    [87] 吴时国, 袁圣强. 世界深水油气勘探进展与我国南海深水油气前景[J]. 天然气地球科学, 2005, 16(6):693-699. [WU Shiguo, YUAN Shengqiang. Advance of exploration and petroleum geological features of deep-water hydrocarbon in the world [J]. Natural Gas Geoscience, 2005, 16(6): 693-699. doi: 10.3969/j.issn.1672-1926.2005.06.002
    [88] 张功成, 屈红军, 赵冲, 等. 全球深水油气勘探40年大发现及未来勘探前景[J]. 天然气地球科学, 2017, 28(10):1447-1477. [ZHANG Gongcheng, QU Hongjun, ZHAO Chong, et al. Giant discoveries of oil and gas exploration in global deepwaters in 40 years and the prospect of exploration [J]. Natural Gas Geoscience, 2017, 28(10): 1447-1477.
    [89] 金庆焕. 深水油气是当今海洋油气勘探的主要热点[J]. 科学中国人, 2006(11):18-20. [JIN Qinghuan. Deepwater oil and gas exploration is the hot spot in the marine oil and gas exploration [J]. Scientific Chinese, 2006(11): 18-20. doi: 10.3969/j.issn.1005-3573.2006.11.005
    [90] 何家雄, 夏斌, 施小斌, 等. 世界深水油气勘探进展与南海深水油气勘探前景[J]. 天然气地球科学, 2006, 17(6):747-752. [HE Jiaxiong, XIA Bin, SHI Xiaobin, et al. Prospect and progress for oil and gas in deep waters of the world and the potential and prospect foreground for oil and gas in deep waters of the South China Sea [J]. Natural Gas Geoscience, 2006, 17(6): 747-752. doi: 10.3969/j.issn.1672-1926.2006.06.002
    [91] 冯杨伟, 张功成, 屈红军. 南海新生代生物礁发育规律与油气勘探潜力[J]. 中国石油勘探, 2016, 21(6):18-25. [FENG Yangwei, ZHANG Gongcheng, QU Hongjun. Development regularity and hydrocarbon exploration potential of Cenozoic reef reservoir, South China Sea [J]. China Petroleum Exploration, 2016, 21(6): 18-25. doi: 10.3969/j.issn.1672-7703.2016.06.003
    [92] 魏喜, 邓晋福, 谢文彦, 等. 南海盆地演化对生物礁的控制及礁油气藏勘探潜力分析[J]. 地学前缘, 2005, 12(3):245-252. [WEI Xi, DENG Jinfu, XIE Wenyan, et al. Constraints on biogenetic reef formation during evolution of the South China Sea and exploration potential analysis [J]. Earth Science Frontiers, 2005, 12(3): 245-252. doi: 10.3321/j.issn:1005-2321.2005.03.026
    [93] 龚建明, 王建强, 李小豫, 等. 南黄海崂山隆起古生界页岩气远景区[J]. 海洋地质与第四纪地质, 2013, 33(6):115-120. [GONG Jianming, WANG Jianqiang, LI Xiaoyu, et al. Exploration targets of Paleozoic shale gas at the Laoshan Uplift, South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2013, 33(6): 115-120.
    [94] 王建强, 龚建明, 张莉, 等. 南黄海盆地" 三明治”结构的页岩气保存条件探讨[J]. 海洋地质与第四纪地质, 2018, 38(3):135-142. [WANG Jianqiang, GONG Jianming, ZHANG Li, et al. Discussion on preservation conditions of shale gas with " Sandwich” structure in South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 135-142.
    [95] 苏奥, 陈红汉, 詹海勇. 东海西湖凹陷西斜坡和西次凹近致密-致密砂岩气藏的地质特征及发育前景[J]. 中国地质, 2015, 42(4):1115-1125. [SU Ao, CHEN Honghan, ZHAN Haiyong. Development prospects and geological characteristics of nearly tight and tight sandstone gas reservoirs in western secondary sag and western slope zone of Xihu depression, East China Sea [J]. Geology in China, 2015, 42(4): 1115-1125. doi: 10.3969/j.issn.1000-3657.2015.04.025
    [96] 戴金星, 戚厚发, 宋岩, 等. 我国煤层气组份、碳同位素类型及其成因和意义[J]. 中国科学(B)辑, 1987, 30(12):1324-1337. [DAI Jinxing, QI Houfa, SONG Yan, et al. Composition, carbon isotope characteristics and the origin of coal-bed gases in China and their implications [J]. China Science (B Series), 1987, 30(12): 1324-1337.
    [97] 姜亮. 东海陆架盆地第三系煤系烃源岩油气生成与聚集[M]. 石油工业出版社, 2002.

    JIANG Liang. Hydrocarbon Generation and Accumulation in Tertiary Coal Measure Source Rocks in East China Sea Continental Shelf Basin[M]. Petroleum Industry Press, 2002.

    [98] 荣春龙. 深盆气藏基本特征及其形成机制[J]. 低渗透油气田, 1997, 2(2):55-58. [RONG Chunlong. The characteristics and formation mechanism of gas reservoir in deep basin [J]. Hyposmosis Oil and Gas Field, 1997, 2(2): 55-58.
    [99] 张金亮, 张金功. 深盆气藏的主要特征及形成机制[J]. 西安石油学院学报, 2001, 16(1):1-7. [ZHANG Jinliang, ZHANG Jingong. Basic characteristics of deep basin gas traps [J]. Journal of Xi’an Petroleum Institute, 2001, 16(1): 1-7.
    [100] 袁政文, 许化政. 阿尔伯达深盆气研究 [M]. 北京: 石油工业出版社, 1996.

    YUAN Zhengwen, XU Huazheng. Research of Deep Basin Gas in Alberta Basin [M]. Beijing: Petroleum Industry Press, 1996.

    [101] 张金亮, 常象春, 王世谦. 四川盆地上三叠统深盆气藏研究[J]. 石油学报, 2002, 23(3):27-33. [ZHANG Jinliang, CHANG Xiangchun, WANG Shiqian. Gas trap in deep basin of the upper Triassic in Sichuan Basin [J]. Acta Petrolei Sinica, 2002, 23(3): 27-33. doi: 10.3321/j.issn:0253-2697.2002.03.006
    [102] 闵琪, 杨华, 付金华. 鄂尔多斯盆地的深盆气[J]. 天然气工业, 2000, 20(6):11-15. [MIN Qi, YANG Hua, FU Jinhua. Deep basin gas in E’erduosi Basin [J]. Gas Industry, 2000, 20(6): 11-15. doi: 10.3321/j.issn:1000-0976.2000.06.003
    [103] 姜烨, 梁春旭. 深盆气藏及松辽盆地勘探远景[J]. 大庆石油地质与开发, 2001, 20(6):14-16, 19. [JIANG Ye, LIANG Chunxu. Deep basin gas reservoir and exploration potential of Songliao Basin [J]. Petroleum Geology & Oilfield Development in Daqing, 2001, 20(6): 14-16, 19. doi: 10.3969/j.issn.1000-3754.2001.06.005
    [104] 张建培, 余逸凡, 张田, 等. 东海西湖凹陷深盆气勘探前景探讨[J]. 中国海上油气, 2013, 25(2):24-29, 35. [ZHANG Jianpei, YU Yifan, ZHANG Tian, et al. A discussion on the exploration potential of deep basin gas in Xihu Sag, East China Sea [J]. China Offshore Oil and Gas, 2013, 25(2): 24-29, 35.
    [105] 魏伟, 张金华, 魏兴华, 等. 我国南海天然气水合物资源潜力分析[J]. 地球物理学进展, 2012, 27(6):2646-2655. [WEI Wei, ZHANG Jinhua, WEI Xinghua, et al. Resource potential analysis of natural gas hydrate in South China Sea [J]. Progress in Geophysics, 2012, 27(6): 2646-2655. doi: 10.6038/j.issn.1004-2903.2012.06.044
    [106] 龚建明, 陈建文, 戴春山, 等. 中国海域天然气水合物资源远景[J]. 海洋地质动态, 2003, 19(8):53-56. [GONG Jianming, CHEN Jianwen, DAI Chunshan. Resources perspective of gas hydrate in China seas [J]. Marine Geology Letters, 2003, 19(8): 53-56. doi: 10.3969/j.issn.1009-2722.2003.08.013
    [107] 陆敬安. 解码南海天然气水合物试采[J]. 海洋与渔业杂志, 2017. [LU Jing’an. Decode pilot production of natural gas hydrate in the South China Sea [J]. Ocean and Fishery, 2017.
    [108]

    Chi W C, Donald L R, Liu C, et al. Distribution of the bottom- simulating reflector in the offshore Taiwan collision zone [J]. TAO, 1998, 9(4): 779-794.

    [109] 王建花, 李庆忠, 邱睿. 浅层强反射界面的能量屏蔽作用[J]. 石油地球物理勘探, 2003, 38(6):589-596, 602. [WANG Jianhua, LI Qingzhong, QIU Rui. Energy shielding action of shallow strong reflector [J]. Oil Geophysical Prospecting, 2003, 38(6): 589-596, 602. doi: 10.3321/j.issn:1000-7210.2003.06.002
    [110] 刘俊, 吴淑玉, 施剑, 等. 南黄海崂山隆起地震采集方法[J]. 海洋地质前沿, 2016, 32(10):24-29. [LIU Jun, WU Shuyu, SHI Jian, et al. On seismic acquisition methods on the Laoshan Uplift of the South Yellow Sea [J]. Marine Geology Frontiers, 2016, 32(10): 24-29.
    [111]

    Chen J W, Shi J, Zhang Y B, et al. The " HRS” seismic exploration technology of deep strata in China sea areas: A case of the South Yellow Sea Basin[C]. Acta Geologica Sinica (English Edition), 2019, 93(S2): 388-389.

    [112] 陈建文, 袁勇, 施剑, 等. 中国海域深部" 高富强”地震探测技术与南黄海盆地海相地层的发现[J]. 天然气勘探与开发, 2019, 42(3):53-64. [CHEN Jianwen, YUAN Yong, SHI Jian, et al. "High, rich, and strong" seismic technologies for deeper layers in offshore China and discoveries in marine strata of South Yellow Sea Basin [J]. Natural Gas Exploration and Development, 2019, 42(3): 53-64.
    [113] 施剑, 刘江平, 陈建文, 等. 崂山隆起地震资料多次波特征与压制策略[J]. 海洋地质前沿, 2016, 32(10):30-37. [SHI Jian, LIU Jiangping, CHEN Jianwen, et al. Characteristics of seismic multiples on the Laoshan uplift and their suppression method [J]. Marine Geology Frontiers, 2016, 32(10): 30-37.
    [114] 袁海华, 张树发, 张平. 康滇地轴结晶基底的时代归属[J]. 成都地质学院学报, 1986, 13(4):64-70. [YUAN Haihua, ZHANG Shufa, ZHANG Ping. Geochronological belonging of the crystalline basement of the Kang-Dian Geoaxis [J]. Journal of Chengdu College of Geology, 1986, 13(4): 64-70.
    [115] 陶洪祥. 扬子古陆核北缘西段元古代侵入岩岩石组合的划分及其地质意义[J]. 西安地质学院学报, 1983(2):24-34. [TAO Hongxiang. Division and geological meaning of Proterozoic intrusions in western part of northern Yangtze block [J]. Journal of Xian Geological College, 1983(2): 24-34.
    [116] 任纪舜. 中国及邻区大地构造图(1: 500万)及简要说明书——从全球看中国大地构造[M]. 北京: 地质出版社, 1999: 2-10.

    REN Jishun. Tectonic Map (1: 5000000) and Specification of China and Adjacent Area[M]. Beijing: Geological Publishing House, 1999: 2-10.

    [117] 杨志坚, 陈玉华. 中国东部(包括海域)与朝鲜半岛西南日本古构造发展关系的探讨[J]. 海洋地质与第四纪地质, 1983, 3(1):89-100. [YANG Zhijian, CHEN Yuhua. Discussion on the relation between the development of paleotectonics of the peninsula of Korea, southwestern Japan and eastern China and contiguous seas [J]. Marine Geology & Quaternary Geology, 1983, 3(1): 89-100.
    [118] 蔡乾忠. 横贯黄海的中朝造山带与北、南黄海成盆成烃关系[J]. 石油与天然气地质, 2005, 26(2):185-192, 196. [CAI Qianzhong. Relationship between Sino-Korean orogenic belt traversing Yellow Sea and basin evolution and hydrocarbon generation in North and South Yellow Sea basins [J]. Oil & Gas Geology, 2005, 26(2): 185-192, 196. doi: 10.3321/j.issn:0253-9985.2005.02.010
    [119] 蔡乾忠. 中国东部与朝鲜大地构造单元对应划分[J]. 海洋地质与第四纪地质, 1995, 15(1):7-24. [CAI Qianzhong. Corresponding division of geotectonic units of eastern China and Korea [J]. Marine Geology & Quaternary Geology, 1995, 15(1): 7-24.
    [120] 雷宝华, 陈建文, 李刚, 等. 南黄海盆地二叠系地震地层特征与识别[J]. 海洋地质前沿, 2016, 32(1):29-34. [LEI Baohua, CHEN Jianwen, LI Gang, et al. Seismic stratigraphic features and recognition of the Permian in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(1): 29-34.
    [121] 王丰, 李慧君, 张银国. 南黄海崂山隆起地层属性及油气地质[J]. 海洋地质与第四纪地质, 2010, 30(2):95-102. [WANG Feng, LI Huijun, ZHANG Yinguo. Stratigraphic geologic attribute and hydrocarbon geology in Laoshan Uplift of South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2010, 30(2): 95-102.
    [122] 马立桥, 陈汉林, 董庸, 等. 苏北-南黄海南部叠合盆地构造演化与海相油气勘探潜力[J]. 石油与天然气地质, 2007, 28(1):35-42. [MA Liqiao, CHEN Hanlin, DONG Yong, et al. Tectonic evolution of Subei-South Nanhuanghai superimposed basin from the Late Mesozoic to the Cenozoic and marine petroleum potential [J]. Oil & Gas Geology, 2007, 28(1): 35-42. doi: 10.3321/j.issn:0253-9985.2007.01.005
    [123] 杨方之, 闫吉柱, 苏树桉, 等. 下扬子地区海相盆地演化及油气勘探选区评价[J]. 江苏地质, 2001, 25(3):134-141. [YANG Fangzhi, YAN Jizhu, SU Shuan, et al. Evolution of marine basins and exploration direction estimation of oil and gas in lower Yangtze Areas [J]. Jiangsu Geology, 2001, 25(3): 134-141.
    [124] 裴振洪, 王果寿. 苏北-南黄海海相中古生界构造变形类型划分[J]. 天然气工业, 2003, 23(6):32-36. [PEI Zhenhong, WANG Guoshou. Classification of deformation types of the marine mesozoic-paleozoic Erathem in North Jiangsu-South Yellow Sea [J]. Natural Gas Industry, 2003, 23(6): 32-36. doi: 10.3321/j.issn:1000-0976.2003.06.009
    [125] 姚永坚, 夏斌, 冯志强, 等. 南黄海古生代以来构造演化[J]. 石油实验地质, 2005, 27(2):124-128. [YAO Yongjian, XIA Bin, FENG Zhiqiang, et al. Tectonic evolution of the South Yellow Sea since the Paleozoic [J]. Petroleum Geology & Experiment, 2005, 27(2): 124-128. doi: 10.3969/j.issn.1001-6112.2005.02.005
    [126] 周小进, 杨帆. 中国南方新元古代-早古生代构造演化与盆地原型分析[J]. 石油实验地质, 2007, 29(5):446-451. [ZHOU Xiaojin, YANG Fan. Tectonic evolution and prototypes analysis from Neoproterozoic to early Paleozoic in South China [J]. Petroleum Geology & Experiment, 2007, 29(5): 446-451. doi: 10.3969/j.issn.1001-6112.2007.05.002
    [127] 梅廉夫, 戴少武, 沈传波, 等. 中、下扬子区中、新生代陆内对冲带的形成及解体[J]. 地质科技情报, 2008, 27(4):1-7, 14. [MEI Lianfu, DAI Shaowu, SHEN Chuanbo, et al. Formation and disintegration of Mesozoic-Cenozoic intra-continental ramp zone in middle and Lower Yangtze region [J]. Geological Science and Technology Information, 2008, 27(4): 1-7, 14. doi: 10.3969/j.issn.1000-7849.2008.04.001
    [128] 李亚辉, 段宏亮, 谈迎. 下扬子区海相中、古生界地质结构分区及其油气勘探选区意义[J]. 地质力学学报, 2010, 16(3):271-280. [LI Yahui, DUAN Hongliang, TAN Ying. Structural division of marine Mesozoic-Paleozoic in Lower Yangtze region and its significance for petroleum exploration targets [J]. Journal of Geomechanics, 2010, 16(3): 271-280. doi: 10.3969/j.issn.1006-6616.2010.03.005
    [129] 赵挺, 程海生, 陆英. 下扬子区中、古生界典型构造样式与油气勘探选区[J]. 复杂油气藏, 2010, 3(2):8-12. [ZHAO Ting, CHENG Haisheng, LU Ying. Typical tectonic styles of Mesozoic & Paleozoic and exploration targets of oil and gas in Lower Yangtze Area [J]. Complex Hydrocarbon Reservoirs, 2010, 3(2): 8-12. doi: 10.3969/j.issn.1674-4667.2010.02.003
    [130] 杨长清, 董贺平, 李刚. 南黄海盆地中部隆起的形成与演化[J]. 海洋地质前沿, 2014, 30(7):17-21, 33. [YANG Changqing, DONG Heping, LI Gang. Formation and tectonic evolution of the central uplift of the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2014, 30(7): 17-21, 33.
    [131] 王建强, 孙晶, 肖国林, 等. 南黄海盆地构造特征及油气地质意义[J]. 海洋地质前沿, 2014, 30(10):34-39. [WANG Jianqiang, SUN Jing, XIAO Guolin, et al. Tectonic characteristics of the South Yellow Sea Basin and implications for petroleum geology [J]. Marine Geology Frontiers, 2014, 30(10): 34-39.
    [132] 庞玉茂, 张训华, 肖国林, 等. 下扬子南黄海沉积盆地构造地质特征[J]. 地质论评, 2016, 62(3):604-616. [PANG Yumao, ZHANG Xunhua, XIAO Guolin, et al. Structural and geological characteristics of the South Yellow Sea Basin in lower Yangtze Block [J]. Geological Review, 2016, 62(3): 604-616.
    [133] 袁勇, 陈建文, 张银国, 等. 南黄海盆地崂山隆起海相中-古生界构造地质特征[J]. 海洋地质前沿, 2016, 32(1):48-53. [YUAN Yong, CHEN Jianwen, ZHANG Yinguo, et al. Geotectonic features of the marine Mesozoic-Paleozoic on the Laoshan Uplift of the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(1): 48-53.
    [134] 郭令智, 施央申, 孙岩, 等. 下扬子区前陆盆地逆冲推覆构造的研究[J]. 南京大学学报(自然科学), 1988, 24(1):3-11. [GUO Lingzhi, SHI Yangshen, SUN Yan, et al. A study on the thrust-Nappe structure of foreland basin in Lower Yangtze area [J]. Journal of Nanjing University (Natural Sciences Edition), 1988, 24(1): 3-11.
    [135] 闰吉柱, 俞凯, 赵曙白, 等. 下扬子区中生代前陆盆地[J]. 石油实验地质, 1999, 21(2):95-99. [YAN Jizhu, YU Kai, ZHAO Shubai, et al. The mesozoic foreland basins in the Lower Yangtze area [J]. Experimental Petroleum Geology, 1999, 21(2): 95-99. doi: 10.3969/j.issn.1001-6112.1999.02.001
    [136] 朱光, 徐嘉炜, 刘国生, 等. 下扬子地区前陆变形构造格局及其动力学机制[J]. 中国区域地质, 1999, 18(1):73-79. [ZHU Guang, XU Jiawei, LIU Guosheng, et al. Tectonic pattern and dynamic mechanism of the foreland deformation in the Lower Yangtze region [J]. Regional Geology of China, 1999, 18(1): 73-79.
    [137] 丁卫星, 赵挺, 赵胜, 等. 下扬子前陆盆地北部构造变形特征研究[J]. 复杂油气藏, 2013(2):1-6. [DING Weixing, ZHAO Ting, ZHAO Sheng, et al. Characteristics of structural deformation in the northern part of lower Yangtze foreland basin [J]. Complex Hydrocarbon Reservoirs, 2013(2): 1-6. doi: 10.3969/j.issn.1674-4667.2013.02.001
    [138] 许明, 陈建文, 雷宝华, 等. 南黄海海域中生代前陆盆地形成的构造背景[J]. 现代地质, 2019, 33(1):13-24. [XU Ming, CHEN Jianwen, LEI Baohua, et al. Tectonic background of Mesozoic Foreland basin development in the Southern Yellow Sea [J]. Geoscience, 2019, 33(1): 13-24.
    [139] 丁道桂, 王东燕, 刘运黎. 下扬子地区古生代盆地的改造变形[J]. 地学前缘, 2009, 16(4):16-73. [DING Daogui, WANG Dongyan, LIU Yunli. Transformation and deformation of the Paleozoic basins in lower Yangtze areas [J]. Earth Science Frontiers, 2009, 16(4): 16-73.
    [140] 赵宗举, 朱琰, 李大成, 等. 中国南方构造形变对油气藏的控制作用[J]. 石油与天然气地质, 2002, 23(1):19-25. [ZHAO Zongju, ZHU Yan, LI Dacheng, et al. Control affect of tectonic deformation to oil-gas pools in southern China [J]. Oil & Gas Geology, 2002, 23(1): 19-25. doi: 10.3321/j.issn:0253-9985.2002.01.004
    [141] 郭旭升, 梅廉夫, 汤济广, 等. 扬子地块中、新生代构造演化对海相油气成藏的制约[J]. 石油与天然气地质, 2006, 27(3):295-304, 325. [GUO Xusheng, MEI Lianfu, TANG Jiguang, et al. Constraint of Meso-Cenozoic tectonic evolution of Yangtze massif on formation of marine reservoirs [J]. Oil & Gas Geology, 2006, 27(3): 295-304, 325. doi: 10.3321/j.issn:0253-9985.2006.03.003
    [142] 丁道桂, 王东燕, 刘运黎. 下扬子地区古生代盆地的改造变形[J]. 地学前缘, 2009, 16(4):61-73. [DING Daogui, WANG Dongyan, LIU Yunli. Transformation and deformation of the Paleozoic basins in lower Yangtze areas [J]. Earth Science Frontiers, 2009, 16(4): 61-73. doi: 10.3321/j.issn:1005-2321.2009.04.007
    [143] 徐旭晖, 周小进, 彭金宁. 从扬子地区海相盆地演化改造与成藏浅析南黄海勘探方向[J]. 石油实验地质, 2014, 36(5):523-531, 545. [XU Xuhui, ZHOU Xiaojin, PENG Jinning. Exploration targets in southern Yellow Sea through analysis of tectono-depositional evolution and hydrocarbon accumulation of marine basin in Yangtze area [J]. Petroleum Geology and Experiment, 2014, 36(5): 523-531, 545. doi: 10.11781/sysydz201405523
    [144]

    Yuan Y, Chen J W, Zhang Y X, et al. Tectonic evolution and geological characteristics of hydrocarbon reservoirs in marine Mesozoic-Paleozoic strata in the South Yellow Sea Basin [J]. Journal of Ocean University of China, 2018, 17(05): 1075-1090. doi: 10.1007/s11802-018-3583-x

    [145]

    Lei B H, Xu M, Chen J W, et al. Structural characteristics and evolution of the South Yellow Sea Basin since Indosinian [J]. China Geology, 2018, 1(4): 466-476. doi: 10.31035/cg2018063

    [146] 雷宝华, 陈建文, 梁杰, 等. 印支运动以来南黄海盆地的构造变形与演化[J]. 海洋地质与第四纪地质, 2018, 38(3):45-54. [LEI Baohua, CHEN Jianwen, LIANG Jie, et al. Tectonic deformation and evolution of the South Yellow Sea Basin since Indosinian movement [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 45-54.
    [147] 王文娟, 陈建文, 张银国. 贵州思南奥陶纪末至志留纪初大息场组的笔石[J]. 古生物学报, 2019, 58(2):188-201. [WANG Wenjuan, CHEN Jianwen, ZHANG Yinguo. Latest Ordovician to early Silurian graptolites of the Daxichang Formation in Sinan, Guizhou, China [J]. Acta Palaeontologica Sinica, 2019, 58(2): 188-201.
    [148] 张全忠, 焦世鼎. 南京汤山地区志留系研究的新进展[J]. 中国地质科学院南京地质矿产研究所所刊, 1985, 6(2):97-111. [ZHANG Quanzhong, JIAO Shiding. Bull. Nanjing Inst. Geol. M. R., Journal of Nanjing Institute of Geology and Mineral Tesources [J]. Chinese Scademy of Geological Sciences, 1985, 6(2): 97-111.
    [149] 蔡峰, 熊斌辉. 南黄海海域与下扬子地区海相中—古生界地层对比及烃源岩评价[J]. 海洋地质动态, 2007, 23(6):1-6. [CAI Feng, XIONG Binhui. Comparison of marine mesozoic-paleozoic strata and hydrocarbon source rocks in the South Yellow Sea and Lower Yangtze Area [J]. Marine Geology Letters, 2007, 23(6): 1-6. doi: 10.3969/j.issn.1009-2722.2007.06.001
    [150] 陈安定, 刘东鹰, 刘子满. 江苏下扬子区海相中、古生界烃源岩晚期生烃的论证与定量研究[J]. 海相油气地质, 2001, 6(4):27-33. [CHEN Anding, LIU Dongying, LIU Ziman. Demonstration and quantitative study of late hydrocarbon generation from Mesozoic and Paleozoic source rocks in the lower Yangtze area, jiangsu province [J]. Marine Oil and Gas Geology, 2001, 6(4): 27-33.
    [151] 李双建, 肖开华, 沃玉进, 等. 南方海相上奥陶统—下志留统优质烃源岩发育的控制因素[J]. 沉积学报, 2008, 26(5):872-880. [LI Shuangjian, XIAO Kaihua, WO Yujin, et al. Developmental controlling factors of upper ordovician-lower Silurian high quality source rocks in marine sequence, South China [J]. Acta Sedimentologica Sinica, 2008, 26(5): 872-880.
    [152] 高林, 周雁. 中下扬子区海相中—古生界烃源岩评价与潜力分析[J]. 油气地质与采收率, 2009, 16(3):30-33. [GAO Lin, ZHOU Yan. Evaluation and potential analysis on source rocks in Mesozoic and Paleozoic marine sequence, middle-lower Yangtze area [J]. Petroleum Geology and Recovery Efficiency, 2009, 16(3): 30-33. doi: 10.3969/j.issn.1009-9603.2009.03.009
    [153] 刘小平, 潘继平, 董清源, 等. 苏北地区古生界页岩气形成地质条件[J]. 天然气地球科学, 2011, 22(6):1100-1108. [LIU Xiaoping, PAN Jiping, DONG Qingyuan, et al. Geological conditions of shale gas forming in Paleozoic Subei Area [J]. Natural Gas Geoscience, 2011, 22(6): 1100-1108.
    [154] 潘继平, 乔德武, 李世臻, 等. 下扬子地区古生界页岩气地质条件与勘探前景[J]. 地质通报, 2011, 30(2-3):337-343. [PAN Jiping, QIAO Dewu, LI Shizhen, et al. Shale-gas geological conditions and exploration prospect of the Paleozoic marine strata in lower Yangtze area, China [J]. Geological Bulletin of China, 2011, 30(2-3): 337-343.
    [155] 黄俨然, 张枝焕, 刘继勇, 等. 黄桥-句容地区二叠-三叠系烃源岩生烃历史及晚期成藏研究[J]. 石油天然气学报, 2012, 34(3):44-48. [HUANG Yanran, ZHANG Zhihuan, Liu Jiyong, et al. Study on Permian-Triassic hydrocarbon generation exaluation and history of late accumulation Huangqiao-Jurong area [J]. Journal of Oil and Gas Technology, 2012, 34(3): 44-48. doi: 10.3969/j.issn.1000-9752.2012.03.009
    [156] 龚建明, 王建强, 王蛟, 等. 南黄海崂山隆起古生界页岩气远景区[J]. 海洋地质与第四纪地质, 2013, 33(6):114-120. [GONG Jianming, WANG Jianqiang, WANG Jiao, et al. Exploration targets of Paleozoic shale gas at the Laoshan Uplift, South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2013, 33(6): 114-120.
    [157] 李皓月, 刘倩茹, 薛林福. 苏北盆地中—古生界海相烃源岩发育规律及其意义[J]. 世界地质, 2014, 33(1):178-189. [LI Haoyue, LIU Qianru, XUE Linfu. Development and significance of Mesozoic-Paleozoic marine hydrocarbon source rocks in Subei Basin [J]. Global Geology, 2014, 33(1): 178-189. doi: 10.3969/j.issn.1004-5589.2014.01.019
    [158] 肖国林, 张银国, 吴志强, 等. 南黄海盆地烃源潜力比较性评价[J]. 海洋地质前沿, 2014, 30(7):25-33. [XIAO Guolin, ZHANG Yinguo, WU Zhiqiang, et al. Comparative assessment of hydrocarbon resource potential in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2014, 30(7): 25-33.
    [159] 葛海霞, 张枝焕. 下扬子黄桥-句容地区二叠系-下三叠统油源分析[J]. 科学技术与工程, 2015, 15(26):140-151. [GE Haixia, ZHANG Zhihuan. Oil-source analysis of Permian-lower Triassic crude oils from Huangqiao and Jurong Area in Lower Yangtze region [J]. Science Technology and Engineering, 2015, 15(26): 140-151. doi: 10.3969/j.issn.1671-1815.2015.26.025
    [160] 张银国, 陈清华, 陈建文, 等. 下扬子海相中—古生界烃源岩发育的控制因素[J]. 海洋地质前沿, 2016, 32(1):8-12. [ZHANG Yinguo, CHEN Qinghua, CHEN Jianwen, et al. Controlling factors on the Mesozoic-Paleozoic marine source rocks in the Lower Yangtze platform [J]. Marine Geology Frontiers, 2016, 32(1): 8-12.
    [161] 贾东, 胡文瑄, 姚素平, 等. 江苏省下志留统黑色页岩浅井钻探及其页岩气潜力分析[J]. 高校地质学报, 2016, 22(1):127-137. [JIA Dong, HU Wenxuan, YAO Suping, et al. Shallow borehole drilling of the lower Silurian black shale in Jiangsu Province and the Shale Gas potential analysis [J]. Geological Journal of China Universities, 2016, 22(1): 127-137.
    [162] 蔡来星, 王蛟, 郭兴伟, 等. 南黄海中部隆起中—古生界沉积相及烃源岩特征——以CSDP-2井为例[J]. 吉林大学学报: 地球科学版, 2017, 47(4):1030-1046. [CAI Laixing, WANG Jiao, GUO Xingwei, et al. Characteristics of sedimentary facies and source rocks of Mesozoic-Paleozoic in central uplift of south Yellow Sea: a case study of CSDP-2 coring well [J]. Journal of Jilin University: Earth Science Edition, 2017, 47(4): 1030-1046.
    [163] 肖国林, 蔡来星, 郭兴伟, 等. 南黄海中部隆起CSDP-2井中-古生界烃源岩精细评价[J]. 海洋地质前沿, 2017, 33(12):24-36. [XIAO Guolin, CAI Laixing, GUO Xingwei, et al. Detailed assessment of Meso-Paleozoic hydrocarbon source rocks: implications from well Csdp-2 on the central uplift of the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2017, 33(12): 24-36.
    [164] 梁狄刚, 陈建平. 中国南方高、过成熟区海相油源对比问题[J]. 石油勘探与开发, 2005, 32(2):8-14. [LIANG Digang, CHEN Jianping. Oil-source correlations for high and over matured marine source rocks in South China [J]. Petroleum Exploration and Development, 2005, 32(2): 8-14. doi: 10.3321/j.issn:1000-0747.2005.02.002
    [165] 梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展(一)南方四套区域性海相烃源岩的分布[J]. 海相油气地质, 2008, 13(2):1-16. [LIANG Digang, GUO Tonglou, CHEN Jianping, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, Southern China (Part 1): distribution of four suits of regional marine source rocks [J]. Marine Origin Petroleum Geology, 2008, 13(2): 1-16. doi: 10.3969/j.issn.1672-9854.2008.02.001
    [166] 梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展(二)南方四套区域性海相烃源岩的地球化学特征[J]. 海相油气地质, 2009, 14(1):1-15. [LIANG Digang, GUO Tonglou, CHEN Jianping, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, Southern China (Part 2): Geochemical Characteristics of Four Suits of Regional Marine Source Rocks, South China [J]. Marine Origin Petroleum Geology, 2009, 14(1): 1-15. doi: 10.3969/j.issn.1672-9854.2009.01.001
    [167] 梁狄刚, 郭彤楼, 边立曾, 等. 中国南方海相生烃成藏研究的若干新进展(三): 南方四套区域性海相烃源岩的沉积相及发育的控制因素[J]. 海相油气地质, 2009, 14(2):1-19. [LIANG Digang, GUO Tonglou, BIAN Lizeng, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, Southern China (Part 3): controlling factors on the sedimentary Facies and development of Palaeozoic marine source rocks [J]. Marine Origin Petroleum Geology, 2009, 14(2): 1-19. doi: 10.3969/j.issn.1672-9854.2009.02.001
    [168]

    Wang J Q, Gong J M, Zhang L, et al. Discussionon " sandwich” structures and preservation conditions of shale gas in the South Yellow Sea Basin [J]. China Geology, 2018, 1(4): 485-492. doi: 10.31035/cg2018064

    [169] 梁杰, 张银国, 董刚, 等. 南黄海海相中—古生界储集条件分析与预测[J]. 海洋地质与第四纪地质, 2011, 31(5):101-108. [LIANG Jie, ZHANG Yinguo, DONG Gang, et al. A discussion on marine Mesozoic-Palaeozoic reservoirs in South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2011, 31(5): 101-108.
    [170] 张鹏辉, 陈建文, 梁杰, 等. 南黄海盆地海相储层成岩作用与储层发育特征[J]. 海洋地质前沿, 2016, 32(1):35-42. [ZHANG Penghui, CHEN Jianwen, LIANG Jie, et al. Diagenesis and characteristics of the marine reservoirs in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(1): 35-42.
    [171] 吴淑玉, 陈建文, 梁杰, 等. 南黄海海相中-古生界碳酸盐岩储层特征及成藏模式—对比四川盆地和苏北盆地[J]. 海洋地质前沿, 2016, 32(1):13-21. [WU Shuyu, CHEN Jianwen, LIANG Jie, et al. Characteristics of Mesozoic-Palaeozoic marine carbonate reservoir in the South Yellow Sea Basin and hydrocarbon accumulation: comparison between the Sichuan Basin and the Subei Basin [J]. Marine Geology Frontiers, 2016, 32(1): 13-21.
    [172] 吴淑玉, 陈建文, 刘俊, 等. 叠前同时反演技术在南黄海崂山隆起储层预测中的应用[J]. 海洋地质与第四纪地质, 2018, 38(3):162-174. [WU Shuyu, CHEN Jianwen, LIU Jun, et al. Application of pre-stack simultaneous inversion in the reservoir prediction in South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 162-174.
    [173] 张银国, 梁杰. 南黄海盆地二叠系至三叠系沉积体系特征及其沉积演化[J]. 吉林大学学报: 地球科学版, 2014, 44(5):1406-1418. [ZHANG Yinguo, LIANG Jie. Sedimentary system characteristics and their sedimentary evolution from the permian to triassic in the southern Yellow Sea Basin [J]. Journal of Jilin University: Earth Science Edition, 2014, 44(5): 1406-1418.
    [174] 张银国, 陈建文, 吴淑玉, 等. 南黄海崂山隆起下石炭统和州组至下二叠统栖霞组储层预测[J]. 海洋地质前沿, 2016, 32(10):60-64. [ZHANG Yinguo, CHEN Jianwen, WU Shuyu, et al. Reservoir prediction for deposits from Hezhou Formation of Lower Carboniferous to Qixia Formation of Lower Permian on the Laoshan Uplift of the South Yellow Sea [J]. Marine Geology Frontiers, 2016, 32(10): 60-64.
    [175] 刘俊, 陈建文, 吴淑玉, 等. 南黄海崂山隆起石炭系-下二叠统海相碳酸盐岩叠前三参数反演储层预测[J]. 海洋地质与第四纪地质, 2018, 38(3):186-198. [LIU Jun, CHEN Jianwen, WU Shuyu, et al. Prestack three-term seismic inversion for prediction of Carboniferous-Lower Permian carbonate reservoir on the Central uplift of South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 186-198.
    [176]

    Yuan Y, Chen J W, Zhang Y G, et al. Sedimentary system characteristics and depositional filling model of Upper Permian–Lower Triassic in South Yellow Sea Basin [J]. Journal of Central South University, 2018, 25(12): 2910-2928. doi: 10.1007/s11771-018-3962-x

    [177] 梁杰, 陈建文, 张银国, 等. 南黄海盆地中、古生界盖层条件[J]. 现代地质, 2016, 30(2):353-360. [LIANG Jie, CHEN Jianwen, ZHANG Yinguo, et al. Conditions of the mesozoic-paleozoic cap rocks in the South Yellow Sea Basin [J]. Geoscience, 2016, 30(2): 353-360. doi: 10.3969/j.issn.1000-8527.2016.02.010
    [178] 袁勇, 陈建文, 梁杰, 等. 海陆对比看南黄海海相中—古生界的生储盖组合特征[J]. 石油实验地质, 2017, 39(2):195-202, 212. [YUAN Yong, CHEN Jianwen, LIANG Jie, et al. Source-reservoir-seal assemblage of marine Mesozoic-Paleozoic in South Yellow Sea Basin by land-ocean comparison [J]. Petroleum Geology & Experiment, 2017, 39(2): 195-202, 212. doi: 10.11781/sysydz201702195
    [179]

    Yuan Y, Chen J W, Liang J, et al. Hydrocarbon geological conditions and exploration potential of mesozoic–paleozoic marine strata in the South Yellow Sea Basin [J]. Journal of Ocean University of China, 2019, 18(6): 1329-1343. doi: 10.1007/s11802-019-3853-2

    [180] 江东辉, 唐建, 王丹萍, 等. 东海陆架盆地南部及邻近陆域中生代地层格架对比[J]. 海洋地质前沿, 2017, 33(4):16-21. [JIANG Donghui, TANG Jian, WANG Danping, et al. Mesozoic stratigraphic framework of the Southern East China Sea Shelf Basin and its correlation with adjacent areas [J]. Marine Geology Frontiers, 2017, 33(4): 16-21.
    [181] 蒋玉波, 龚建明, 曹志敏, 等. 东海陆架盆地南部及邻区陆域中生界对比[J]. 海洋地质前沿, 2013, 29(10):1-7. [JIANG Yubo, GONG Jianming, CAO Zhimin, et al. Correlation of the Mesozoic between southern East China Sea Shelf Basin and its adjacent areas [J]. Marine Geology Frontiers, 2013, 29(10): 1-7.
    [182] 杨艳秋, 李刚, 戴春山. 东海陆架盆地西部坳陷带中生界分布特征及其有利区探讨[J]. 世界地质, 2011, 30(3):396-403. [YANG Yanqiu, LI Gang, DAI Chunshan. Characteristics of Mesozoic distribution and discussion on its favourable area in Western Depression Zone of East China Sea Shelf Basin [J]. Global Geology, 2011, 30(3): 396-403. doi: 10.3969/j.issn.1004-5589.2011.03.011
    [183]

    Shu L S, Zhou X M, Deng P, et al. Mesozoic tectonic evolution of the Southeast China Block: new insights from basin analysis [J]. Journal of Asian Earth Sciences, 2009, 34(3): 376-391. doi: 10.1016/j.jseaes.2008.06.004

    [184]

    Okada H, Sakai T. Nature and development of Late Mesozoic and Early Cenozoic sedimentary basins in southwest Japan [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1993, 105(1-2): 3-16. doi: 10.1016/0031-0182(93)90102-O

    [185] 胡文博. 东海陆架盆地南部中生界沉积体系研究[D]. 北京: 中国地质大学(北京), 2012.

    HU Wenbo. The Mesozoic sedimentary systems in the Southern East China Sea Shelf Basin[D]. Beijing: China University of Geosciences (Beijing), 2012.

    [186]

    Yang C Q, Yang Y Q, Li G, et al. The Mesozoic basin‐mountain Coupling process of the Southern East China Sea Shelf Basin and its adjacent land area [J]. Acta Geologica Sinica (English Edition), 2016, 90(3): 1051-1052. doi: 10.1111/1755-6724.12748

    [187] 陈虹宇, 胡广. 中国东南沿海早白垩世大地构造演化分析——来自浙江东部沿海石浦群沉积岩的证据[J]. 地质论评, 2017, 63(S1):269-270. [CHEN Hongyu, HU Guang. Analysis of tectonic evolution during Early Cretaceous in costal area of SE China: a case from sedimentary rock of Shipu Group in Eastern Zhejiang Province [J]. Geological Review, 2017, 63(S1): 269-270.
    [188] 舒良树, 周新民, 邓平, 等. 中国东南部中、新生代盆地特征与构造演化[J]. 地质通报, 2004, 23(9):876-884. [SHU Liangshu, ZHOU Xinmin, ZHENG Ping, et al. Geological features and tectonic evolution of Meso-Cenozoic basins in southeastern China [J]. Geological Bulletin of China, 2004, 23(9): 876-884. doi: 10.3969/j.issn.1671-2552.2004.09.008
    [189] 冯晓杰, 蔡东升, 王春修, 等. 东海陆架盆地中新生代构造演化特征[J]. 中国海上油气(地质), 2003, 17(1):33-37. [FENG Xiaojie, CAI Dongsheng, WANG Chunxiu, et al. The Meso-Cenozoic tectonic evolution in East China Sea Shelf Basin [J]. China Offshore Oil and Gas (Geology), 2003, 17(1): 33-37.
    [190] 崔幸, 王亮亮, 罗洪明, 等. 东海陆架盆地南部中生代盆地性质与演化: 砂箱物理模拟检验[J]. 海洋地质与第四纪地质, 2017, 37(4):181-193. [CUI Xing, WANG Liangliang, LUO Hongming, et al. Sandbox modeling test for Mesozoic basins in Southern East China Sea Shelf Basin [J]. Marine Geology & Quaternary Geology, 2017, 37(4): 181-193.
    [191] 钟广见, 易海, 林珍, 等. 粤东和南海东北部陆坡区中生界及烃源岩特征[J]. 新疆石油地质, 2007, 28(6):676-680. [ZHONG Guangjian, YI Hai, LIN Zhen, et al. Characteristic of source rocks and Mesozoic in continental slope area of Northeastern the South China Sea and East Guangdong of China [J]. Xinjiang Petroleum Geology, 2007, 28(6): 676-680. doi: 10.3969/j.issn.1001-3873.2007.06.004
    [192] 张莉, 耿安松, 王嘹亮, 等. 华南陆缘中生界烃源岩条件评价[J]. 海洋地质与第四纪地质, 2012, 32(1):99-108. [ZHANG Li, GENG Ansong, WANG Liaoliang, et al. Assessment of Mesozoic source rocks at the margin of South China Continent [J]. Marine Geology & Quaternary Geology, 2012, 32(1): 99-108.
    [193] 须雪豪, 陈琳琳, 汪企浩. 东海陆架盆地中生界地质特征与油气资源潜力浅析[J]. 海洋石油, 2004, 24(3):1-9, 55. [XU Xuehao, CHEN Linlin, WANG Qihao. Analysis of Mesozoic Geological Characteristics and resource potential in the East China Sea Shelf Basin [J]. Offshore Oil, 2004, 24(3): 1-9, 55. doi: 10.3969/j.issn.1008-2336.2004.03.001
    [194] 蔡东升, 冯晓杰, 高乐, 等. 中国近海前第三纪残余盆地及其勘探潜力与方向[J]. 中国海上油气, 2004, 16(1):1-17. [CAI Dongsheng, FENG Xiaojie, GAO Le, et al. Petroleum potential and exploration direction of pre-Tertiary remnant basins in Offshore China [J]. China Offshore Oil and Gas, 2004, 16(1): 1-17. doi: 10.3969/j.issn.1673-1506.2004.01.001
    [195] 冯晓杰, 张川燕, 王春修, 等. 东海陆架和台西南盆地中生界及其油气勘探潜力[J]. 中国海上油气(地质), 2001, 15(5):306-310, 316. [FENG Xiaojie, ZHANG Chuanyan, WANG Chunxiu, et al. Mesozoic in the East China Sea Shelf and Taixinan Basin and its petroleum potential [J]. China Offshore Oil and Gas (Geology), 2001, 15(5): 306-310, 316.
  • 期刊类型引用(1)

    1. 李云海,林云鹏,王亮,龙邹霞,郑斌鑫. 台风“莫拉克”(2009)对浙闽沿岸泥质中心沉积有机质组成与分布的影响. 海洋地质与第四纪地质. 2024(05): 27-37 . 本站查看

    其他类型引用(0)

图(11)  /  表(3)
计量
  • 文章访问数:  62957
  • HTML全文浏览量:  2132
  • PDF下载量:  246
  • 被引次数: 1
出版历程
  • 收稿日期:  2019-11-19
  • 修回日期:  2019-12-02
  • 网络出版日期:  2019-12-11
  • 刊出日期:  2019-11-30

目录

/

返回文章
返回