青岛海洋地质研究所海岸带地质工作进展与展望

陈斌, 徐刚, 周良勇, 赵广明, 曹珂, 高茂生, 叶思源, 刘健, 侯国华, 段晓勇, 陈小英, 印萍

陈斌,徐刚,周良勇,等. 青岛海洋地质研究所海岸带地质工作进展与展望[J]. 海洋地质与第四纪地质,2024,44(3): 23-39. DOI: 10.16562/j.cnki.0256-1492.2024040901
引用本文: 陈斌,徐刚,周良勇,等. 青岛海洋地质研究所海岸带地质工作进展与展望[J]. 海洋地质与第四纪地质,2024,44(3): 23-39. DOI: 10.16562/j.cnki.0256-1492.2024040901
CHEN Bin,XU Gang,ZHOU Liangyong,et al. Progress and prospects of coastal geological work at Qingdao Institute of Marine Geology[J]. Marine Geology & Quaternary Geology,2024,44(3):23-39. DOI: 10.16562/j.cnki.0256-1492.2024040901
Citation: CHEN Bin,XU Gang,ZHOU Liangyong,et al. Progress and prospects of coastal geological work at Qingdao Institute of Marine Geology[J]. Marine Geology & Quaternary Geology,2024,44(3):23-39. DOI: 10.16562/j.cnki.0256-1492.2024040901

青岛海洋地质研究所海岸带地质工作进展与展望

基金项目: 海洋地质调查项目“我国重点海域海洋自然资源综合调查与评价”(DD20230071),“重点海域海洋自然资源调查成果集成及示范区调查评价”(DD20230410),“杭州湾海洋自然资源综合调查评价”(DD20230409);自然资源部华东海岸带野外科学观测研究站项目(ORSECCZ2022102)
详细信息
    作者简介:

    陈斌(1979—),男,博士,正高级工程师,主要从事海洋自然资源调查与研究工作,E-mail:chenbin1007@hotmail.com

    通讯作者:

    印萍(1971—),女,博士,研究员,主要从事海洋地质调查与研究工作,E-mail:1419685757@qq.com

  • 中图分类号: P736

Progress and prospects of coastal geological work at Qingdao Institute of Marine Geology

  • 摘要:

    海岸带是地球多圈层交互带内地质作用最活跃、人类活动最密集的地带,是开展综合地质调查与研究、推动经济社会高质量发展的关键区域。青岛海洋地质研究所的海岸带地质工作自建所以来,一直按照支撑国家需求和服务经济社会发展为导向,主要经历了萌芽发展、快速发展、蓬勃发展3个阶段。作为中国地质调查局海岸带工作的主要牵头单位之一,组织实施了一系列海岸带地质调查工作,特别是在辽东湾、渤海湾西岸、黄河三角洲、莱州湾、山东半岛、江苏沿岸、长江三角洲、闽浙沿岸等海岸带地区开展了重大比例尺的调查,大幅提高了我国海岸带调查程度,提升了海岸带基础地质认知水平,充分发挥了地质工作基础性、公益性、战略性的作用,为国家重大战略实施和经济社会高质量发展提供了有力支撑。新时代条件下,我们应大力加强海岸带地质科技创新能力,全面提高海岸带基础地质调查程度,加快建设海岸带地质综合监测体系,快速提升海岸带工作公益服务水平,推动海岸带地质工作高质量发展。

    Abstract:

    The coastal zone is the most active geological zone within the Earth’s multiple lithospheric interactions and the most densely populated area with frequent human activities. It is a key region for conducting comprehensive geological surveys and research, and promoting high-quality economic and social development. Since the establishment of the coastal geological work in the institute, it has always been guided to support national needs from economic and social development, and has mainly gone through three stages of initial development, rapid development, and vigorous development. As one of the main leading units of the coastal zone work of the China Geological Survey, a series of coastal geological surveys and mappings in different scales have been organized and implemented, especially in coastal areas in Liaodong Bay, the western coast of Bohai Bay, the Yellow River Delta, Laizhou Bay, Shandong Peninsula, Jiangsu coast, Yangtze River Delta, and the coast of Fujian and Zhejiang provinces. Significant large-scale surveys have been conducted, greatly improving the level of coastal geological surveys in China, enhancing the basic geological understanding of the coastal zone, fully playing the fundamental, public welfare, and strategic roles of geological work, and providing strong supports for the implementation of major national strategies and high-quality economic and social development. In the new era, we should vigorously strengthen the geological scientific and technological innovation capabilities for the coastal zones, comprehensively improve the level of basic geological surveys in China’s coastal zones, accelerate the construction of a comprehensive geological monitoring system in the national coastal areas, rapidly enhance the public welfare service level of coastal zone works, and promote the high-quality development of geological work in the coastal regions of China.

  • 岩石圈地幔的破坏、减薄是一个复杂的深部地幔动力学过程,其破坏原因可能是由地幔柱[1-9]或俯冲作用导致岩石圈地幔的重力不稳定,从而发生拆沉、减薄、侵蚀。其中俯冲作用对岩石圈地幔的破坏可能有2种方式:第1种方式由俯冲引起的地幔对流可导致岩石圈结构破坏[10-11],该破坏减薄过程往往需要岩石圈地幔的加水弱化,即俯冲过程中洋壳—洋幔会发生变质脱水和含水过程[12-17],由此引起上覆岩石圈地幔的弱化和相变。除此之外,前人的数值模拟结果[3,18-20]发现,岩石圈地幔破坏减薄还可能存在另外一种作用机制,即板块深俯冲过程中形成的俯冲板片熔融柱对上覆岩石圈地幔的破坏作用。在大洋板块俯冲过程中,因温度压力的升高,俯冲板片可能会发生部分熔融形成俯冲板片熔融柱。该熔融柱能够在浮力作用下快速上涌,并与上覆板块岩石圈地幔底面发生相互作用,从而导致岩石圈的破坏减薄。目前,对于俯冲板片熔融柱的形成及其对岩石圈破坏机制、程度及过程并不清楚。

    类似于地幔柱作用,俯冲板片熔融柱对岩石圈的破坏在地表也一定存在一种响应关系,这种响应关系对约束地球内部的地幔动力学过程以及岩浆活动至关重要[21]。前人曾通过地震层析成像和三维数值模拟手段揭示出上升的地幔柱与岩石圈地幔相互作用过程,并试图与地表变化联系起来,但得到的结果十分不清晰,从而引发动力地形变化与深部地幔动力学过程间耦合关系的争论[21-22]。这种争论当涉及到与俯冲过程相关的地形变化时,就变得更加复杂不清。这是因为俯冲带地形变化既包括由区域构造变形导致的地形变化,又包含了由深部地幔动力学过程导致的动力地形变化[21],这里特别涉及到地表动力地形变化与深部破坏作用间的响应关系方面。

    为了解决上述问题,本文主要采用I2VIS二维地球动力学数值模拟方法,在给定边界条件下,在物理方程和流变方程控制下,模拟与俯冲相关形成的俯冲板片熔融柱破坏岩石圈地幔结构的动力学演化过程,提取地形数据,结合地质证据深入分析其影响地表地形的变化过程。

    基于I2VIS[16]二维地球动力学数值算法结合marker-in-cell[23-27]技术建立数值模型。主要是对3组数值模拟方程进行求解:斯托克斯流体动量守恒方程、物质守恒方程以及热量守恒方程[28]

    (1)斯托克斯方程:

    $$\frac{{\partial \sigma' _{{{ij}}}}}{{\partial {x_j}}} - \frac{{\partial P}}{{\partial {x_i}}}={g_i}\rho (C,M,P,T)$$ (1)

    式中,$ \sigma' _{{{ij}}}$表示偏应力张量,g表示重力加速度,其中密度ρ与岩性成分(C)、部分熔融体积比例参数(M)、压强(P)和温度(T)相关。

    (2)质量守恒方程可以近似看做是不可压缩性流体方程:

    $$\frac{{\partial {v_i}}}{{\partial {x_i}}}=0$$ (2)

    式中,v是速度分量。

    (3)热守恒方程

    $$\begin{aligned} \rho {C_{\rm{p}}}\frac{{DT}}{{Dt}}=- \frac{{\partial {q_i}}}{{\partial {x_i}}} + H \\ {q_i}={\rm{ - }}k(T,P,C)\frac{{\partial T}}{{\partial {x_i}}} \end{aligned} $$ (3)

    式中,重复出现的索引代表每个坐标系($ { x},{ y},{ \textit z}$)计算热通量的总和;ρ表示密度(kg/m3);Cp表示恒定压力下的热容量(J·kg−1·K−1);H表示产生的体积热(W/m3),包含产生的放射热、剪切热、绝热以及潜热。$\dfrac{{DT}}{{D{\rm{t}}}}$是对应标准拉格朗日-欧拉方程下温度对时间的导数。k是热导率,与温度(T)、压力(P)、物质组成以及物质结构(C)相关[8,29]

    与先前的数值模型进行了数值对比,部分类型岩石在一定的温度和压力条件下会发生部分熔融,因此,本模型中考虑到了部分岩石部分熔融的计算[30-31]。基于实验岩石学条件的限制,对温度和岩石的部分熔融体积比例做了近似处理,假设两者之间是一种线性关系。因此,地幔减压熔融也可以用数值代码进行模拟[32],这一过程与密度和岩石组成的变化有关。岩石的部分熔融可以用下列方程进行计算:

    $$ \begin{aligned} &M=0,T \text{≤} {T_{{{{\text{固态}}}}}}\\ &M=\frac{{(T - {T_{{\text{固态}}}})}}{{({T_{{\text{液态}}}} - {T_{{\text{固态}}}})}},\quad{T_{{\text{固态}}}} \text{<}T \text{<} {T_{{\text{液态}}}}\\ &M=1,T \text{≥} {T_{{\text{液态}}}} \end{aligned} $$ (4)

    式中,M表示岩石部分熔融体积比例。T固态T液态分别表示根据实验获得的湿固相线和干固相线温度。

    如上文所述,物质组成、熔融体积分数、温度、压力与岩石的密度紧密相关。对于部分熔融的岩石,有效密度遵循下述状态方程:

    $$ \begin{aligned} {\rho _{\text{有效}}}={\rho _{{\text{固体}}}} - M({\rho _{{\text{固体}}}} - {\rho _{{\text{熔融}}}})\\ {\rho _{{\text{固体}}}}=\rho \left[ {1 - \alpha (T - {T_0})} \right]\left[ {1 + \beta (P - {P_0})} \right] \end{aligned} $$ (5)

    式中,ρ熔融ρ固体表示岩石的熔融密度和固体密度。ρ0代表岩石在标况下的标准密度(表1)。热膨胀系数α为3×10−5 K−1,热压缩系数β为1×10−5 K−1

    表  1  数值模拟采用的黏滞性流变参数(据文献[35-38])
    Table  1.  Parameters of viscous flow in the numerical experiments (after references[35-38])
    标号流变性质E/(K·J·mol−1)V/(J·MPa−1·mol−1)nAD/(MPa−n·s−1)η0a/(Pa·s)
    A*空气/水001.01.0×10−121×1018
    B*湿石英(强)15402.33.2×10−61.97×1019
    C*斜长An75(强)23803.23.3×10−64.80×1024
    D*斜长石 An7523803.23.3×10−44.80×1022
    E*无水橄榄岩53283.52.5×1043.98×1016
    F*b湿橄榄岩47084.02.0×1035.01×1020
    G*b长英质熔体001.02.0×10−95.00×1014
    H铁镁质熔体001.01.0×10−71.00×1013
      注::a η0表示为有效黏滞系数,计算公式为:η0=(1/AD)×106n;
      b 熔融的长英质熔体表示的是熔融的沉积物和地壳。
    下载: 导出CSV 
    | 显示表格

    当岩石处于塑性变形阶段时,模型将遵循莫尔-库伦屈服准则[33]

    $$\begin{aligned} \sigma _{\text{屈服}}={C_0} + P\sin ({\phi _{\rm{eff}}}) \\ {\eta _{\text{摩尔-库伦}}}=\frac{{{\sigma_{\text{屈服}}}}}{{2{\varepsilon'_{{\scriptsize{\text Π}}} } }} \\ \end{aligned} $$ (6)

    式中,$ {{\rm{\sigma }}_{\text{屈服}}}$表示屈服应力,$ {\varepsilon '_{{\scriptsize{\text Π}}}}$表示第二不变偏应变率张量,P表示压力,C0表示标况下的凝聚力,η表示黏度系数,${\phi _{\rm{eff}}}$表示有效内摩擦角。

    在模型中还会涉及到地形的变化,地形变化会受到侵蚀和沉积速率的影响并遵循下述状态方程[27]

    $$ \begin{aligned} \frac{{\partial {{\rm{y}}_{\rm{es}}}}}{{\partial t}}=&{v_{\rm y}} - {v_{\rm x}}\frac{{\partial {y_{\rm {es}}}}}{{\partial y}} - {v_{\rm s}} + {v_{\rm e}}\\ {v_{\rm s}}=& 0\;{\rm{mm/a}},\quad{\nu _{\rm{e}}}={v_{{\rm e}0}},\;{\text{当}}\;y_{\rm{es}}\text{<}{y_{{\text{水}}}}\\ {v_{\rm s}}=&{v_{{\rm s}0}}\;{\rm{mm/a}},\quad{v_{\rm e}}=0,\;{\text{当}}\;y_{\rm{es}}\text{>} {y_{{\text{水}}}} \end{aligned} $$ (7)

    式中,${y_{\rm{es}}}$表示相对水平方向距离地表垂直方向的函数,${\nu _{\rm x}}$${\nu _{\rm y}}$分别表示在地表物质运动速度的水平分量和垂直分量。${\nu _{{\rm e}0}}$${\nu _{{\rm s}0}}$分别是侵蚀速率常数和沉积速率常数,${\nu _{\rm e}}$${\nu _{\rm s}}$分别表示侵蚀速率和沉积速率。

    本文中设置的模型主要是在一定的边界条件下模拟因板片俯冲导致上覆大陆岩石圈地幔破坏以及对浅表的影响过程。初始模型的长度为4 000 km,宽度为670 km(图1)。使用699×134非均一但规则的网格对模型进行离散化。在模型设计中俯冲带区域分辨率为2 km×2 km,模型边界区域分辨率设置为30 km×30 km。在模型构建过程中约有700万个拉格朗日自由移动点,表示各个岩石圈结构及属性,模型中岩体的物性参数属性以及温度等可以通过这些拉格朗日点进行传递。根据板块俯冲的动力学特征以及数值模拟[34],构建初始模型主要包含两大部分(图1):大陆板块和大洋板块。模型中设置大陆岩石圈厚度为130 km,地壳厚度为34 km,包含上层沉积物6 km,上地壳厚度为14 km,下地壳厚度为15 km。大洋板块岩石圈厚度是100 km,洋壳的厚度为8 km。不同岩石类型的物性参数参考表1表2

    图  1  初始模型设置
    a.模型主要区域(4 000 km×670 km)的初始物质场和温度场以及边界条件,图中白色的线条是以400 ℃为梯度绘制的等温线,黄色箭头是大洋俯冲速率和大陆仰冲速率;b.模型中不同颜色代表不同的岩石组成,分别是:1.空气层,2.海水,3.沉积物,4.洋壳,5.上地壳,6.下地壳,7.岩石圈地幔,8.软流圈,9.薄弱带,10、11.熔融的沉积物,12.熔融的洋壳,13.熔融的上地壳,14.熔融的下地壳
    Figure  1.  Initial model configuration
    a.Enlargement (4 000 km×670 km) of the numerical model shows composition field and boundary conditions. The isotherms (white lines) are plotted for each 400 °C increment. Yellow arrow represents the subduction rates of oceanic plate and obduction rates of continental plate,b.The colored grid for different rock types: 1—air; 2—water; 3 —sedimentary cover; 4—oceanic crust; 5—upper continental crust; 6—lower continental crust; 7—lithospheric mantle; 8—athenospheric mantle; 9—weak zone mantle; 10 and 11—partially molten sediment; 12—partially molten oceanic crust;13 and 14—partially molten continental crust(5and 6)
    表  2  数值模型中的主要材料参数
    Table  2.  Parameters of the materials in the numerical models
    物质状态ρ0
    /(kg·m−3)
    ρe
    /(kg·m−3)
    Cp
    /(J·kg−1·K−1)
    Ka
    /(W·m−1·K−1)
    $T_{\simfont\text{固相}}^{\rm b} $/K$T_{\simfont\text{液相}}^{\rm b} $/KHr
    /(μW·m−3)
    α
    /K−1
    β
    /MPa
    黏滞性流变参数塑性性质
    Sin (φeff)
    空气110020000A*0
    1 0003 33020000A*0
    沉积物
    (6 km)
    固态2 7001 000K1TS1TL123×10−51×10−5B*0.15
    熔融 2 500 G* 0.06
    上地壳
    (14 km)
    固态2 7001 000K1TS1TL123×10−51×10−5B*0.15
    熔融 2 500 G* 0.06
    下地壳
    (15 km)
    固态3 0001 000K2TS2TL20.53×10−51×10−5C*0.15
    熔融 2 500 G* 0.06
    洋壳(8 km)固态3 0003 8001 000K2TS2TL20.253×10−51×10−5D*0.15
    熔融 2 900 H* 0.06
    岩石圈—软流圈地幔固态3 3001 000K30.0223×10−51×10−5E*0.6
    熔融 2 7000.06
    水化地幔固态3 2001 000K30.0223×10−51×10−5F*0.6
    熔融2 700 0.06
      注:a. K1=[0.64+807/(TK+77)]exp(0.000 04P); K2=[1.18+474/(TK+77)]exp(0.000 04P); K3=[0.73+1 293/(TK+77)]exp(0.000 04P);
      b. 当P<1 200 MPa, TS1=889+17 900/(P+54)+20 200/(P+54)2; 当P>1 200 MPa, TS1=831+0.06P. TL1=1 262+0.09P; 当P<1 600 MPa, TS2=973–70 400/(P+354)+778×105/(P+354)2; 当P>1 600 MPa, TS2=935+0.003 5P+0.000 006 2P2. TL2=1 423+0.105P
    下载: 导出CSV 
    | 显示表格

    模型设置过程中需要根据研究的问题加载多种边界条件。首先,模型的初始位移条件,本文模型计算域内顶部、左边界和右边界均为自由滑移边界[39-41],底部边界为渗透性边界[42]以保证满足物质守恒。在模型内部边界中,对大洋岩石圈施加俯冲速率,大陆岩石圈施加朝向内陆的仰冲速率,并且2个速度在整个计算过程中保持不变;其次,模型的温度条件设置为:垂向上,模型的顶部边界温度为0 ℃,莫霍面温度为450 ℃,岩石圈地幔底部边界温度为1 300 ℃,软流圈地幔深度温度梯度是0.5 ℃/km。横向上,模型左右两边界的温度梯度为0 ℃/km,即保证模型在横向上零热流的散失[42];最后,在地壳表面和自由滑动模型的顶部界面设计一层黏性较低的空气层(大陆地壳以上的黏性空气层厚度设计为10 km,洋壳上方的黏性空气层设置为12 km),该层能够用来分析地壳地表的地形变化[33],也用来限定地表侵蚀和沉积[42-45]过程对地形的影响。

    从模拟结果可以看出大洋板块俯冲初始阶段,大洋板块在低角度俯冲过程中可以从上覆大陆板片的底部刮掉约20 km厚的岩石圈地幔。因密度变大,刮下的岩石圈地幔随板片继续俯冲下沉进入到软流圈地幔并触发小尺度地幔对流。同时,大陆前缘因受到强烈挤压而不断增厚(图2a)。随着俯冲的进行,俯冲角度逐渐由低角度变为高角度俯冲,绝大部分的沉积物只能俯冲至200 km深(地幔楔与软流圈的交界处),但有少部分的沉积物伴随洋壳能够俯冲至500 km深。随着温度-压力的逐渐升高,这部分沉积物和洋壳能够发生部分熔融,并混合在一起,形成一个与周围地幔物质存在密度差的低密度熔融柱。该熔融柱在重力不稳定(浮力)作用的驱动下能够产生垂直向上的运移速度,不断上涌(图2b)。当模拟演化至44.5 Ma(图2c),熔融柱到达上覆岩石圈地幔底部。由于压力的快速降低,熔融柱能够发生减压熔融事件,并以柱顶部为中心成蘑菇状横向侵蚀岩石圈底部,并进一步导致岩石圈地幔的升温熔融。在模拟演化后期(46.9~52.9 Ma),持续俯冲的沉积物和洋壳不断混合熔融,并沿着原熔融柱运移通道不断上涌,大范围侵蚀上覆大陆岩石圈地幔底部(图2de)。在55~88.9 Ma期间,滞留在200 km以内浅的沉积物开始熔融形成岩浆,并沿着俯冲通道折返至增生楔中。这部分壳源性质的岩浆能够迅速积累形成岩浆底辟,并上侵至地表形成穹隆结构(图2f)。值得注意的是,在整个俯冲过程中,岩石圈地幔底部破坏减薄作用可以不断拓展,最终可达300 km。

    图  2  与大洋板块俯冲相关形成的熔融柱对岩石圈地幔破坏的物质场演化过程
    黑色数字表示实验积累时间,单位是Ma;白色的实线是温度线,数字表示温度,单位 ℃
    Figure  2.  Material field evolution of mantle plume damage to lithospheric mantle associated with subduction of an oceanic plate
    The black number indicates the accumulated time of the experiment in millions of years. The solid white line is the temperature line, the number indicates the temperature, unit ℃

    大洋板块俯冲过程以及熔融柱对岩石圈地幔破坏作用的深部过程直接导致了浅部的地形变化(图3a)。板块俯冲初始阶段,上覆大陆壳受到强烈的挤压,变形范围拓展宽达300 km,地形抬升最大高程为8 km(18.5 Ma)。从黏度场和第二不变偏应变率场(图4)看出因板块的持续俯冲(22.4~88.9 Ma),低黏度区和高应变区逐渐向内陆拓展,与之相对应的褶皱变形带向内陆拓展宽达700 km,地表隆升最大高度为8 km。但俯冲至88.9 Ma时,上覆大陆板块前缘的地形变化为隆升―沉降―隆升,该变化与沉积物岩浆底辟上侵过程相关(图2f)。更重要的是,深部熔融柱与大陆岩石圈作用的范围内,地形逐渐抬升,且变形范围也局限在300 km宽,与深部作用范围一致。

    图  3  不同的时间动力地形瞬时变化(a)及地形随时间演化过程(b)
    时间与图2相对应。红色虚线表示在不同时间的地形剖面
    Figure  3.  a. Different temporal dynamic terrain instantaneous changes (in meters) corresponding to Fig. 2, b. Represents the evolution of terrain over time
    The dotted red line represents the topographic profile at different times, which is consistent with a
    图  4  黏度场和第二不变偏应变率
    Figure  4.  Viscosity field and second constant deviation strain rate

    对于大陆岩石圈地幔结构遭到强烈的破坏的现象,一个共同的认识是,由热浮力驱动的地幔柱以及俯冲作用可造成岩石圈的拆沉与减薄[10-11,46-48]。但本文中的数值模拟结果与前人的研究成果存在一定程度的差异。主要表现在热熔融柱形成来源不同。在上述数值模型中,由于大洋板块的俯冲,被带入软流圈的沉积物、少量陆壳以及洋壳物质发生部分熔融。该熔融物质与周围软流圈地幔存在温度和密度上的差异,从而产生扰动[3,28,49],并在热浮力作用下向上侵蚀大陆岩石圈地幔底部。除此之外,俯冲过程中形成的俯冲板片熔融柱物质能够以脉动的形式快速上涌[5],从图2可观察到,在约22 Ma时洋壳俯冲至深地幔(约600 km),由于物质的流变性导致洋壳部分熔融,从而与俯冲板块发生拆离[28,49],形成第一股熔融柱。随着俯冲的继续,时隔约22 Ma之后,俯冲的部分沉积物和下地壳能够再度熔融混合,可形成第二股熔融柱(44.5 Ma),其可垂直向上运动,与大陆岩石圈地幔相互作用,并加速熔融侵蚀岩石圈地幔。熔融柱脉动式上涌的原因,可能与板块俯冲速率及温度结构有关。

    从本文模拟结果来看,俯冲板片熔融柱的上涌及其对大陆岩石圈地幔破坏作用过程主要分为2个方向:垂向上,俯冲板片熔融柱在地幔中持续上升,到达岩石圈底部,热熔柱以柱顶为中心引发地幔对流,从而与岩石圈地幔发生热交换[50-53],向上热熔侵蚀,最多可减薄20 km的岩石圈地幔。值得注意的是,熔融柱头部分到达岩石圈底部能够促使岩石圈地幔熔融,从而加速了破坏效率。其次,在横向运动上,熔融柱与岩石圈地幔接触时,开始以柱顶为中心不断向两侧水平方向大规模侵蚀岩石圈地幔底部,且破坏范围不断增大。但是当熔融柱横向扩展至俯冲带地幔楔时,侵蚀作用明显受阻,并停止破坏。这是因为在板块俯冲过程中,冷的洋壳以及俯冲脱水作用能够明显降低地幔楔的温度[54],从而间接提高了地幔楔的强度,这一现象在本文数值模拟结果中表现为地幔楔的高黏度、低应变特征(图4)。因此,受到地幔楔的约束作用,熔融柱向俯冲带方向对岩石圈地幔的破坏最大只能拓展至地幔楔处,向陆内方向由于无明显约束可大规模侵蚀,且最终的破坏范围局限在约300 km。

    地表地形的演化过程是构造变形和动力地形联合作用的结果[5]。其中,构造变形是板块间的相互作用导致岩石圈(或地壳)的挤压或拉伸,从而引起地形上的变化[55],其可控制地表的山川、盆地的分布,波及范围可达数百千米。动力地形源于深部地幔的运动过程,是俯冲带(或地幔柱)地幔对流导致的地表一阶尺度上的地形变化[21],其波及范围根据地幔对流情况可达数百至上千千米。对于动力地形变化对地幔对流的响应关系,前人利用地球物理数据,并结合Gplates和Citcoms地球动力学模拟软件进行了深入研究[56-57],揭示了板块俯冲过程中深部地幔对流活动对动力地形的影响,但这些研究成果由于受到模拟算法的限制,往往忽略了构造变形对地形的控制。然后,本文的模拟结果却能够很好地揭示出俯冲带地区动力地形和构造地形间的叠合关系,即俯冲带岩石圈构造变形与深部地幔动力学过程(由熔融柱引起)间的叠合关系。

    在本文模拟结果中的构造变形区,地表地形变化明显受板块俯冲的影响。在18~89 Ma期间(图3a),俯冲带的前陆地区因持续受到强烈的横向挤压作用发生变形,变形范围可达300 km,地形抬升最高处达8 km,主要位于陆缘弧。随着板块持续的俯冲,约89 Ma时在俯冲渠道内的沉积物能够发生部分熔融,并沿着俯冲通道发生折返,侵入至俯冲带增生楔中,形成隆起构造,地形表现为双峰状(图3a的黑色线)。值得注意的是,大洋板块俯冲的整个过程中,构造变形的影响范围不断缩小,且由陆域逐渐向海沟方向迁移,最后主要集中于俯冲带陆缘弧地区(约200 km宽)(图3b)。紧临陆缘弧,在原构造变形区存在一个相对稳定的高地形隆起带(图3a,2 800~2 900 km),地形高程稳定在4 km以内,该区域很好地限定了后期的构造变形范围,可称为构造变形和动力地形的叠合区。这是因为,在叠合区内,构造变形的影响较弱,而受俯冲板片熔融柱控制的动力地形又无法穿过低温地幔楔(高黏度低应变区)去影响构造变形区。因此,叠合区内的地形变化相对稳定。

    动力地形的演化与板块俯冲引起的熔融柱活动密切相关,在俯冲带后方形成广泛的动力隆起带,并随着时间而不断发生变化(图5):自22 Ma开始,俯冲板片熔融柱开始上升作用于岩石圈地幔,对应的地形开始抬升。随着熔融柱持续上升,熔融柱对岩石圈地幔底部的侵蚀作用逐渐增强,动力地形变化幅度增大,持续动力抬升,抬升至最高4 km(图3),且动力地形变化上水平范围也局限在300 km,这与岩石圈地幔的破坏范围(300 km)保持一致。在俯冲板片熔融柱与大陆岩石圈地幔相互作用的整个过程中,由于受到地幔楔(高黏度、低应变、低温度)的约束作用,熔融柱向陆内方向大规模破坏岩石圈地幔,动力地形抬升中心也向内陆方向迁移,这与构造地形变化方向相反。其次,在动力地形变化范围内还分布着紧密间隔的平行偏移断层(图3b),说明在这种情况下断裂的主要驱动力来自于活跃的熔融柱与岩石圈的相互作用[58]。因此,熔融柱活动的动力学过程与地表地形变化存在很强的耦合性[57]。基于以上分析,地表地形变化大致分为3个阶段:板块俯冲挤压上覆大陆壳,地形抬升(阶段1);然后缓慢剥蚀,地形沉降并趋于稳定(阶段2)。随着板块持续俯冲,在深部形成的俯冲板片熔融柱在热浮力作用下向上侵蚀大陆岩石圈地幔,动力抬升,沉降中心逐渐向内陆迁移(阶段3),并且在地表发育堑垒构造[56]。由此可知,地表地形的变化可反映出大洋板块俯冲形成的熔融柱活动参与大陆板块构造演化的过程,而不是单纯的板块俯冲运动控制地表变化。

    图  5  深部俯冲动力学过程与浅部地表变化的响应
    (红色虚线表示动力地形扩展范围,黑色虚线表示构造变形范围,虚线重合区带表示地形变化稳定区)
    Figure  5.  Responses of shallow topographic changes to deep subduction dynamics
    (The red dashed line indicates the extension range of dynamic topography, the black dashed line indicates the range of deformation, the dotted line superposition area indicates the stable area of topographic change)

    (1)大洋板块俯冲形成的熔融柱在热浮力作用下,减压熔融纵向侵蚀大陆岩石圈地幔,岩石圈地幔随之受热熔融减薄;在水平方向上,岩石圈地幔随着热熔柱横向扩展,其熔融侵蚀减薄范围增加。

    (2)熔融柱与大陆岩石圈地幔的相互作用可引起地表地形的变化。在构造变形活跃区,陆缘弧地区因持续受到强烈的挤压发生变形,变形范围达300 km,地形抬升高达8 km。俯冲板片熔融柱对岩石圈地幔底部的侵蚀作用逐渐增强,动力地形变化幅度增大,持续动力抬升,抬升至最高4 km,且动力地形变化上水平范围也局限在300 km,这与岩石圈地幔的破坏范围保持一致。

  • 图  1   浙闽沿岸泥质体细粒物质运移机制

    注:YRDW为长江冲淡水,NKBC 为黑潮近岸分支,ZMCC为浙闽沿岸流,TWC为台湾暖流,TCC为台湾沿岸流,ORDW为瓯江冲淡水,ZICF为舟山群岛峡道流,KC为黑潮。改自文献 [42]。

    Figure  1.   Mechanism of fine-grained sediment transport along the Zhejiang and Fujian coast

    Modified after reference [42].

    图  2   江苏北部近岸海区中-晚全新世水下楔形体及上覆的老黄河三角洲演化示意图

    a: 在约7 ka全新世中期出现最大海泛面时,海岸线位于西岗贝壳堤附近,淮河三角洲和西岗砂堤开始发育;b: 约7 ka至 1128AD期间,淮河三角洲逐渐发育向海进积,形成近岸三角洲和水下楔形体(主要物源来自淮河和长江),同时在潮流和波浪作用下形成东岗砂堤;c: 1128-1855AD,黄河夺淮自苏北入海,形成了具有“双楔形体”结构的老黄河三角洲。改自文献 [46]。

    Figure  2.   Schematic diagram showing the development of the Middle-Late Holocene clinoform and the overlying Old Yellow River Delta

    a: The coastline was located near the embryonic Xigang Chenier during the Middle Holocene maximum flooding at ~7.0 ka, which marked the initiation of development of the Huaihe River delta and the Xigang Chenier; b: During the period from ~7.0 ka to 1128 AD, the Huaihe River delta and a subaqueous clinoform were developed, and sediments were supplied from mainly the Huaihe and Yangtze rivers. The Donggang Chenier began to form at 3.5 ka and continued to develop until 1128 AD; c: During the period from 1128 to 1855 AD, the Old Yellow River discharged into the South Yellow Sea, forming the Old Yellow River Delta, a subaerial-subaqueous delta. Modified after reference [46].

    图  3   辽河三角洲钻孔沉积记录与各区气候替代性指标对比

    改自文献[51]。

    Figure  3.   Comparison of drilled sedimentary records with climate substitution indicators in different regions of the Liaohe Delta

    Modified after reference [51].

    图  4   钻孔沉积物各物理化学指标对应关系

    改自文献[53]。

    Figure  4.   Correspondence between various physical and chemical indicators of borehole sediments

    Modified after reference [53].

    图  5   滨海湿地不同水体和植被的δD和δ18O关系

    Figure  5.   The relationship between δD and δ18O in different water bodies and vegetation in coastal wetlands

    图  6   剖面地下水Cl浓度变化和地下水流向趋势变化[60]

    Figure  6.   Changes in Cl concentration in groundwater and trend of groundwater flow[60]

    图  7   盐城增温观测站甲烷监测对比实验(左),以及净生态系统二氧化碳交换(NEE)、生态系统呼吸(Reco)、甲烷(CH4)通量的季节性变化

    Figure  7.   Results of comparison experiment on methane monitoring at Yancheng Warming Observation Station (left), as well as seasonal changes in net ecosystem carbon dioxide exchange, ecosystem respiration, and methane flux

    图  8   近海松散沉积物中甲烷可能导致的危害和影响[65]

    Figure  8.   Possible hazards and impacts of methane in loose sediments near coast [65]

  • [1] 贾建军, 于谦, 高抒. 海岸分类的回顾与展望[J]. 海洋通报, 2023, 42(6):601-616

    JIA Jianjun, YU Qian, GAO Shu. Review and prospect of coastal classification[J]. Marine Science Bulletin, 2023, 42(6):601-616.]

    [2] 陈吉余, 陈沈良. 中国河口海岸面临的挑战[J]. 海洋地质动态, 2002, 18(1):1-5 doi: 10.3969/j.issn.1009-2722.2002.01.001

    CHEN Jiyu, CHEN Shenliang. Estuarine and coastal challenges in China[J]. Marine Geology Letters, 2002, 18(1):1-5.] doi: 10.3969/j.issn.1009-2722.2002.01.001

    [3] 骆永明. 中国海岸带可持续发展中的生态环境问题与海岸科学发展[J]. 中国科学院院刊, 2016, 31(10):1133-1142

    LUO Yongming. Sustainability associated coastal eco-environmental problems and coastal science development in China[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(10):1133-1142.]

    [4] 何起祥. 我国海岸带面临的挑战与综合治理[J]. 海洋地质动态, 2002, 18(4):1-5 doi: 10.3969/j.issn.1009-2722.2002.04.001

    HE Qixiang. Challenges to the integrated coastal zone management in China[J]. Marine Geology Letters, 2002, 18(4):1-5.] doi: 10.3969/j.issn.1009-2722.2002.04.001

    [5] 徐谅慧, 李加林, 李伟芳, 等. 人类活动对海岸带资源环境的影响研究综述[J]. 南京师大学报: 自然科学版, 2014, 37(3):124-131

    XU Lianghui, LI Jialin, LI Weifang, et al. Progress in impact of human activities on coastal resource and environment[J]. Journal of Nanjing Normal University: Natural Science Edition, 2014, 37(3):124-131.]

    [6] 李萍, 李培英, 徐兴永, 等. 人类活动对海岸带灾害环境的影响[J]. 海岸工程, 2004, 23(4):45-49 doi: 10.3969/j.issn.1002-3682.2004.04.007

    LI Ping, LI Peiying, XU Xingyong, et al. Influence of human activities on the coastal disaster environment[J]. Coastal Engineering, 2004, 23(4):45-49.] doi: 10.3969/j.issn.1002-3682.2004.04.007

    [7] 张训华, 孙晓明, 印萍, 等. 推进海岸带综合地质调查, 为社会经济持续发展提供支撑[J]. 海洋地质前沿, 2015, 31(1):1-8

    ZHANG Xunhua, SUN Xiaoming, YIN Ping, et al. Sustainable development of coastal zone based on integrated geological investigation[J]. Marine Geology Frontiers, 2015, 31(1):1-8.]

    [8] 王焰新, 甘义群, 邓娅敏, 等. 海岸带海陆交互作用过程及其生态环境效应研究进展[J]. 地质科技通报, 2020, 39(1):1-10

    WANG Yanxin, GAN Yiqun, DENG Yamin, et al. Land-ocean interactions and their eco-environmental effects in the coastal zone: Current progress and future perspectives[J]. Bulletin of Geological Science and Technology, 2020, 39(1):1-10.]

    [9] 肖国强, 王福, 印萍, 等. 我国海岸带地质调查工作回顾与展望[J]. 华北地质, 2022, 45(1):92-100

    XIAO Guoqiang, WANG Fu, YIN Ping, et al. Review and prospect of the coastal geological survey of Chinese mainland[J]. North China Geology, 2022, 45(1):92-100.]

    [10] 印萍, 林良俊, 陈斌, 等. 中国海岸带地质资源与环境评价研究[J]. 中国地质, 2017, 44(5):842-856 doi: 10.12029/gc20170502

    YIN Ping, LIN Liangjun, CHEN Bin, et al. Coastal zone geo-resources and geo-environment in China[J]. Geology in China, 2017, 44(5):842-856.] doi: 10.12029/gc20170502

    [11]

    Clark J C, Brabb E E. Geology of Point Reyes national seashore and vicinity, California: a digital database[R]. Reston: U. S. Geological Survey, 1997.

    [12]

    Hapke C J, Reid D, Richmond B M, et al. National assessment of shoreline change part 3: historical shoreline change and associated coastal land loss along sandy shorelines of the California coast[R]. Reston: U. S. Geological Survey, 2006.

    [13]

    Johnson S Y, Dartnell P, Golden N E, et al. California state waters map series—offshore of Tomales Point, California[R]. Reston: U. S. Geological Survey.

    [14]

    Matsumoto D. 1: 200, 000 Marine geological map along the coastal zone around Fukuoka with explanatory notes[R]. Geological Survey of Japan, AIST, 2013.

    [15]

    Van der Meulen M J, Doornenbal J C, Gunnink J L, et al. 3D geology in a 2D country: Perspectives for geological surveying in the Netherlands[J]. Netherlands Journal of Geosciences, 2013, 92(4):217-241.

    [16] 杜晓敏, 周平, 常勇, 等. 美国海岸带综合地质调查进展及其对中国海岸带研究的启示[J]. 地质通报, 2020, 39(2-3):414-423

    DU Xiaomin, ZHOU Ping, CHANG Yong, et al. A review on coastal and marine geology program of U. S. Geological Survey and some suggestions on coastal studies in China[J]. Geological Bulletin of China, 2020, 39(2-3):414-423.]

    [17] 姜海平. 中国的海岸带调查和管理现状[J]. 海洋地质与第四纪地质, 1990, 10(1):79-80

    JIANG Haiping. Status of coastal zone investigation and management in China[J]. Marine Geology & Quaternary Geology, 1990, 10(1):79-80.]

    [18] 徐渡. 1958~1960年: 全国海洋综合调查[J]. 海洋科学, 2010, 34(4): 109-110

    XU Du. 1958-1960: national marine comprehensive survey[J]. Marine Sciences, 2010, 34(4): 109-119.]

    [19] 全国海岸带和海涂资源综合调查成果编委会. 中国海岸带和海涂资源综合调查报告[M]. 北京: 海洋出版社, 1991

    Editorial Committee for the Comprehensive Survey Results of Coastal Zones and Beach Resources in China. A Comprehensive Survey Report on China's Coastal Zone and Tidal Flat Resources[M]. Beijing: China Ocean Press, 1991.]

    [20] 国家海洋局. 我国近海海洋综合调查与评价专项综合报告[M]. 北京: 海洋出版社, 2012

    State Oceanic Administration. A Comprehensive Survey Report on China's Coastal Zone and Tidal Flat Resources[M]. Beijing: China Ocean Press, 2012.]

    [21] 综合调查海洋资源环境推动中国海洋事业发展: “我国近海海洋综合调查与评价”成果简介[J]. 科技成果管理与研究, 2012(2): 83-88

    Comprehensive investigation of marine resources and environment to promote the development of China's marine industry-Introduction to the achievements of comprehensive survey and evaluation of China's offshore oceans[J]. Management and Research on Scientific & Technological Achievements, 2012(2): 83-88.]

    [22] 丁冬. 从高原走向海洋, 奔跑与奋斗: 我与海地所的故事, 青岛海洋地质研究所[R]. 2022: 177-181

    DING Dong. From the plateau to the ocean, running and struggling - My story with Qingdao institute of marine geology, Qingdao institute of marine geology[R]. 2022: 177-181.]

    [23] 彭轩明. 承先启后 继往开来 为我国海洋地质事业发展再立新功: 庆祝青岛海洋地质研究所恢复重建三十周年[J]. 海洋地质与第四纪地质, 2009, 29(1): Ⅰ-Ⅵ

    PENG Xuanming. Carrying forward the past and opening up the future, making new achievements for the development of China's marine geology -- celebrating the 30th anniversary of the restoration and reconstruction of Qingdao institute of marine geology[J]. Marine Geology & Quaternary Geology, 2009, 29(1): Ⅰ-Ⅵ.]

    [24] 青岛海洋地质研究所编委会. 青岛海洋地质研究所大事记[R]. 2009: 1-485

    Editorial Board of Qingdao Institute of Marine Geology. Major events of Qingdao institute of marine geology[R]. 2009: 1-485.]

    [25] 朱银奎. 冀东油田海洋工程地质勘察与数字滩海, 奔跑与奋斗: 我与海地所的故事, 青岛海洋地质研究所[R]. 2022: 165-171

    ZHU Yinkui. Marine engineering geological survey and digital beach in Jidong Oilfield, running and struggling - My story with Qingdao institute of marine geology, Qingdao Institute of Marine Geology[R]. 2022, 165-171.]

    [26] 叶思源, Smith G J, 高茂生, 等. 黄河三角洲滨海湿地健康条件评价概念模型[J]. 地质论评, 2009, 55(4):545-551 doi: 10.3321/j.issn:0371-5736.2009.04.010

    YE Siyuan, Smith G J, GAO Maosheng, et al. A conceptual model for the assessment of coastal wetlands health in the Yellow River Delta[J]. Geological Review, 2009, 55(4):545-551.] doi: 10.3321/j.issn:0371-5736.2009.04.010

    [27] 尹延鸿. 对河北唐山曹妃甸浅滩大面积填海的思考[J]. 海洋地质动态, 2007, 23(3):1-10 doi: 10.3969/j.issn.1009-2722.2007.03.001

    YIN Yanhong. Some questions about large-area marine reclamation land in Caofeidian Bank, Tangshan of Hebei province[J]. Marine Geology Letters, 2007, 23(3):1-10.] doi: 10.3969/j.issn.1009-2722.2007.03.001

    [28] 张光威. "海岸带地质与可持续发展"学术研讨会学术报告综述[J]. 海洋地质与第四纪地质, 2002, 22(3): 68, 76

    ZHANG Guangwei. Symposium on coastal geology and sustainable development was held in Qingdao[J]. Marine Geology & Quaternary Geology, 2002, 22(3): 68, 76.]

    [29]

    Liu J X, Liu Q S, Zhang X H, et al. Magnetostratigraphy of a long Quaternary sediment core in the South Yellow Sea[J]. Quaternary Science Reviews, 2016, 144:1-15. doi: 10.1016/j.quascirev.2016.05.025

    [30]

    Liu J, Zhang X H, Mei X, et al. The sedimentary succession of the last ~ 3.50 Myr in the western South Yellow Sea: paleoenvironmental and tectonic implications[J]. Marine Geology, 2018, 399:47-65. doi: 10.1016/j.margeo.2017.11.005

    [31] 杨子赓. Olduvai亚时以来南黄海沉积层序及古地理变迁[J]. 地质学报, 1993, 67(4):357-366

    YANG Zigeng. The sedimentary sequence and palaeogeographic changes of the South Yellow Sea since the Olduvai subchron[J]. Acta Geologica Sinica, 1993, 67(4):357-366.]

    [32]

    Liu J, Wang H, Wang F F, et al. Sedimentary evolution during the last ~ 1.9 Ma near the western margin of the modern Bohai Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 451:84-96. doi: 10.1016/j.palaeo.2016.03.012

    [33] 刘健, 段宗奇, 梅西, 等. 南黄海中部隆起晚新近纪: 第四纪沉积序列的地层划分与沉积演化[J]. 海洋地质与第四纪地质, 2021, 41(5):25-43

    LIU Jian, DUAN Zongqi, MEI Xi, et al. Stratigraphic classification and sedimentary evolution of the Late Neogene to Quaternary sequence on the central uplift of the South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(5):25-43.]

    [34]

    Zhang J, Wan S M, Clift P D, et al. History of Yellow River and Yangtze River delivering sediment to the Yellow Sea since 3.5 Ma: tectonic or climate forcing?[J]. Quaternary Science Reviews, 2019, 216:74-88. doi: 10.1016/j.quascirev.2019.06.002

    [35]

    Liu J, Saito Y, Wang H, et al. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea[J]. Marine Geology, 2007, 236(3-4):165-187. doi: 10.1016/j.margeo.2006.10.031

    [36]

    Qiu J D, Liu J, Saito Y, et al. Sedimentary evolution of the Holocene subaqueous clinoform off the southern Shandong Peninsula in the western South Yellow Sea[J]. Journal of Ocean University of China, 2014, 13(5):747-760. doi: 10.1007/s11802-014-2227-z

    [37]

    Xue C T, Qin Y C, Ye S Y, et al. Evolution of Holocene ebb-tidal clinoform off the Shandong Peninsula on East China Sea shelf[J]. Earth-Science Reviews, 2018, 177:478-496. doi: 10.1016/j.earscirev.2017.12.012

    [38]

    Liu J, Qiu J D, Saito Y, et al. Late Pleistocene to Holocene facies architecture and sedimentary evolution of the Zhejiang coast, East China Sea[J]. Marine Geology, 2023, 459:107027. doi: 10.1016/j.margeo.2023.107027

    [39]

    Liu J, Saito Y, Kong X H, et al. Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea[J]. Marine Geology, 2010, 278(1-4):54-76. doi: 10.1016/j.margeo.2010.09.003

    [40]

    Liu J, Qiu J D, Saito Y, et al. Formation of the Yangtze Shoal in response to the post-glacial transgression of the paleo-Yangtze (Changjiang) estuary, China[J]. Marine Geology, 2020, 423:106080. doi: 10.1016/j.margeo.2019.106080

    [41]

    Zhang X, Liu J, Wang Y X, et al. Timing of sedimentary evolution and transgressions in the Bohai Sea during the Last ~200 ka: constraints from luminescence dating of a core from the Yellow River Delta[J]. Frontiers in Earth Science, 2022, 10:865761. doi: 10.3389/feart.2022.865761

    [42]

    Xu G, Bi S P, Gugliotta M, et al. Dispersal mechanism of fine-grained sediment in the modern mud belt of the East China Sea[J]. Earth-Science Reviews, 2023, 240:104388. doi: 10.1016/j.earscirev.2023.104388

    [43] 薛春汀. 现代黄河三角洲叶瓣的划分和识别[J]. 地理研究, 1994, 13(2):59-66

    XUE Chunting. Division and recorgnition of modern Yellow River Delta Lobes[J]. Geographical Research, 1994, 13(2):59-66.]

    [44]

    Xue C T. Historical changes in the Yellow River delta, China[J]. Marine Geology, 1993, 113(3-4):321-330. doi: 10.1016/0025-3227(93)90025-Q

    [45]

    He L, Xue C T, Ye S Y, et al. New evidence on the spatial-temporal distribution of superlobes in the Yellow River Delta Complex[J]. Quaternary Science Reviews, 2019, 214:117-138. doi: 10.1016/j.quascirev.2019.05.003

    [46]

    An Y H, Feng X L, Liu J, et al. Development of a Middle–Late Holocene subaqueous clinoform in the northern Jiangsu coastal zone, western South Yellow Sea[J]. Geomorphology, 2023, 439:108853. doi: 10.1016/j.geomorph.2023.108853

    [47]

    Liu J, Kong X H, Saito Y, et al. Subaqueous deltaic formation of the Old Yellow River (AD 1128-1855) on the western South Yellow Sea[J]. Marine Geology, 2013, 344:19-33. doi: 10.1016/j.margeo.2013.07.003

    [48]

    Liu J, Saito Y, Kong X H, et al. Sedimentary record of environmental evolution off the Yangtze River estuary, East China Sea, during the last ~13, 000 years, with special reference to the influence of the Yellow River on the Yangtze River delta during the last 600 years[J]. Quaternary Science Reviews, 2010, 29(17-18):2424-2438. doi: 10.1016/j.quascirev.2010.06.016

    [49]

    Yang S X, Song B, Ye S Y, et al. Large-scale pollen distribution in marine surface sediments from the Bohai Sea, China: insights into pollen provenance, transport, deposition, and coastal-shelf paleoenvironment[J]. Progress in Oceanography, 2019, 178:102183. doi: 10.1016/j.pocean.2019.102183

    [50]

    Yang S, Song B, Ye S, et al. Regional-scale distributions of pollen and spore assemblages in alluvium around the Bohai Sea: an essential step toward understanding marine palynological sources in China[J]. Marine Geology, 2019, 415:105968. doi: 10.1016/j.margeo.2019.105968

    [51]

    Yang S X, Li J, Ye S Y, et al. Pollen distribution and transportation patterns in surface sediments of Liaodong bay, China[J]. Science of the Total Environment, 2021, 771:144883. doi: 10.1016/j.scitotenv.2020.144883

    [52]

    Ye S, Laws E A, Yuknis N, et al. Carbon sequestration and soil accretion in coastal wetland communities of the Yellow River Delta and Liaohe Delta, China[J]. Estuaries and Coasts, 2015, 38(6):1885-1897. doi: 10.1007/s12237-014-9927-x

    [53]

    Zhao G M, Ye S Y, He L, et al. Historical change of carbon burial in Late Quaternary sediments of the ancient Yellow River delta on the west coast of Bohai Bay, China[J]. CATENA, 2020, 193:104619. doi: 10.1016/j.catena.2020.104619

    [54]

    Pei L X, Ye S Y, Yuan H M, et al. Glomalin-related soil protein distributions in the wetlands of the Liaohe Delta, Northeast China: implications for carbon sequestration and mineral weathering of coastal wetlands[J]. Limnology and Oceanography, 2020, 65:979-991. doi: 10.1002/lno.11364

    [55]

    Lu Q Y, Pei L X, Ye S Y, et al. Negative feedback by vegetation on soil organic matter decomposition in a Coastal Wetland[J]. Wetlands, 2020, 40(6):2785-2797. doi: 10.1007/s13157-020-01350-0

    [56]

    Zhang Y, Meng X W, Xia P, et al. High-frequency mangrove degradation events during the Holocene climatic optimum in the Maowei Sea of tropical China[J]. Journal of Sea Research, 2023, 194:102390. doi: 10.1016/j.seares.2023.102390

    [57]

    Ye S Y, Pei L X, He L, et al. Wetlands in China: evolution, carbon sequestrations and services, threats, and preservation/restoration[J]. Water, 2022, 14(7):1152. doi: 10.3390/w14071152

    [58] 何磊, 叶思源, 赵广明, 等. 海岸带滨海湿地蓝碳管理的研究进展[J]. 中国地质, 2023, 50(3):777-794 doi: 10.12029/gc20201106001

    HE Lei, YE Siyuan, ZHAO Guangming, et al. Research progress on blue carbon management in coastal wetland ecotones[J]. Geology in China, 2023, 50(3):777-794.] doi: 10.12029/gc20201106001

    [59]

    Zhou P, Ye S Y, Xie L J, et al. Tidal restriction likely has greater impact on the carbon sink of coastal wetland than climate warming and invasive plant[J]. Plant and Soil, 2023, 492(1-2):135-156. doi: 10.1007/s11104-023-06160-x

    [60]

    Sun Q M, Gao M S, Wen Z, et al. Reactive transport modeling for the effect of pumping activities on the groundwater environment in muddy coasts[J]. Journal of Hydrology, 2023, 621:129614. doi: 10.1016/j.jhydrol.2023.129614

    [61]

    Sun Q M, Gao M S, Wen Z, et al. Hydrochemical evolution processes of multiple-water quality interfaces (fresh/saline water, saline water/brine) on muddy coast under pumping conditions[J]. Science of the Total Environment, 2023, 857:159297. doi: 10.1016/j.scitotenv.2022.159297

    [62]

    Brix H, Ye S Y, Laws E A, et al. Large-scale management of common reed, Phragmites australis, for paper production: a case study from the Liaohe Delta, China[J]. Ecological Engineering, 2014, 73:760-769. doi: 10.1016/j.ecoleng.2014.09.099

    [63] 段晓勇, 印萍, 谢永清, 等. 中国近海浅层气调查研究进展[J]. 海洋地质与第四纪地质, 2024, doi: 10.16562/j.cnki.0256-1492.2024010801

    DUAN Xiaoyong, YIN Ping, XIE Yongqing, et al. Progress in investigation and research on shallow gas in China's offshore areas[J]. Marine Geology & Quaternary Geology, 2024, doi: 10.16562/j.cnki.0256-1492.2024010801.]

    [64] 段晓勇, 印萍, 曹珂, 等. 中国地质调查局舟山海洋地质灾害野外科学观测研究站进展与成果[J]. 海洋地质前沿, 2022, 38(6):88-92

    DUAN Xiaoyong, YIN Ping, CAO Ke, et al. Introduction of Zhoushan marine geologic hazards field scientific observation and research station, China Geological Survey[J]. Marine Geology Frontiers, 2022, 38(6):88-92.]

    [65]

    Duan X Y, Yin P, Tsona N, et al. Biogenic methane in coastal unconsolidated sediment systems: a review[J]. Environmental Research, 2023, 227:115803. doi: 10.1016/j.envres.2023.115803

  • 期刊类型引用(1)

    1. 龙恒叉,席世川,杨慧良,赵俐红,李金洋,栾振东. 海马冷泉区沉积物的地球化学特征:对于甲烷渗漏和沉积物来源的指示. 海洋地质与第四纪地质. 2024(06): 105-120 . 本站查看

    其他类型引用(8)

图(8)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  4
  • PDF下载量:  54
  • 被引次数: 9
出版历程
  • 收稿日期:  2024-04-08
  • 修回日期:  2024-04-22
  • 网络出版日期:  2024-06-20
  • 刊出日期:  2024-06-20

目录

/

返回文章
返回