GAS HYDRATE ACCUMULATION CONDITIONS AND MECHANISM ON THE SOUTH SHETLAND CONTINENTAL MARGIN, ANTARCTIC PENINSULA
-
摘要: 南设得兰陆缘属于典型的活动型大陆边缘,沟-增生楔-弧前盆地序列发育,具备天然气水合物发育的有利地质构造背景。该区已有的调查资料显示出天然气水合物存在的显著标志——BSR和极性反转特征(或者称为基底反射波,BGR)。研究结果表明,南设得兰陆缘具备形成水合物的充足的气源、适宜的稳定域条件、有利于天然气水合物形成与聚集的沉积体系和特殊地质构造环境,推断南设得兰陆缘以构造型水合物成矿地质模式为主,并以增生楔内甲烷随流体向上迁移形成水合物的模式最为重要。Abstract: The South Shetland Continental Margin is a typically active continental margin. The system of trench-accretionary wedge-forearc basin is well developed, which creates favorable geological and structural background for gas hydrate accumulation. The Survey data shows that this region has significant signs of gas hydrates, such as the occurrence of the Bottom Simulating Reflector(BSR)and polarity reversal characteristics (or the Base of Gas Reflector, BGR). There are plenty of gas sources, stability regions, depositional systems and specific tectonic environment suitable for gas hydrate formation and accumulation. They fit well with the geological model of hydrate reservoir formation under the control of tectonics. The methane within the accretionary wedge moving upward together with fluids plays important roles.
-
-
[1] Lodolo E, Camerlenghi A, Brancolini G. A bottom simulating reflector on the South Shetland margin, Antarctic Peninsula[J]. Antarctic Sci., 1993, 5(2):201-210.
[2] Tinivella U, Lodolo E, Camerlenghi A, et al. Seismic tomography study of a bottom simulating reflector off the South Shetland Islands (Antarctica)[C]//Henriet J P, Mienert J. Gas hydrate:relevance to world margin stability and climate change. Geol. Soc. Lond. Spec. Publ., 1998:137:141-151.
[3] Tinivella U, Accaino F. Compressional velocity structure and Poisson's ratio in marine sediments with gas hydrate and free gas by inversion of reflected and refracted seismic data (South Shetland Islands, Antarctica)[J]. Marine Geology, 2000, 164:13-27.
[4] Tinivella U, Accaino F, Vedova B D. Gas hydrates and active mud volcanism on the South Shetland continental margin, Antarctic Peninsula[J]. Geo-Mar. Lett., 2008, 28:97-106.
[5] Jin Y K, Lee M W, Kim Y, et al. Gas hydrate volume estimations on the South Shetland continental margin, Antarctic Peninsula[J]. Antarctic Science, 2003, 15(2):271-282.
[6] Solovyov V D, Bakhmutov V G, Korchagin I N, et al. Gas hydrates accumulations on the South Shetland Continental Margin:New detection possibilities[J]. J. Geophys. Res., 2011:1-8.
[7] Loreto M F, Tinivella U. Gas hydrate versus geological features:The South Shetland case study[J]. Marine and Petroleum Geology, 2012, 36(1):164-171.
[8] De Wit M J. The evolution of the Scotia Arc as a key to the reconstruction of the southwestern Gondwanaland[J]. Tectonophysics, 1977, 37:53-81.
[9] Maldonado A, Larter R D, Aldaya F. Forearc tectonic evolution of the South Shetland Margin, Antarctic Peninsula[J].Tectonics, 1994, 13:1345-1370.
[10] Larter R D, Barker P F. Effects of ridge crest-trench interaction on Antarctic-Phoenix spreading:forces on a young subducting plate[J]. J. Geophys. Res.,1991,96(19):583-607.
[11] Kim Y, Kim H S, Larter R D, et al. Tectonic deformation in the upper crust and sediments at the South Shetland Trench[J]. Geology and Seismic Stratigraphy of the Antarctic Margin, Part, 1995, 1:157-166.
[12] Kvenvolden K A, Lorenson T D. The global occurrence of natural gas hydrate[C]//Paull C K, Dillon W P. Natural Gas Hydrate Occurrence, Distribution, and Detection, Geophysical Monographs. American Geophysical Union:Washington D C 2001,124:3-18.
[13] Klepeis K, Lowver L A. Tectonics of the Antarctic-Scotia plate boundary near Elephant and Clarence Islands, West Antarctica[J]. J. Geophys. Res., 1996,101:20211-20231.
[14] Kvenvolden K A, Mcdonald T J.Gas hydrate of the Middle America Trench-Deep Sea Drilling Project Leg 84[C]//Initial Reports of Deep Sea Drilling Project 84[R].1985:667-682.
[15] Lodolo E, Tinivella U, Pellis G, et al. Seismic investigation of Bottom Simulating Reflectors on the South Shetland margin[J]. Terra Antarctica Report, 1998, 2:71-74.
[16] Lodolo E, Camerlenghi A, Madrussani G, et al. Assessment of gas hydrate and free gas distribution on the South Shetland margin (Antarctica) based on multichannel seismic reflection data[J]. Geophys. J. Int., 2002, 148:103-119.
[17] Tinivella U, Accaino F, Camerlenghi A. Gas hydrate and free gas distribution from inversion of seismic data on the South Shetland margin (Antarctica)[J]. Marine Geophysical Researches, 2002, 23:109-123.
[18] Hamilton E L. Sound velocity gradients in marine sediments[J]. J. acoust. Soc. Am., 1978, 65:909-922.
[19] Waseda A. Organic carbon content, bacterial methanogenesis, and accumulation processes of gas hydrates in marine sediments[J]. Geochemical Journal:Japen, 1998, 32:143-158.
[20] Dunbar R B, Anderson J B, Domack E W, et al. Oceanographic influences on sedimentation along the Antarctic continental shelf[J]. AGU, Antarctic Res., 1985, 43:291-312.
[21] 吴后波, 苏晓波, 颜文. 海底天然气水合物的微生物成因及识别[J]. 海洋科学, 2008, 32(3):96-100. [WU Houbo, SU Xiaobo, YAN Wen. The microbial genesis of submarine gas hydrate and its microbiological indication[J]. Marine Sciences, 2008, 32(3):96-100.]
[22] Paull C K, Hecker B, Commeau R, et al. Biological communities at the Florida Escarpment resemble hydrothermal vent taxa[J]. Science, 1984, 226(4677):965-967.
[23] MacDonald I R, Guinasso N L, Sassen R, et al. Gas hydrate that breaches the sea floor on the continental slope of the Gulf of Mexico[J]. Geology, 1994, 22(8):699-702.
[24] Kvenvolden K A, McMenamin M A. Hydrocarbon gases in sediment of the shelf, slope, and basin of the Bering Sea[J]. Geochim. Cosmochim. Acta, 1980, 44:1145-1150.
[25] Shipboard Scientific Party. Site1096[C]//Barker P F, Camerlenghi A, Acton G D, et al. Proceedings of the Ocean Drilling Program, Initial Reports Volume178:College Station TX(Ocean Drilling Program). 1999.
[26] Shipboard Scientific Party. Site 1165[C]//O'Brien P E, Cooper A K, Richter C, et al. Proceedings of the Ocean Drilling Program, Initial Reports Volume 188:College Station TX (Ocean Drilling Program). 2001.
[27] John B S. Antarctica geology and hydrocarbon potential[C]//Halbouty M T. Future Petroleum Provinces of the World. AAPG memoir 40. 1986:55-100.
[28] Cooper A K, Barrett P J B, Hinz K, et al. Cenozoic prograding sequences of the Antarctic continental margin:a record of glacio-eustatic and tectonic events[J]. Marine Geology,1991, 102:175-213.
[29] Zelt C A, Smith R B. Seismic travel time inversion for 2-D crystal velocity structure[J]. Geophys. J. Int., 1992, 108:16-34.
[30] Nagao T. Heat flow measurements in the Weddell Sea, Antarctica:ODP Leg 113[C]//Barker P E, Kennett J P, et al. Proceeding of the Ocean Drilling Program, Scientific Results, Volume 113:College Station, TX(Ocean Drilling Program).1990:17-26.
[31] Roberts H H, Hardage B A, Shedd W W, et al. Seafloor reflectivity-an important seismic property for interpreting fluid/gas expulsion geology and the presence of gas hydrate[J].The Leading Edge, 2006, 25:620-628.
[32] 张光学,祝有海.活动大陆边缘水合物分布规律及成藏过程[J].海洋地质动态,2001,17(7):3-7. [ZHANG Guangxue, ZHU Youhai. The distribution and accumulation process of hydrate in activities continent edge[J]. Marine Geology Letters,2001,17(7):3-7.]
[33] 杨木壮,潘安定, 沙志彬.陆缘地区天然气水合物成藏地质模式[J].海洋地质与第四纪地质,2011(6):85-90.[YANG Muzhuang, PAN Anding, SHA Zhibin. Geological models of gas hydrates deposits along the continental margin[J].Marine Geology and Quaternary Geology, 2011 (6):85-90.]
[34] 杨木壮, 王明君, 吕万军.南海西北陆坡天然气水合物成矿条件研究[M]. 北京:气象出版社,2008:94-101.[YANG Muzhuang, WANG Mingjun, LV Wanjun. The Metallogenic Conditions of Gas Hydrates in Northwest Slope of the South China Sea[M]. Beijing:China Meteorological Press,2008:94 -101.]
计量
- 文章访问数: 1753
- HTML全文浏览量: 211
- PDF下载量: 21