Depositional mode for the seamount-terrace-canyon sedimentary combination under the impacts of intermediate and deep circulation dynamics in the northern margin of the South China Sea
-
摘要: 作为研究水-岩界面物质能量交换的天然实验室,南海北缘陆坡区具有复杂的地形地貌(如凸起海山、平坦阶地、下凹峡谷等),并发育不同类型的深水沉积体系(包括重力流滑移滑塌、浊流和底流沉积等)。基于高分辨率海底地形、地震反射资料,海水温盐深(CTD)观测资料,以及已发表的海洋沉积学及物理海洋数值模拟结果,本文针对南海北缘代表型陆坡区开展中—深层环流格局下海山-阶地-峡谷沉积效应分析。发现了尖峰陆坡区侵蚀型-海山型(环槽-丘状漂积体)和席状/无沉积型底流阶地的沉积组合,以及一统陆坡区海山相关底流沉积(环槽-丘状漂积体)-席状/无沉积型底流阶地-黏附型漂积体-陡坡滑塌/峡谷体系的沉积组合;揭示了这些典型深水沉积组合与南海中—深层环流动力格局的耦合关系。该成果对于深入了解深水沉积过程对中-深层动力格局的响应及其对于大陆边缘形态的塑造具有较好的启示意义。Abstract: As a natural laboratory for studying energy and material exchange at water-rock interfaces, the northern slope area of the South China Sea possesses complex geomorphology, such as uplifted seamounts, flat terraces, and depressed canyons. It also develops various types of deep-water depositional systems, including gravity flow slides/slumps, turbidity currents, and contouritic deposits. Based on high-resolution bathymetry and seismic reflection data, CTD data, as well as published results from marine sedimentology and physical oceanic numerical simulations, this study focuses on analyzing the seamount-terrace-canyon sedimentary combination under intermediate and deep circulation bottom currents on the South China Sea northern margins. This study identifies the seamount-related moat-drift systems, the erosional/sheeted-nondepositional/seamount related contourite terraces, the plastered drifts, as well as the steep slopes with slides/slumps and canyons. This research reveals the coupling relationship between these deep-water sedimentary combinations and the hydrodynamic patterns among the intermediate and deep circulations. The findings obtained have significant implications for further understanding of the response of deep-water depositional processes to intermediate and deep circulation hydrodynamics and their impact on shaping continental margin morphology.
-
深海科学孕育着自然科学上的重大突破和发现[1-2],随着近年来深海调查及深水油气、水合物等矿产资源勘探的深入开展,深水区极为复杂的沉积作用、沉积样式及相对应的地形地貌不断被揭示,深水(陆架坡折以下,平均水深超过200 m)沉积学研究已成为目前国际上海洋地球科学研究的前沿和热点。对于海底资源经济效益、古今海洋-气候环境演化以及海洋地质灾害预防和应对等都具有重要意义。深海海底具有极为复杂的地形地貌特征和沉积动力过程[3]。公认的主要深水沉积过程包括生物化学作用(如冷水珊瑚礁、火山热液烟囱等)、垂向沉积(远洋、半远洋沉积)和侧向沉积(垂直陆坡延伸方向的重力流沉积和沿陆坡方向的底流沉积)过程[3-4]。
由长期持续的、具有稳定-亚稳定流速的深海底流活动作用于海底所形成的沉积物被定义为“底流沉积(contourite/等深流沉积)”[5-6]。这类沉积能够以相对较快的沉积速率(平均沉积速率为2~10 cm/ka,局部地区可高达250 cm/ka)相对完整地记录较长时间尺度下(长达上千万年)有关地质构造、(古)海洋学、古气候及物理海洋等方面的丰富信息[7-11]。大范围沿陆坡发育的底流沉积体系主要与稳定的大尺度环流作用相关,而中小型底流沉积体的发育往往与亚中尺度底流过程相关[9,12-14]。海底地形出现显著坡度变化(例如出现凸起海山、下凹峡谷/水道、平坦阶地紧邻陡坡等,图1a、b),能够诱导或增强局地多尺度海洋过程(如深水潮汐、涡旋、地形罗斯贝波、内潮内波、海底风暴、湍流混合、水团温盐锋面混合等),进而在精细尺度下对区域底流变化及其沉积过程产生重要甚至主导性的影响[13,15-19]。
如底流经过海山突起时,水流速度受局部增强效应可加速至2~3 倍[13,20],水流产生侵蚀能力从而在海山北侧山脚处形成下凹地形的环槽(moat),同时在环槽附近常见形成孤隔状-丘状漂积体(图1b)。在缓而平坦的深海平原,底流沉积作用受大范围、流速较低、能量较弱的深层面流控制,主要发育席状漂积体(sheeted drift)[21-22]。此外,越来越多的研究表明,黏附型漂积体-底流阶地的沉积组合可能是大陆边缘陆坡的重要组成部分[23-26]。黏附型漂积体(plastered drift)具有略微凸起的外形[27],从凸起点向海延伸是坡度明显较陡的陆坡;从凸起点往陆地方向的一侧是具有轻微向海倾斜角度的宽缓、平坦陆坡面(图1a)。这种宽缓陆坡面具有轻微侵蚀-无沉积特征时可称为侵蚀面或吹蚀面(erosional/winnowing surface),或表现为沉积速率较低的席状沉积特征,称为底流阶地(contourite terrace)[9,28-29](图1c)。底流阶地上可发育由底流长时期作用海底留下的沉积、侵蚀和无沉积组合特征,它们也常对应出现在水团或水层分界面附近[23,27,30]。
深海重力流是垂直于陆坡延伸方向,在重力驱动下沉积物和水(流体)混合而形成的高密度、高黏度、涌浪式流动的非牛顿流体。深水重力流沉积体系主要包括块体流(Mass transport deposit)和浊流(turbidite)沉积体系[31-32]。这类高能事件型沉积可具极高的沉积速率(10~1500 cm/ka),能够发育全球极其重要的油气储层,但其沉积间断对应于沉积记录缺失。在重力流运移过程中,对海底有侵蚀作用,久而久之形成“下凹型”海底峡谷及水道。海底峡谷, 作为陆架陆坡区域最为典型的复杂地貌单元,主要分布于陆架-陆坡位置,根据其形态、成因及发育位置大致可分为陆架侵蚀型峡谷和陆坡限制型峡谷[33-38],其中陆坡限制型峡谷也称为“无头型峡谷”或“盲峡谷”。通常情况下,深水峡谷和深水水道相连(自陆坡延伸至海盆),二者均能够破坏地转流效应,将滑塌、碎屑流和浊流等沉积物从浅海搬运至深海、实现物质和能量跨陆坡垂向交换的天然运移通道[39-40]。
基于大半个世纪以来的重力流沉积体系研究,大众常识性认为重力流理所应当作为深水峡谷中的绝对主导沉积机制。但是海洋探测技术不断发展,使得人们对于精细海底地形地貌、海底沉积物物理性质、化学组分、内部结构及其古环境学和地层学分析和流体速度、方向、密度、浊度等原位观测参数的研究尺度可达到米至毫米级。这些高新资料越来越多揭示深水峡谷环境中并非如同以往想象中那样时刻充斥爆发重力流活动,高能浊流活动实际如脉冲式仅被间歇性触发[41-44],而在其能量衰退或长期停发时期,底流行为及其沉积过程完全能够对先存重力流沉积结果进行强烈改造[45-46],甚至成为一定范围内的主导沉积机制并决定最终沉积样式[47-48]。综上,“间歇型爆发式垂坡重力流沉积”和“稳定型持续式沿坡底流沉积”是深海中代表高效沉积的主导机制,二者动力过程的“交替和博弈”结果决定了深水沉积格局的最终呈现样式,对于塑造大陆边缘形态和决定大陆边缘演化具有举足轻重的影响[5-6]。
南海北部深水陆缘接受北方大陆极其充沛稳定的物源供给,具有极其复杂的海底地形地貌(如吕宋海峡、马尼拉海沟、台西南峡谷、东沙斜坡、东沙隆起、珠江峡谷、一统斜坡、西沙海槽、中央峡谷、西沙隆起等)以及丰富的水合物油气资源(图2a)。该区既发育不同类型的深水沉积体系,包括重力流峡谷沉积、滑塌沉积、浊流沉积、底流沉积等[14,49-50],而且具有大量活跃的内潮和高频非线性内波[51-53]。其深水沉积格局主要受到沉积建造型地貌条件的制约,可形成大型重力流输运通道并持续接受底流沉积过程改造,是研究复杂地形条件和中深层环流格局下深水沉积响应及其对大陆边缘形态塑造效应的理想场所。
基于丰富的地质、地球物理和海洋观测资料[52,54-56]以及2022年6月“中山大学”号设备验收航次、2022年7月南方海洋科学与工程广东省实验室(珠海)南海西边界流大气-海洋-海底-生物综合调查航次的实测数据,本文拟针对南海北缘尖峰陆坡区和一统陆坡区(图2a、图3、4),通过海洋地质与物理海洋调查相结合,开展海山-阶地-峡谷地形条件和中-深层环流格局下的深水沉积体系效应分析。研究成果不仅有助于认知半封闭洋盆陆缘深水沉积格局演变和深层海流演变的耦合关系,而且可以为海底生态、海底资源(如石油天然气)、海底灾害(如陆坡失稳)等方面研究提供有力的科学依据。
1. 区域海洋地质背景
1.1 南海深海环流格架
中国南海是西太平洋最大的边缘海,其水深大于2 000 m的海盆面积超过106 km2,最大水深超过5 km。南海北部吕宋海峡作为与周围海洋的唯一深水通道,使得几近封闭的南海与西太平洋相连,具备形成独具特色的环流系统条件[57]。基于南海实测水文资料、海流观测结果发现,现今南海环流格架大致表现为3层:南海上层环流(水深约350 m以上,冬季为气旋式环流,夏季南部为反气旋环流、北部海盆表现为弱的气旋式环流)、中层环流(水深约350~1350 m,主要呈反气旋方向,平均流速小于5 cm/s)和深层环流(水深约1 350 m以下,气旋式环流,平均流速小于 4 cm/s),而且在不同深度范围水团之间存在水体交换[56,58-63](图2)。有研究指出,南海深层水中可能进一步划分出南海底层水(水深约2 000 m以下),其来源于北太平洋深层水和上层绕极深层水[50],该水团的流动模式在南海北部具有典型的气旋性,而在南海南部呈现为区域性反气旋模式[64])(图2b)。整体而言,南海自身洋流活动可能主要通过西太平洋海的表层水(冬季)和深层水经由吕宋海峡在南海内部形成;同时,自吕宋海峡流入的水体经南海自身洋流体系循环混合后,以南海中层水和表层水(夏季)形式流出吕宋海峡返回西太平洋,最终必须构成一个完整的循环体系[63]。
1.2 南海北缘深水沉积体系
近二十年来南海北部陆缘的深水沉积研究取得了一系列研究进展,一方面南海北部深水浊积区被证实具有巨大油气成藏与勘探前景[65],另一方面沿南海北部中-深层环流路径发育的多处底流沉积体系被逐步揭示。代表性成果包括:①南海北缘三套大型重力流沉积输运通道,即琼东南盆地中央峡谷、珠江口外峡谷和(西)澎湖峡谷沉积体系的几何形态、充填样式、沉积过程以及成因演化研究[66-73],特别是基于长期原位观测所揭示的台西南高屏峡谷内由台风触发的深水浊流事件[44];②琼东南盆地陆坡区和珠江口盆地陆坡区块体流沉积体系发育类型、沉积特征、分布范围、成因机制以及地质演化研究[49,74-78];③珠江口盆地白云深水区浊流深水扇沉积体系的平面展布、沉积特征、结构模式、沉积过程、控制因素及油气勘探前景研究[79-80];④ Lüdmann 等[54]和 Shao等[55]利用2D多道地震和ODP 1144岩芯资料识别东沙隆起南部斜坡发育底流沉积的丘状漂积体,Zhao等[56]将深海原位观测应用于该区域,并取得底流方向、流速以及悬浮沉积物浓度等与沉积记录相匹配的成果;⑤最新多波束海底地形及三维地震资料显示东沙-尖峰陆坡附近发育不同规模不同样式底流沉积体系(多数规模较大,漂积体沿陆缘延伸长度50~100 km)[14,49-50];⑥针对珠江口盆地南缘陆坡重力流峡谷体系,如神狐陆坡限制型海底峡谷群,一些学者提出了这些峡谷在发育演化过程中可能受到底流影响[45,81-82];⑦通过高分辨率二维地震资料,在西沙隆起附近识别出与海山相关的底流沉积体系、重力流滑塌体系、深水峡谷体系、席状底流等沉积体系,并根据深水沉积记录推测南海西北次海盆西北陆缘的稳定底流沉积、侵蚀作用可追溯至晚中新世早期[12-13,83-84]。
2. 数据和方法
研究区高分辨率(约1 km)地形数据源于最新的通用海洋水深图(GEBCO)数据集(GEBCO 2014, v. 2014-11-03, http://www.gebco.net)。本研究所采用多道2D地震剖面由中国海洋石油总公司处理后提供。2D地震剖面整体呈NNW-SSE向。地震数据采用压缩空气式气枪震源。线长和采样率分别设定为11 996和2 ms。用2D地震数据研究海底地形地貌特征时,采用海水P波速度为1 500 m/s。基于海底地形和下伏沉积层的地震反射特征(外观形态、内部结构)识别不同类型的侵蚀,无沉积和沉积特征(表1)。
表 1 物理海洋CTD观测站位信息Table 1. Information of CTD stations站位号 位置 CTD最大采水深度/m S1 20.059°N 、117.424°E 208 S2 20.006°N 、117.573°E 1 791 T1 19.619°N 、114.150°E 544 T2 19.024°N 、114.424°E 1 604 研究所用公开发表的高分辨率温盐深数据(CTD)来自于(美国)国家海洋数据中心的世界海洋数据库(https://www.nodc.noaa.gov/),位于东沙南海山和一统暗沙附近的4个CTD站位(S1、S2、T1、T2)(表1)温度、盐度、密度观测数据来源于2022年5—6月“中山大学”号设备验收航次、2022年7月南方海洋科学与工程广东省实验室(珠海)南海西边界流大气-海洋-海底-生物综合调查航次的实测数据。
3. 结果与讨论
3.1 中—深层环流格局下尖峰陆坡阶地-海山-峡谷沉积展布
本文工区内所展示尖峰陆坡位于东沙陆坡的东侧和南海东中部次盆地的南侧(图2a),主要由上段、中段和下段陆坡构成(图3)。上段陆坡即东沙隆起高地区,主要由起伏山地和(局地)平坦的侵蚀型底流阶地组成,其下界延伸至约1 250 m水深处。东沙隆起高地在工区中部直接过渡为东沙南海山,该海山位于中段陆坡(水深范围约1 250~2 250 m),海山坡度陡峭(大于10°),山脚发育环槽和孤隔状、丘状漂积体(图2b、图3)。在海山及相关漂积体的东西两侧,中段陆坡坡度稍缓(1°~5°)(图3),属于底流阶地向海方向的黏附型漂积体沉积区,该区常见波状起伏海底地形(典型特征如图1d-f),局地发育滑坡(块体搬运)沉积和陆坡限制型峡谷[14,50,85]。中段和下段陆坡的分界大致位于宋应星海丘附近(水深约2 750 m),下段陆坡主要发育席状/无沉积型底流阶地;跨越宋应星海丘向南随水深继续加大进入深海平原区(超过3 500 m)(图2b、图3)。
尖峰陆坡区,东北东向的南海中层环流和西南西向的南海深层环流之间可能存在的水层分界范围大致位于1 250 m水深附近,对应于东沙隆起高地区的侵蚀型底流阶地;深层环流和东北东向的(上层)底层环流之间可能存在的水层分界范围大致位于2 250 m水深附近,对应于笔架西凸起东南侧的席状/无沉积型底流阶地(图2b、3)。
3.2 中—深层环流格局下一统陆坡海山-阶地-峡谷沉积展布
如图2a所示,一统斜坡东临珠江峡谷,西临中央峡谷,南接西北次海盆。本文工区内一统斜坡主要由上段、中段和下段陆坡组成(图4)。上段陆坡整体宽缓平坦,范围向下延伸至水深约1 250 m,主要发育席状/无沉积型底流阶地(图4、5)。一统暗沙坐落于该阶地范围内约750 m水深处,山脚发育环槽和孤隔状-丘状漂积体(图4)[12]。中段陆坡对应于水深约1 250~1 750 m,坡度在1°和5°之间变化,底流阶地下侧黏附型漂积体发育区;该区可分为坡度较缓的上坡区(坡度小于2°)和稍陡的下坡区(坡度约2°~5°)(图4、5)。黏附型漂积体上坡区常见波状起伏海底地形(典型特征如图1d),属于海底轻微起伏、沉积层波形连续完整的沉积物波;下坡区常见具有断崖、陡坎的阶梯状起伏或下切海底地形(典型特征如图1e、f),对应于深海块体搬运的早期滑移阶段以及无头型峡谷发育的初始形态[83,85]。下段陆坡(水深约1 750~3 250 m水深)坡度陡峭(大于2°),广泛发育滑移/滑塌和陆坡限制型峡谷,这些峡谷的平均宽度/延伸长度为5/50 km,切割深度从小于100 m到大于1 000 m不等。随着水深逐渐增加,这些峡谷下切深度增大,并延伸进入南侧的西北次盆地深海平原(图4、 5)。
一统斜坡区约600 m水深附近可能对应于南海表层环流和中层环流之间的水层分界[82,86]。ENE向的南海中层环流和西南西向的南海深层环流之间的过渡层范围大致对应于水深约 1250~1 750 m附近(图5)。其中,过渡层内可能的最大梯度界面可能对应于黏附型漂积体上坡区发育沉积物波的深度范围[85]。
3.3 中—深层环流格局下海山-阶地-峡谷沉积模式分析
通过深海沉积学分析与物理海洋数值模拟相结合[13,50,85],以一统陆坡区凸起、平坦、下凹海底地形相关的深水沉积体系组合为典型实例,可能建立中-深层环流格局下的海山-阶地-峡谷沉积耦合模式。
南海中层环流格架下,东北东向的底流流经宽缓的底流阶地(深度约600~1250 m),其(年)平均流速较弱(2~3 cm/s),以沉积作用为主,但在高能量间歇事件期间(如遇到中尺度深海涡旋),流速可能加剧至超过6 cm/s(甚至有可能超过10 cm/s),满足发生沉积物运输/无沉积的条件,对应于底流阶地的席状/无沉积特征[13-14,50,85]。一方面,由于科氏力偏转效应,这些底流携带的沉积物被偏转到右侧(在北半球东流洋流的下游),从而沉积在底流阶地的向海延伸方向(水深约1 200~1 750 m),成为黏附型漂积体的一部分(图5)。
另一方面,凸起海山地形(即一统暗沙)附近的底流,受地形束窄效应在海山脚下会加速2~3倍[20],当达到大于15 cm/s时,开始侵蚀海底松散黏性沉积颗粒(南海深海海底表层沉积颗粒平均粒径约10 μm) [87-89],导致环槽的形成。当叠加柯氏力偏转效应时,一统暗沙北侧底流受限程度明显强于南侧,对应形成更深和更宽的环槽侵蚀形态。受底边界层埃克曼搬运效应影响,海底海水-沉积物界面处的沉积颗粒沿水流方向朝左侧移动堆积[90],在一统暗沙北侧环槽的北侧形成孤隔型丘状漂积体,在一统暗沙南侧环槽的北侧(即海山南侧山壁上)形成黏附型漂积体。一统暗沙南侧环槽以南,宽缓的阶地地形对应于相对减缓的底流速度,可能在该环槽的南侧形成轻微丘状漂积体(图5)[12,91]。
深度约1 750 m以下陡坡区(发育大量陡坎、滑塌和峡谷),处于南海环流格架的深层。西南西向的底流在(陡坡)地形和柯氏力偏转效应的影响下,(年)平均流速约4~5 cm/s,而在高能间歇性海洋事件能量串级影响下,通常可以达到大于15 cm/s的较强流速[13-14,50]。这些洋流可能表现出Hernández-Molina等(2008)和Preu等(2013)所介绍的螺旋流样式,代表沿陡坡流动的束窄洋流,是常见大规模沉积颗粒被侵蚀/再悬浮现象的原因。由于科氏力偏转效应,西向底流携带的这些物质可能被运输到陡坡区北侧并上升至约1 200~1 750 m水深,同样成为黏附型漂积体的一部分(图5)[23,91]。
深度约1 250~1 750 m区间属于南海中层环流和深层环流过渡层,其整体水动力条件相对较弱,(年)平均流速为0~2 cm/s,但水流方向不稳定,即使受到高能量间歇海洋过程的增强流速可达6 cm/s,仍无法满足沉积搬运/侵蚀条件[85]。该区以沉积效应为主,如前所述同时接受来自南海中层环流和深层环流偏转携带的沉积颗粒,进而建造具有轻微凸起地形的黏附型漂积体(图1a、图5)。由于沉积速率较高和坡度较明显增大,且处于相对不稳定的流场动力条件下,该区易于发生陆坡失稳,进而形成一系列与海底滑坡相关的地形和沉积单元(如蠕变变形/滑移/滑塌/峡谷等)。
与图5中所展示的底流阶地-黏附型漂积体-陡坡滑塌/峡谷体系的组合样式相类似的实例在全球大陆边缘广泛存在, 如阿根廷北部边缘[23],乌拉圭大陆边缘[28],葡萄牙西南边缘[25],西北部阿尔博拉海[26]和莫桑比克海峡[27]等。这些案例都指示底流阶地-黏附型漂积体的组合样式可能对应于不同深度环流/水团/水层的分界范围/过渡层。
尖峰陆坡区的不同之处在于,在黏附型漂积体范围内出现了明显的海山地形(东沙南海山、笔架西凸起),因此,海山周缘发育典型的环槽-孤隔状-丘状漂积体取代了部分黏附型漂积体(图3),并形成自成特色的海山型底流阶地(图2b)。此外,可能由于尖峰陆坡更靠近吕宋海峡(图2a),该区中-深层环流格架较为复杂,对应于多个深度范围环流/水层的分界过渡区,发育了多套具有不同沉积特征的底流阶地(图2b、图3)。
3.4 底流与重力流(浊流)沉积交互影响
底流和重力流作用过程及其沉积物共存或相互转化的现象在地层记录中普遍存在,在不同尺度的时间和空间上,垂直陆坡方向(偶发事件型重力流,高能爆发快速衰减)和平行陆坡方向(长期稳定型底流,能量较低持续作用)的沉积活动随时随地相互作用、相互影响,该话题至今仍是国际深水沉积学的前沿热点[45,46,92-97],代表案例包括但不限于局地特定时段内或大范围地质历史时期的浊流沉积与底流沉积互层,以及相关的底流沉积受到浊流破坏或浊流沉积受到底流改造等。
在尖峰和一统阶地的外缘,粉砂-黏土质海底沉积物在底流沉积作用下堆积形成黏附型漂积体(图3、4)。随着沉积颗粒堆积、坡度增加、重力荷载增强,当重力和外力(如地震/降雨/波浪等触发)荷载的联合作用克服沉积体内部抗剪能力时,就会破坏黏附型漂积体的稳定性[26,98],导致产生海底蠕动变形、滑移、滑塌,以及块体流、浊流等重力流活动。
在该区黏附型漂积体上主要发现的两种类型的波状起伏沉积特征,也都与底流和重力流的交互过程密切相关。位置相对较深(约1 500~2 000 m)的阶梯起伏状沉积块体是典型的陆坡失稳滑移/滑塌现象(图1e),可见明显失稳滑动面/陡坎[99-100]。这些阶梯状沉积块体之间常出现U/V形海底下凹地形,一些学者认为这些与底流冲刷过程有关[23]。位于相对较浅深度(约1 200~1 500 m,局地可延伸更深) 的波状起伏沉积拥有更连续、完整的波形特征(图1d)。据Wynn和Stow (2002)研究,这些具有相对连续、完整波形的沉积特征通常与重力失稳驱动下的蠕动变形、浊流、底流这三种机制/过程相关。本文研究范围内,集中在黏附型漂积体表面的轻微波状起伏特征(水深范围约1 200~1 500 m)被认为很有可能是在重力驱动下的蠕变变形[62,77],由于它们正好出现在广泛分布的阶梯状滑移/滑塌沉积区上方,通常被认为是陆坡失稳的先兆特征。同时,由于正好位于底流沉积阶地的外缘,这些波状沉积也被猜测有可能是与水团交互界面的内波活动有关[24,101-102],当然对于这类论断需要未来更多的观测和模拟结果辅以验证。
4. 结论
基于高分辨率地形、二维地震剖面以及物理海洋CTD观测资料,结合前人已发表的海洋沉积学及物理海洋数值模拟结果,在南海北部边缘尖峰陆坡和一统陆坡上识别出海山相关底流沉积(环槽-丘状漂积体)-(侵蚀型或席状/无沉积型/海山型)底流阶地-黏附性漂积体-陡坡滑塌/峡谷体系的深海地形-沉积组合样式,并且探讨了这些典型深水沉积组合与南海中—深层环流动力格局的耦合关系。
(1)宽缓的底流沉积阶地(坡度小于1°)位于黏附性漂积体上游,主要表现为无沉积和席状沉积特征,指示水动力(流速)达到“搬运粉细砂(阻碍沉积)”的条件,该区域主要受到反气旋式南海中层水影响。黏附性漂积体构成了底流沉积阶地的向海延伸部分,该区域主要位于南海中-深层水层界面交互过渡区,水动力条件有利于堆积“粉细砂沉积”;其中上坡区表现为略微隆起地形(坡度1°~2°);下坡区坡度有所增加(1°~5°),并且发育阶步状的滑移滑塌沉积单元。黏附性漂积体的下游陆坡区坡度较陡(大于2°),多见如峡谷、水道等侵蚀特征,该区域主要受到反气旋式南海深层水影响,方向自东向西,水动力条件有利于“侵蚀粉细砂海底”。
(2)底流阶地-黏附型漂积体的组合样式可能对应于不同深度环流/水团/水层的分界范围/过渡层。凸起海山地形周缘发育典型的环槽、孤隔状-丘状漂积体,可能取代黏附型漂积体并形成海山型底流阶地(发育环槽-丘状漂积体)。中-深层环流格架较为复杂时,多个深度范围环流/水层的分界过渡区可能对应发育多套具有不同沉积特征的底流阶地。
(3)处于不同深度环流/水团/水层分界范围/过渡层的黏附型漂积体具有较高的沉积速率和较明显的坡度变化(增大),易于造成陆坡失稳,该类型沉积体广泛构成全球大陆边缘,可能对于陆坡限制型峡谷的形成发育具有关键性影响。
-
表 1 物理海洋CTD观测站位信息
Table 1 Information of CTD stations
站位号 位置 CTD最大采水深度/m S1 20.059°N 、117.424°E 208 S2 20.006°N 、117.573°E 1 791 T1 19.619°N 、114.150°E 544 T2 19.024°N 、114.424°E 1 604 -
[1] 汪品先. 深海沉积与地球系统[J]. 海洋地质与第四纪地质, 2009, 29(4):1-11 WANG Pinxian. Deep sea sediments and Earth system [J]. Marine Geology & Quaternary Geology, 2009, 29(4): 1-11.
[2] 田纪伟, 曲堂栋. 南海深海环流研究进展[J]. 科学通报, 2012, 57(24):3115-3120 doi: 10.1007/s11434-012-5269-x TIAN Jiwei, QU Tangdong. Advances in research on the deep South China Sea circulation [J]. Chinese Science Bulletin, 2012, 57(24): 3115-3120. doi: 10.1007/s11434-012-5269-x
[3] Mulder T, Hüneke H, Van Loon A J. Progress in deep-sea sedimentology[M]//Hüneke H, Mulder T. Deep-Sea Sediments: Developments in Sedimentology. Amsterdam: Elsevier, 2011: 1-24.
[4] Micallef A, Krastel S, Savini A. Submarine Geomorphology[M]. Cham: Springer, 2018.
[5] Stow D A V, Faugères J C, Howe J A, et al. Bottom currents, contourites and deep-sea sediment drifts: current state-of-the-art[C]//Stow D A V, Pudsey C J, Howe J A, et al. Deep-Water Contourite Systems: Modern Drifts and Ancient Series, Seismic and Sedimentary Characteristics. London: Geological Society of London, 2002: 7-20.
[6] Rebesco M, Camerlenghi A, Van Loon A J. Contourite research: a field in full development[C]//Rebesco M, Camerlenghi A. Contourites: Developments in Sedimentology. Amsterdam: Elsevier, 2008: 1-10.
[7] 高抒. 海洋沉积地质过程模拟: 性质与问题及前景[J]. 海洋地质与第四纪地质, 2011, 31(5):1-7 GAO Shu. Numerical modeling of marine sedimentary processes: the nature, scientific problems, and prospect [J]. Marine Geology & Quaternary Geology, 2011, 31(5): 1-7.
[8] Hernández-Molina F J, Serra N, Stow D A V, et al. Along-slope oceanographic processes and sedimentary products around the Iberian margin [J]. Geo-Marine Letters, 2011, 31(5): 315-341.
[9] Rebesco M, Hernández-Molina F J, Van Rooij D, et al. Contourites and associated sediments controlled by deep-water circulation processes: State-of-the-art and future considerations [J]. Marine Geology, 2014, 352: 111-154. doi: 10.1016/j.margeo.2014.03.011
[10] 赵玉龙, 刘志飞. 等积体在全球大洋中的空间分布及其古环境意义: 国际大洋钻探计划对全球等深流沉积研究的贡献[J]. 地球科学进展, 2017, 32(12):1287-1296 ZHAO Yulong, LIU Zhifei. Spatial distribution of contourites in global ocean and its paleoclimatic significance: the contribution of international ocean drilling to the studies of contourites [J]. Advances in Earth Science, 2017, 32(12): 1287-1296.
[11] 吴立新. 气候变暖背景下全球平均海洋环流在加速[J]. 中国科学:地球科学, 2020, 63(7):1039-1040 doi: 10.1007/s11430-020-9610-9 WU Lixin. Acceleration of global mean ocean circulation under the climate warming [J]. Science in China:Earth Sciences, 2020, 63(7): 1039-1040. doi: 10.1007/s11430-020-9610-9
[12] Chen H, Xie X N, Van Rooij D, et al. Depositional characteristics and processes of alongslope currents related to a seamount on the northwestern margin of the Northwest Sub-Basin, South China Sea [J]. Marine Geology, 2014, 355: 36-53. doi: 10.1016/j.margeo.2014.05.008
[13] Chen H, Xie X N, Zhang W Y, et al. Deep-water sedimentary systems and their relationship with bottom currents at the intersection of Xisha Trough and Northwest Sub-Basin, South China Sea [J]. Marine Geology, 2016, 378: 101-113. doi: 10.1016/j.margeo.2015.11.002
[14] Chen H, Zhang W Y, Xie X N, et al. Sediment dynamics driven by contour currents and mesoscale eddies along continental slope: A case study of the northern South China Sea [J]. Marine Geology, 2019, 409: 48-66. doi: 10.1016/j.margeo.2018.12.012
[15] Delivet S, Van Eetvelt B, Monteys X, et al. Seismic geomorphological reconstructions of Plio-Pleistocene bottom current variability at Goban Spur [J]. Marine Geology, 2016, 378: 261-275. doi: 10.1016/j.margeo.2016.01.001
[16] Ribó M, Puig P, Muñoz A, et al. Morphobathymetric analysis of the large fine-grained sediment waves over the Gulf of Valencia continental slope (NW Mediterranean) [J]. Geomorphology, 2016, 253: 22-37. doi: 10.1016/j.geomorph.2015.09.027
[17] Shu Y Q, Xue H J, Wang D X, et al. Persistent and energetic bottom-trapped topographic Rossby waves observed in the southern South China Sea [J]. Scientific Reports, 2016, 6: 24338. doi: 10.1038/srep24338
[18] Thran A C, Dutkiewicz A, Spence P, et al. Controls on the global distribution of contourite drifts: Insights from an eddy-resolving ocean model [J]. Earth and Planetary Science Letters, 2018, 489: 228-240. doi: 10.1016/j.jpgl.2018.02.044
[19] Tang Q S, Gulick S P S, Sun J, et al. Submesoscale features and turbulent mixing of an oblique anticyclonic eddy in the gulf of Alaska investigated by marine seismic survey data [J]. Journal of Geophysical Research:Oceans, 2020, 39: e2019JC015393.
[20] Turnewitsch R, Falahat S, Nycander J, et al. Deep-sea fluid and sediment dynamics-influence of hill- to seamount-scale seafloor topography [J]. Earth-Science Reviews, 2013, 127: 203-241. doi: 10.1016/j.earscirev.2013.10.005
[21] Llave E, Hernández-Molina F J, Stow D A V, et al. Reconstructions of the Mediterranean Outflow Water during the Quaternary based on the study of changes in buried mounded drift stacking pattern in the Gulf of Cadiz [J]. Marine Geophysical Researches, 2007, 28(4): 379-394. doi: 10.1007/s11001-007-9040-7
[22] Hernández-Molina F J, Larter R D, Rebesco M, et al. Miocene reversal of bottom water flow along the Pacific Margin of the Antarctic Peninsula: stratigraphic evidence from a contourite sedimentary tail [J]. Marine Geology, 2006, 228(1-4): 93-116. doi: 10.1016/j.margeo.2005.12.010
[23] Preu B, Hernández-Molina F J, Violante R, et al. Morphosedimentary and hydrographic features of the northern Argentine margin: the interplay between erosive, depositional and gravitational processes and its conceptual implications [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2013, 75: 157-174. doi: 10.1016/j.dsr.2012.12.013
[24] Thiéblemont A, Hernández-Molina F J, Miramontes E, et al. Contourite depositional systems along the Mozambique channel: the interplay between bottom currents and sedimentary processes [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2019, 147: 79-99. doi: 10.1016/j.dsr.2019.03.012
[25] Rodrigues S, Roque C, Hernández-Molina F J, et al. The Sines contourite depositional system along the SW Portuguese margin: Onset, evolution and conceptual implications [J]. Marine Geology, 2020, 430: 106357. doi: 10.1016/j.margeo.2020.106357
[26] Yenes M, Casas D, Nespereira J, et al. The Guadiaro-Baños contourite drifts (SW Mediterranean). A geotechnical approach to stability analysis [J]. Marine Geology, 2021, 437: 106505. doi: 10.1016/j.margeo.2021.106505
[27] Miramontes E, Thiéblemont A, Babonneau N, et al. Contourite and mixed turbidite-contourite systems in the Mozambique Channel (SW Indian Ocean): link between geometry, sediment characteristics and modelled bottom currents [J]. Marine Geology, 2021, 437: 106502. doi: 10.1016/j.margeo.2021.106502
[28] Hernández-Molina F J, Wåhlin A, Bruno M, et al. Oceanographic processes and morphosedimentary products along the Iberian margins: A new multidisciplinary approach [J]. Marine Geology, 2016, 378: 127-156. doi: 10.1016/j.margeo.2015.12.008
[29] Hernández-Molina F J, Campbell S, Badalini G, et al. Large bedforms on contourite terraces: Sedimentary and conceptual implications [J]. Geology, 2018, 46(1): 27-30. doi: 10.1130/G39655.1
[30] Steinmann L, Baques M, Wenau S, et al. Discovery of a giant cold-water coral mound province along the northern Argentine margin and its link to the regional Contourite Depositional System and oceanographic setting [J]. Marine Geology, 2020, 427: 106223. doi: 10.1016/j.margeo.2020.106223
[31] Shanmugam G. A preliminary experimental study of turbidite fan deposits: discussion [J]. Journal of Sedimentary Research, 2003, 73(5): 838-839. doi: 10.1306/101002730838
[32] Moscardelli L, Wood L. New classification system for mass transport complexes in offshore Trinidad [J]. Basin Research, 2008, 20(1): 73-98. doi: 10.1111/j.1365-2117.2007.00340.x
[33] Twichell D C, Roberts D G. Morphology, distribution, and development of submarine canyons on the United States Atlantic continental slope between Hudson arid Baltimore Canyons [J]. Geology, 1982, 10(8): 408-412. doi: 10.1130/0091-7613(1982)10<408:MDADOS>2.0.CO;2
[34] Farre J A, McGregor B A, Ryan W B F, et al. Breaching the shelfbreak: passage from youthful to mature phase in submarine canyon evolution[M]//Stanley D J, Moore G T. The Shelfbreak: Critical Interface on Continental Margins. Tulsa: SEPM, 1983, 33: 25-39.
[35] Harris P T, Whiteway T. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins [J]. Marine Geology, 2011, 285(1-4): 69-86. doi: 10.1016/j.margeo.2011.05.008
[36] 徐景平. 科学与技术并进: 近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展, 2013, 28(5):552-558 XU Jingping. Accomplishments and challenges in measuring turbidity currents in submarine canyons [J]. Advances in Earth Science, 2013, 28(5): 552-558.
[37] 徐景平. 海底浊流研究百年回顾[J]. 中国海洋大学学报, 2014, 44(10):98-105 XU Jingping. Review on the research of submarine turbidity current in one hundred years [J]. Periodical of Ocean University of China, 2014, 44(10): 98-105.
[38] 钟广法. 海底峡谷科学深潜考察研究现状[J]. 地球科学进展, 2019, 34(11):1111-1119 ZHONG Guangfa. Current status of scientific deep-diving investigations in submarine canyons [J]. Advances in Earth Science, 2019, 34(11): 1111-1119.
[39] Laursen J, Scholl D W, von Huene R. Neotectonic deformation of the central Chile margin: Deepwater forearc basin formation in response to hot spot ridge and seamount subduction[T]. Tectonics, 2002, 21(5): 2-1-2-27.
[40] Antobreh A A, Krastel S. Morphology, seismic characteristics and development of Cap Timiris Canyon, offshore Mauritania: A newly discovered canyon preserved-off a major arid climatic region [J]. Marine and Petroleum Geology, 2006, 23(1): 37-59. doi: 10.1016/j.marpetgeo.2005.06.003
[41] Xu J P, Noble M A, Rosenfeld L K. In-situ measurements of velocity structure within turbidity currents [J]. Geophysical Research Letters, 2004, 31(9): L09311.
[42] Xu J P, Swarzenski P W, Noble M, et al. Event-driven sediment flux in Hueneme and Mugu submarine canyons, southern California [J]. Marine Geology, 2010, 269(1-2): 74-88. doi: 10.1016/j.margeo.2009.12.007
[43] Gavey R, Carter L, Liu J T, et al. Frequent sediment density flows during 2006 to 2015, triggered by competing seismic and weather events: Observations from subsea cable breaks off southern Taiwan [J]. Marine Geology, 2017, 384: 147-158. doi: 10.1016/j.margeo.2016.06.001
[44] Zhang Y W, Liu Z F, Zhao Y L, et al. Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea [J]. Geology, 2018, 46(8): 675-678. doi: 10.1130/G45178.1
[45] Gong C L, Wang Y M, Rebesco M, et al. How do turbidity flows interact with contour currents in unidirectionally migrating deep-water channels? [J]. Geology, 2018, 46(6): 551-554. doi: 10.1130/G40204.1
[46] Miramontes E, Jouet G, Thereau E, et al. The impact of internal waves on upper continental slopes: insights from the Mozambican margin (Southwest Indian Ocean) [J]. Earth Surface Processes and Landforms, 2020, 45(6): 1469-1482. doi: 10.1002/esp.4818
[47] Gong C L, Wang Y M, Peng X C, et al. Sediment waves on the South China Sea Slope off southwestern Taiwan: Implications for the intrusion of the Northern Pacific Deep Water into the South China Sea [J]. Marine and Petroleum Geology, 2012, 32(1): 95-109. doi: 10.1016/j.marpetgeo.2011.12.005
[48] Gong C L, Wang Y M, Zhu W L, et al. Upper Miocene to Quaternary unidirectionally migrating deep-water channels in the Pearl River Mouth Basin, northern South China Sea [J]. AAPG Bulletin, 2013, 97(2): 285-308. doi: 10.1306/07121211159
[49] Sun Q L, Xie X N, Piper D J W, et al. Three dimensional seismic anatomy of multi-stage mass transport deposits in the Pearl River Mouth Basin, northern South China Sea: their ages and kinematics [J]. Marine Geology, 2017, 393: 93-108. doi: 10.1016/j.margeo.2017.05.005
[50] Yin S R, Hernández-Molina F J, Zhang W Y, et al. The influence of oceanographic processes on contourite features: A multidisciplinary study of the northern South China Sea [J]. Marine Geology, 2019, 415: 105967. doi: 10.1016/j.margeo.2019.105967
[51] Alford M H, Peacock T, MacKinnon J A, et al. The formation and fate of internal waves in the South China Sea [J]. Nature, 2015, 521(7550): 65-69. doi: 10.1038/nature14399
[52] Zhang Y W, Liu Z F, Zhao Y L, et al. Mesoscale eddies transport deep-sea sediments [J]. Scientific Reports, 2014, 4: 5937. doi: 10.1038/srep05937
[53] Xie X H, Liu Q, Zhao Z X, et al. Deep sea currents driven by breaking internal tides on the continental slope [J]. Geophysical Research Letters, 2018, 45(12): 6160-6166.
[54] Lüdmann T, Wong H K, Berglar K. Upward flow of North Pacific Deep Water in the northern South China Sea as deduced from the occurrence of drift sediments [J]. Geophysical Research Letters, 2005, 32(5): L05614.
[55] Shao L, Li X J, Geng J H, et al. Deep water bottom current deposition in the northern South China Sea [J]. Science in China Series D:Earth Sciences, 2007, 50(7): 1060-1066. doi: 10.1007/s11430-007-0015-y
[56] Zhao Y L, Liu Z F, Zhang Y W, et al. In situ observation of contour currents in the northern South China Sea: applications for Deepwater sediment transport [J]. Earth and Planetary Science Letters, 2015, 430: 477-485. doi: 10.1016/j.jpgl.2015.09.008
[57] 魏泽勋, 郑全安, 杨永增, 等. 中国物理海洋学研究70年: 发展历程、学术成就概览[J]. 海洋学报, 2019, 41(10):23-64 WEI Zexun, ZHENG Quanan, YANG Yongzeng, et al. Physical oceanography research in China over past 70 years: Overview of development history and academic achievements [J]. Acta Oceanologica Sinica, 2019, 41(10): 23-64.
[58] Wang P X, Li Q Y. The South China Sea: Paleoceanography and Sedimentology[M]. Dordrecht: Springer, 2009: 25-73.
[59] 谢强, 肖劲根, 王东晓, 等. 基于8个准全球模式模拟的南海深层与底层环流特征分析[J]. 科学通报, 2013, 58(32):4000-4011 doi: 10.1007/s11434-013-5791-5 XIE Qiang, XIAO Jingen, WANG Dongxiao, et al. Analysis of deep-layer and bottom circulations in the South China Sea based on eight quasi-global ocean model outputs [J]. Chinese Science Bulletin, 2013, 58(32): 4000-4011. doi: 10.1007/s11434-013-5791-5
[60] Shu Y Q, Xue H J, Wang D X, et al. Meridional overturning circulation in the South China Sea envisioned from the high-resolution global reanalysis data GLBa0.08 [J]. Journal of Geophysical Research:Oceans, 2014, 119(5): 3012-3028. doi: 10.1002/2013JC009583
[61] Gan J P, Li H, Curchitser E N, et al. Modeling South China Sea circulation: Response to seasonal forcing regimes [J]. Journal of Geophysical Research:Oceans, 2006, 111(C6): C06034.
[62] Wynn R B, Stow D A V. Classification and characterisation of deep-water sediment waves [J]. Marine Geology, 2002, 192(1-3): 7-22. doi: 10.1016/S0025-3227(02)00547-9
[63] Wang D X, Xiao J G, Shu Y Q, et al. Progress on deep circulation and meridional overturning circulation in the South China Sea [J]. Science China Earth Sciences, 2016, 59(9): 1827-1833. doi: 10.1007/s11430-016-5324-6
[64] Cai Z Y, Gan J P, Liu Z Q, et al. Progress on the formation dynamics of the layered circulation in the South China Sea [J]. Progress in Oceanography, 2020, 181: 102246. doi: 10.1016/j.pocean.2019.102246
[65] 朱伟林, 钟锴, 李友川, 等. 南海北部深水区油气成藏与勘探[J]. 科学通报, 2012, 57(24):3121-3129 doi: 10.1007/s11434-011-4940-y ZHU Weiling, ZHONG Kai, LI Youchuan, et al. Characteristics of hydrocarbon accumulation and exploration potential of the northern South China Sea deepwater basins [J]. Chinese Science Bulletin, 2012, 57(24): 3121-3129. doi: 10.1007/s11434-011-4940-y
[66] 袁圣强. 南海北部陆坡区深水水道沉积体系研究[D]. 中国科学院海洋研究所博士学位论文, 2009: 121 YUAN Shengqiang. Sedimentary system of deepwater channel, the slope area of Northern South China Sea[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2009: 121.
[67] 苏明. 南海北部琼东南盆地中新世以来中央峡谷体系内部构成及沉积模式[D]. 中国地质大学(武汉), 2011: 138 SU Ming. Internal composition and depositional model of Central canyon system since Miocene in Qiongdongnan Basin northern South China Sea[D]. China University of Geosciences, 2011: 138. ] (查阅网上资料, 未找到本条文献信息, 请确认
[68] Ding W W, Li J B, Li J, et al. Morphotectonics and evolutionary controls on the Pearl River Canyon system, South China Sea [J]. Marine Geophysical Research, 2013, 34(3): 221-238.
[69] Gong C L, Wang Y M, Zhu W L, et al. The Central Submarine Canyon in the Qiongdongnan Basin, northwestern South China Sea: Architecture, sequence stratigraphy, and depositional processes [J]. Marine and Petroleum Geology, 2011, 28(9): 1690-1702. doi: 10.1016/j.marpetgeo.2011.06.005
[70] Li C, Lv C F, Chen G J, et al. Source and sink characteristics of the continental slope-parallel Central Canyon in the Qiongdongnan Basin on the northern margin of the South China Sea [J]. Journal of Asian Earth Sciences, 2017, 134: 1-12. doi: 10.1016/j.jseaes.2016.10.014
[71] Su M, Hsiung K H, Zhang C M, et al. The linkage between longitudinal sediment routing systems and basin types in the northern South China Sea in perspective of source-to-sink [J]. Journal of Asian Earth Sciences, 2015, 111: 1-13. doi: 10.1016/j.jseaes.2015.05.011
[72] Su M, Lin Z X, Wang C, et al. Geomorphologic and infilling characteristics of the slope-confined submarine canyons in the Pearl River Mouth Basin, northern South China Sea [J]. Marine Geology, 2020, 424: 106166. doi: 10.1016/j.margeo.2020.106166
[73] Zhong G F, Cartigny M J B, Kuang Z G, et al. Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea [J]. Geological Society of America Bulletin, 2015, 127(5-6): 804-824. doi: 10.1130/B31003.1
[74] 吴时国, 秦蕴珊. 南海北部陆坡深水沉积体系研究[J]. 沉积学报, 2009, 27(5):922-930 WU Shiguo, QIN Yunshan. The research of deepwater depositional system in the northern South China Sea [J]. Acta Sedimentologica Sinica, 2009, 27(5): 922-930.
[75] 何云龙. 琼东南盆地陆坡区重力流沉积特征及其成因机制[D]. 中国地质大学(武汉)博士学位论文, 2012: 131 HE Yunlong. The characteristics and mechanism of sediment gravity flow in slope Area in Qiongdongnan Basin[D]. Doctor Dissertation of China University of Geosciences, 2012: 131.
[76] 秦志亮. 南海北部陆坡块体搬运沉积体系的沉积过程、分布及成因研究[D]. 中国科学院海洋研究所博士学位论文, 2012: 121 QIN Zhiliang. Sedimentary process, distribution and mechanism of mass transport deposits, the slope area of Northern South China Sea[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2012: 121.
[77] Li W, Alves T M, Wu S G, et al. A giant, submarine creep zone as a precursor of large-scale slope instability offshore the Dongsha Islands (South China Sea) [J]. Earth and Planetary Science Letters, 2016, 451: 272-284. doi: 10.1016/j.jpgl.2016.07.007
[78] Sun Q L, Alves T M, Lu X Y, et al. True volumes of slope failure estimated from a Quaternary mass-transport deposit in the northern South China Sea [J]. Geophysical Research Letters, 2018, 45(6): 2642-2651. doi: 10.1002/2017GL076484
[79] 庞雄, 申俊, 袁立忠, 等. 南海珠江深水扇系统及其油气勘探前景[J]. 石油学报, 2006, 27(3):11-15,21 PANG Xiong, SHEN Jun, YUAN Lizhong, et al. Petroleum prospect in deep-water fan system of the Pearl River in the South China Sea [J]. Acta Petrolei Sinica, 2006, 27(3): 11-15,21.
[80] 庞雄, 彭大钧, 陈长民, 等. 三级“源-渠-汇”耦合研究珠江深水扇系统[J]. 地质学报, 2007, 81(6):857-864 PANG Xiong, PENG Dajun, CHEN Changmin, et al. Three hierarchies "Source-Conduit-Sink" coupling analysis of the Pearl River deep-water fan system [J]. Acta Geologica Sinica, 2007, 81(6): 857-864.
[81] Zhu M Z, Graham S, Pang X, et al. Characteristics of migrating submarine canyons from the Middle Miocene to present: Implications for paleoceanographic circulation, northern South China Sea [J]. Marine and Petroleum Geology, 2010, 27(1): 307-319. doi: 10.1016/j.marpetgeo.2009.05.005
[82] Wang X X, Zhuo H T, Wang Y M, et al. Controls of contour currents on intra-canyon mixed sedimentary processes: insights from the Pearl River Canyon, northern South China Sea [J]. Marine Geology, 2018, 406: 193-213. doi: 10.1016/j.margeo.2018.09.016
[83] Chen H, Xie X N, Van Rooij D, et al. Depositional characteristics and spatial distribution of deep-water sedimentary systems on the northwestern middle-lower slope of the Northwest Sub-Basin, South China Sea [J]. Marine Geophysical Research, 2013, 34(3): 239-257.
[84] Li H, Wang Y M, Zhu W L, et al. Seismic characteristics and processes of the Plio-Quaternary unidirectionally migrating channels and contourites in the northern slope of the South China Sea [J]. Marine and Petroleum Geology, 2013, 43: 370-380. doi: 10.1016/j.marpetgeo.2012.12.010
[85] Chen H, Zhang W Y, Xie X N, et al. Linking oceanographic processes to contourite features: Numerical modelling of currents influencing a contourite depositional system on the northern South China Sea margin [J]. Marine Geology, 2022, 444: 106714. doi: 10.1016/j.margeo.2021.106714
[86] Wang X X, Kneller B, Wang Y M, et al. Along-strike Quaternary morphological variation of the Baiyun Sag, South China Sea: the interplay between deltas, pre-existing morphology, and oceanographic processes [J]. Marine and Petroleum Geology, 2020, 122: 104640. doi: 10.1016/j.marpetgeo.2020.104640
[87] McCave I N, Hall I R. Size sorting in marine muds: processes, pitfalls, and prospects for paleoflow-speed proxies [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(10): Q10N05.
[88] Zhong Y, Chen Z, Li L, et al. Bottom water hydrodynamic provinces and transport patterns of the northern South China Sea: evidence from grain size of the terrigenous sediments [J]. Continental Shelf Research, 2017, 140: 11-26. doi: 10.1016/j.csr.2017.01.023
[89] Adams G R, Jager A J, Roering C. Investigations of rock fractures around deep level gold mine stopes[C]//Proceedings of the 22nd US Symposium on Rock Mechanics. Cambridge: American Rock Mechanics Association, 1981: 213-218.
[90] Yin S R, Hernández-Molina F J, Lin L, et al. Plate convergence controls long-term full-depth circulation of the South China Sea [J]. Marine Geology, 2023, 459: 107050. doi: 10.1016/j.margeo.2023.107050
[91] Hernández-Molina F, Llave E, Stow D A V. Continental slope contourites[M]//Rebesco M, Camerlenghi A. Contourites: Developments in Sedimentology. Amsterdam: Elsevier, 2008, 60: 379-408.
[92] Viana A R, Almeida Jr W, Machado L C. Different styles of canyon infill related to gravity and bottom current processes: Examples from the upper slope of the Se Brazilian margin[C]//Proceedings of the 6th International Congress of the Brazilian Geophysical Society. Rio de Janeiro, Brazil: European Association of Geoscientists & Engineers, 1999.
[93] He Y L, Xie X N, Kneller B C, et al. Architecture and controlling factors of canyon fills on the shelf margin in the Qiongdongnan Basin, northern South China Sea [J]. Marine and Petroleum Geology, 2013, 41: 264-276. doi: 10.1016/j.marpetgeo.2012.03.002
[94] Chen Y H, Yao G S, Wang X F, et al. Flow processes of the interaction between turbidity flows and bottom currents in sinuous unidirectionally migrating channels: An example from the Oligocene channels in the Rovuma Basin, offshore Mozambique [J]. Sedimentary Geology, 2020, 404: 105680. doi: 10.1016/j.sedgeo.2020.105680
[95] de Castro S, Hernández-Molina F J, de Weger W, et al. Contourite characterization and its discrimination from other deep-water deposits in the Gulf of Cadiz contourite depositional system [J]. Sedimentology, 2021, 68(3): 987-1027. doi: 10.1111/sed.12813
[96] Fonnesu M, Palermo D, Galbiati M, et al. A new world-class deep-water play-type, deposited by the syndepositional interaction of turbidity flows and bottom currents: The giant Eocene Coral Field in northern Mozambique [J]. Marine and Petroleum Geology, 2020, 111: 179-201. doi: 10.1016/j.marpetgeo.2019.07.047
[97] Fuhrmann A, Kane I A, Clare M A, et al. Hybrid turbidite-drift channel complexes: An integrated multiscale model [J]. Geology, 2020, 48(6): 562-568. doi: 10.1130/G47179.1
[98] Puzrin A M, Gray T E, Hill A J. Significance of the actual nonlinear slope geometry for catastrophic failure in submarine landslides [J]. Proceedings of The Royal Society A:Mathematical, Physical and Engineering Sciences, 2015, 471(2175): 20140772. doi: 10.1098/rspa.2014.0772
[99] Laberg J S, Vorren T O. The Trænadjupet Slide, offshore Norway-morphology, evacuation and triggering mechanisms [J]. Marine Geology, 2000, 171(1-4): 95-114. doi: 10.1016/S0025-3227(00)00112-2
[100] Lastras G, Canals M, Amblas D, et al. Eivissa slides, western Mediterranean Sea: morphology and processes [J]. Geo-Marine Letters, 2006, 26(4): 225-233. doi: 10.1007/s00367-006-0032-4
[101] Santek D A, Winguth A. A satellite view of internal waves induced by the Indian Ocean tsunami [J]. International Journal of Remote Sensing, 2007, 28(13-14): 2927-2936. doi: 10.1080/01431160601094534
[102] Pomar L, Morsilli M, Hallock P, et al. Internal waves, an under-explored source of turbulence events in the sedimentary record [J]. Earth-Science Reviews, 2012, 111(1-2): 56-81. doi: 10.1016/j.earscirev.2011.12.005
-
期刊类型引用(1)
1. 马宏霞,朱越越,许小勇,何云龙,王红平. 东非鲁伍马盆地海底峡谷发育特征及成因机制. 西南石油大学学报(自然科学版). 2025(01): 67-79 . 百度学术
其他类型引用(1)