台湾-吕宋岛弧巴士段火山活动的热模拟

高翔, 张健, 吴时国

高翔, 张健, 吴时国. 台湾-吕宋岛弧巴士段火山活动的热模拟[J]. 海洋地质与第四纪地质, 2013, 33(1): 65-71. DOI: 10.3724/SP.J.1140.2013.01065
引用本文: 高翔, 张健, 吴时国. 台湾-吕宋岛弧巴士段火山活动的热模拟[J]. 海洋地质与第四纪地质, 2013, 33(1): 65-71. DOI: 10.3724/SP.J.1140.2013.01065
GAO Xiang, ZHANG Jian, WU Shiguo. A THERMAL SIMULATION STUDY ON VOLCANIC ACTIVITY ALONG BASHI SEGMENT OF TAIWAN-LUZON ISLAND ARC[J]. Marine Geology & Quaternary Geology, 2013, 33(1): 65-71. DOI: 10.3724/SP.J.1140.2013.01065
Citation: GAO Xiang, ZHANG Jian, WU Shiguo. A THERMAL SIMULATION STUDY ON VOLCANIC ACTIVITY ALONG BASHI SEGMENT OF TAIWAN-LUZON ISLAND ARC[J]. Marine Geology & Quaternary Geology, 2013, 33(1): 65-71. DOI: 10.3724/SP.J.1140.2013.01065

台湾-吕宋岛弧巴士段火山活动的热模拟

基金项目: 

国家自然科学基金项目(41174085);中国海陆地质地球物理系列图项目(GZH200900504);国家重点基础研究规划项目(G2007CB411704)

详细信息
    作者简介:

    高翔(1984-),男,博士生,主要从事海洋地球物理研究,E-mail:gaoxiangd@163.com

  • 中图分类号: P736.14

A THERMAL SIMULATION STUDY ON VOLCANIC ACTIVITY ALONG BASHI SEGMENT OF TAIWAN-LUZON ISLAND ARC

  • 摘要: 岛弧火山活动的数值热模拟研究是俯冲带构造热演化研究的重要方面,也是验证地表观测结果的重要方法。选取台湾-吕宋岛弧巴士段内东火山链(EVC)的甘米银活火山和西火山链(WVC)的加拉鄢死火山,根据地质和地球物理条件,进行了有限元热模拟计算。在计算模拟甘米银活火山和加拉鄢死火山现今的热流分布的基础上,分析了二者的差异。模拟结果表明,甘米银活火山顶部至周边30 km热流值有明显升高,越靠近火山热流值越高且增加速率越快,岩浆房正上方的热流高达310 mW·m-2。加拉鄢死火山顶部及周边热流略有升高,热流增量从周边40 km处的小于3 mW·m-2缓慢增加到火山顶部的15 mW·m-2
    Abstract: The thermal numerical simulation for island arc volcanic activities is not only an important aspect of the study on tectono-thermal evolution of a subduction zone, but also a critical method to verify the results of field observation. In this study, based on geological and geophysical conditions, we selected the Camiguin active volcano in the east volcano chain (EVC) and the Calayan extinct volcano in the west volcano chain (WVC) along the Bashi Segment of the Taiwan-Luzon island arc as our models.Thermal simulations using finite-element numerical method were conducted. During the simulations, we first calculated the present heat flow distribution above the Camiguin active volcano and Calayan extinct volcano, and then analyzed the divergence of the two volcanoes. The simulation results show, from the top of the Camiguin active volcano to 30 km away, the heat flow obviously rises and becomes higher with acceleration when it comes closer to the top of the volcano where the heat flow can reach 310 mW·m-2. However, the heat flow on the top of the Calayan extinct volcano and surroundings only rises a little. The heat flow increment increases slowly from below 3 mW·m-2 40 km away from the volcano to 15 mW·m-2 on the top of the volcano.
  • [1]

    Turner S P,George R M M,Evans P J,et al. Time-scales of magma formation, ascent and storage beneath subduction-zone volcanoes[J]. Phil. Trans. R. Soc. Lond. A.,2000,358:1443-1464.

    [2]

    Lees J M. Seismic tomography of magma systems[J]. J. Volcanol. Geotherm. Res.,2007,17:37-56.

    [3]

    Rivalta E. Evidence that coupling to magma chambers controls the volume history and velocity of laterally propagating intrusions[J]. J. Geophys. Res.,2010,115:B07203.

    [4]

    Kavanagh J,Menand T,Sparks R. An experimental investigation of sill formation and propagation in layered elastic media[J]. Earth Planet. Sci. Lett.,2006,245:799-813.

    [5]

    Maccaferri F,Bonafede M,Rivalta E. Numerical and analogue models of dike propagation in layered elastic media[J]. Geophys. J. Int.,2010,180:1107-1123.

    [6]

    Sibett B S. Size,depth and related structures of intrusions under stratovolcanoes and associated geothermal systems[J]. Earth Sci. Rev.,1988,25:291-309.

    [7]

    Bonaccorso A. Dynamic inversion of ground deformation data for modeling volcanic sources (Etna 1991-93)[J]. Geophys. Res. Let.,1996,23(5):451-454.

    [8]

    Horiuchi S,Tsumura N,Hasegawa A. Mapping of a magma reservoir beneath Nikko-Shirane volcano in northern Kanto, Japan, from travel time and seismogram shape anomalies[J]. J. Geophys. Res.,1997,102(B8):18071-18090.

    [9]

    Cioni R, Marianelli P,Santacroce R. Thermal and compositional evolution of the shallow magma chambers of Vesuvius:Evidence from pyroxene phenocrysts and melt intrusions[J]. J. Geophys. Res.,1998,103(B8):18277-18294.

    [10]

    Yang T F,Lee T,Chen C H,et al. A double island arc between Taiwan and Luzon:consequence of ridge subduction[J]. Tectonophysics,1996,258:85-101.

    [11] 姚伯初. 南海海盆新生代的构造演化史[J]. 海洋地质与第四纪地质,1996,16(2):1-13.

    [YAO Bochu. Tectonic evolution of the South China Sea in Cenozoic[J]. Marine Geology and Quaternary Geology,1996,16(2):1-13.]

    [12]

    Hayes D E,Lewis S D. A geophysical study of the manila trench, Luzon, Philippinesl. Crustal structure, gravity, and regional tectonic evolution[J]. Geophys. Res.,1984,89(B11):9171-9195

    [13] 李志伟,胥颐,郝天姚,等. 利用非线性方法反演琉球-台湾-吕宋地区的岩石层P波速度结构[J]. 地球物理学进展,2007,22(5):1345-1351.

    [LI Zhiwei,XU Yi,HAO Tianyao,et al. Inversion of P-wave velocity structure of lithosphere in the Ryukyu Taiwan-Luzon area by nonlinear algorithm[J]. Progress in Geophysics,2007,22(5):1345-1351.]

    [14] 刘迎春,刘海龄,张健. 南海中央海盆岩石圈纵向演化模拟[J]. 海洋地质与第四纪地质,2005,25(4):47-53.

    [LIU Yingchun,LIU Hailing,ZHANG Jian. A vertical evolution of lithosphere of the central basin of South China Sea[J]. Marine Geology and Quaternary Geology,2005,25(4):47-53.]

    [15]

    Ruch J,Anderssohn J,Walter T R,et al. Caldera-scale inflation of the Lazufre volcanic area, South America:evidence from InSAR[J]. Journal of Volcanology and Geothermal Research,2008,174:337-344.

    [16]

    Solaro G,Acocella V,Pepe S,et al. Anatomy of an unstable volcano from InSAR:multiple process affecting flank instability at Mt. Etna, 1994-2008[J]. J. Geophys. Res.,2010,115:B10405.

    [17]

    Velez M L,Euillades P,Caselli A,et al. Deformation of Copahue volcano:Inversion of InSAR data using a genetic algorithm[J]. Journal of Volcanology and Geothermal Research,2011,202:117-126.

    [18]

    Parks M M,Biggs J,Mather T A,et al. Co-eruptive subsidence at Galeras identified during an InSAR survey of Colombian volcanoes (2006-2009)[J]. Journal of Volcanology and Geothermal Research,2011,202:228-240.

    [19]

    HE Lijuan,Wang K,XIONG Liangping,et al. Heat flow and thermal history of the South China Sea[J]. Phys. Earth Planet. Inter.,2001,126:211-220.

    [20]

    SHI Xiaobin,QIU Xuelin,XIA Kanyuan,et al. Characteristics of surface heat flow in the South China Sea[J]. Journal of Asian Earth Sciences,2003,22:265-277.

    [21] 高翔,张健,孙玉军,等. 马尼拉海沟俯冲带热结构的模拟研究[J]. 地球物理学报,2012,55(1):1-9.

    [GAO Xiang,ZHANG Jian,SUN Yujun,et al. A simulation study on the thermal structure of Manila trench subduction zone[J]. Chinese J. Geophys. (in Chinese),2012,55(1):1-9.]

    [22]

    Annen C,Pichavant M,Bachmann O,et al. Conditions for growth of a long-lived shallow crustal magma chamber below Mount Pelee volcano (Martinique, Lesser Antilles Arc)[J]. J. Geophys. Res.,2008,113:B07209.

    [23]

    ZHOU Di,YU Hoshing,XU Hehua,et al. Modeling of thermo-rheological structure of lithosphere under the foreland basin and mountain belt of Taiwan[J]. Tectonophysics,2003,374:115-134.

    [24]

    Lewis T J,Bentkowski W H,Davis E E,et al. Subduction of the Juan De Fuca plate:Thermal consequences[J]. J. Geophys. Res.,1988,93(B12):15207-15225.

    [25]

    Blackwell D D,Bowen R G,Hull D A,et al. Heat flow, arc volcano, and subduction in Northern Oregon[J]. J. Geophys. Res.,1982,87(B10):8735-8754.

    [26]

    Blackwell D D,Steele J L,and Kelley S. Heat flow in the state of Washington and thermal conditions in the Cascade Range[J]. J. Geophys. Res.,1990,95(B12):19495-19516.

    [27]

    Dvorak J J,Dzurisin D. Volcano geodesy:the search for magma reservoirs and the formation of eruptive vents[J]. Reviews of Geophysics,1997,35(3):343-384.

计量
  • 文章访问数:  2094
  • HTML全文浏览量:  372
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-09
  • 修回日期:  2012-12-24

目录

    /

    返回文章
    返回