THE EFFECTS OF PHOSPHATIZATION ON THE REY OF CO-RICH FE-MN CRUSTS
-
摘要: 稀土(REY)是一组有效示踪物质源区和地质过程的元素,本研究利用X荧光光谱法(XRF)和电感耦合等离子光谱仪(ICP-MS)分析了马尔库斯-威克海山和中太平洋海山富钴结壳的主要元素和稀土元素,结合前人研究成果对比了磷酸盐化及未磷酸盐化富钴结壳的稀土特征。结果显示:磷(P)含量低的结壳具有相对低的稀土总量(∑REY),北美页岩标准化后显示铈(Ce)正异常和钇(Y)负异常;磷酸盐化后的结壳具有相对高的∑REY,并表现出Ce正异常和显著Y正异常。磷酸盐化结壳中应存在“富稀土磷酸盐”组分,特别是对Y具有重要贡献。将磷酸盐化结壳视为磷酸盐组分和结壳组分的混合,模拟结果显示富稀土磷酸盐组分具有海山磷块岩的稀土配分模式,但是其∑REY达到普通磷块岩的10倍或以上。考虑到海洋中富钙沉积物丰富,大量PO43-不同程度地交代碳酸盐等钙质物质,容易形成贫稀土磷酸盐。而伴随结壳缓慢的成矿过程,部分磷酸盐的形成未受到碳酸盐的影响,容易形成富稀土磷酸盐。Abstract: Rare earth elements and yttrium (REY) are extremely coherent in the nature. The relative abundances of them can be used to deduce their sources or subsequent geological processes. Major elements and REY of the Co-rich Fe-Mn Crusts from Marcus-Wake Seamounts and Mid-Pacific seamounts are analyzed by XRF and ICP-MS. Combined with previous studies, REY characteristic of phosphatized and non-phosphatized Fe-Mn Crusts are emphasized respectively. Fe-Mn Crusts with low P have low ΣREY and notably positive Ce anomaly, as well as negative yttrium anomaly, after normalized by the North American shale composite(NASC). While Fe-Mn Crusts with high P have relatively high ΣREY, positive Ce anomaly and notably positive yttrium anomaly normalized by NASC. There must exist REY-rich phosphate components in the phosphatized Co-rich Fe-Mn Crusts, which are especially rich in yttrium. The issue of phosphatized crusts could be regarded as a mixed model of phosphate components and Fe-Mn crust components. Mixed model simulating result indicates that REY-rich phosphate components in Fe-Mn Crusts have the same REY pattern as seamount phosphate rock, but the content could be more than 10 times over that of seamount phosphate rock. Besides REY3+ and Ca2+, other alkali-earth metal ions can also be bound to PO43- in water column, and there are numerous calcareous sediments in ocean, PO43- can replace CO32- in carbonate sediments to form REY-poor phosphate. However, the growth of the Fe-Mn Crust is so slow that REY has a better environment to compete with Ca at the time of PO43- input, forming dissemination REY-rich phosphate. Although PO43- is still mainly bound with Ca2+ in REY-rich phosphate, ΣREY/Ca ratio increases remarkably. This REY enrichment model may be a common geological process in non-calcium sediments in deep sea.
-
致谢: 参加中国大洋23航次的科考队员付出了辛勤劳动,国土资源部海底矿产资源重点实验室分析测试中心完成样品的测试工作,在此一并感谢。
-
图 4 磷酸盐与结壳二元混合模拟后的稀土北美页岩标准化配分模式(北美页岩数据据文献[42])
Figure 4. NASC-normalized REY patterns of mixing results Between Cobalt-rich Crust and Phosphate
表 1 富钴结壳浅钻岩心样品特征
Table 1 Sample information of Co-rich Fe-Mn crust from Bataza and Qianyu seamount
样品编号 海山区 结壳厚度/cm 结壳描述 下伏基岩描述 BA02 9 黑色结壳具有三层结构,底部2 cm,为致密亮煤状;中部6 cm疏松多孔;上部1 cm具豆状突起 蚀变的灰黑色玄武岩和灰白色灰岩 BA04 7 黑色结壳为单层结构,较致密,表面粗糙,有豆状凸起 基岩为浅黄色碳酸盐岩,较疏松,遇盐酸冒泡,为风化的碳酸盐 BA05 1.5 黑色结壳为单层结构,致密,表面粗糙 基岩为浅黄色至灰白色的礁灰岩,可见脉状方解石充填,含有贝壳等生物化石 BA06 20 黑色结壳为单层结构,致密 未获取基岩 BA08 7 黑色结壳为单层结构,较致密,表层有豆状突起 上部深灰色礁灰岩,可见较多的生物化石;下部为灰白色礁灰岩,多孔疏松,有较多的生物化石 BA10A 马尔库斯-威克海山区 4.15 3个黑色结核状结壳,球状,表面光滑。中型2个,粒径4~5 cm;小型粒径2 cm 基岩为黄白色-浅粉色生物碎屑灰岩,表面有少量黑色的微结核,岩石中有大量贝壳,螺壳,有孔虫等 BA10 5.5 黑色结壳具有三层结构,上层较致密,局部有鲕状突起;中层深褐色,可见浅色的碳酸盐充填在孔洞和裂隙中;下层致密亮煤状 未获取基岩 BA11 9 黑色结壳具有三层结构,上层4 cm,较致密,有葡萄状或者瘤状突起;中层3 cm,疏松多孔;下层2 cm,致密亮煤状 基岩上部为灰白色到浅黄色礁灰岩,局部可见生物化石;下部为灰白色钙质胶结的生物碎屑灰岩,疏松多孔 BA14 12 黑色结壳具有三层结构,上层2 cm,较致密;中层5 cm,较疏松多孔;下层5 cm,致密亮煤状 浅黄色至灰白色的礁灰岩,可见脉状方解石充填,含有生物化石 BA15 8 黑色结壳具有三层结构,上层2 cm,较致密,表面平坦;中层2 cm,较疏松多孔;下层4 cm,致密亮煤状 基岩为灰白色角砾岩,角砾为玄武岩,砾径为0.2~4 cm,分选差 QY01 2 黑色结壳单层结构,较致密 灰白色,主要由老结壳碎块组成,粒径最大可达数厘米,棱角状,分选性差,基质主要由钙质组成,部分发生磷酸盐化 QY03 中太平洋海山区 8 黑色结壳具有三层结构,上层2 cm黑色,较致密,表面有豆状突起;中层2 cm,疏松多孔;下层4 cm,致密亮煤状 上部为浅黄色风化壳灰岩,中间夹杂黄色灰岩团块,钙质胶结;下部为灰白色-肉红色生物碎屑角砾岩,棱角状,局部有空洞发育和生物碎屑颗粒 QY06 2 黑色结壳为单层结构,较致密,表层有豆状突起 白色的生物碎屑礁灰岩,无分层,可见大量的生物壳体,最大者达2~3 cm 表 2 富钴结壳主量元素和稀土元素分析结果
Table 2 Composition of major and rare earth elements in Co-rich Fe-Mn crusts from Bataza and Qianyu seamounts
样号 单位 BA02 BA04 BA04 BA05 BA06 BA08 BA10A BA10 BA10 BA11 BA14 BA14 BA15 QY01 QY03 QY03 QY06 GSMC-1 GSMC-1 层位 上层 下层 上层 下层 上层 下层 参考值 测试值 Mn % 23.50 23.28 16.46 19.04 26.59 24.98 24.10 22.49 21.53 19.97 25.24 26.17 18.66 25.98 24.87 24.37 19.92 23.2 23.35 Fe 14.21 17.74 6.03 18.45 11.39 13.06 16.15 17.46 11.87 10.04 14.96 11.90 12.25 9.99 17.41 15.26 17.82 17.1 17.08 P2O5 1.33 1.00 23.06 1.24 4.24 0.99 1.36 1.65 11.09 12.96 1.00 6.57 11.74 7.70 1.52 3.41 1.01 1.59 1.54 CaO 4.25 3.41 35.45 3.85 9.25 4.41 4.19 4.28 18.72 21.32 3.67 12.56 19.65 14.74 3.71 7.08 3.5 4.6 4.73 MgO 2.43 2.21 0.78 2.24 2.25 2.55 2.25 2.16 1.26 1.36 2.38 1.57 1.40 1.70 2.16 2.00 2.11 1.85 1.96 Al2O3 2.69 2.10 1.32 3.41 1.50 2.68 2.08 2.35 1.26 1.78 2.13 0.95 1.68 1.05 1.52 1.46 2.95 2.1 2.14 SiO2 11.35 11.99 3.70 17.59 5.66 10.17 10.21 12.57 4.39 6.48 10.10 2.90 5.88 3.39 9.20 6.84 14.94 10.3 10.24 K2O 0.95 0.67 0.51 0.81 0.72 0.95 0.68 0.68 0.51 0.65 0.80 0.57 0.52 0.61 0.57 0.64 0.77 0.76 0.74 TiO2 2.14 1.57 0.97 1.79 1.85 2.02 1.77 1.58 1.46 1.37 1.85 1.47 1.64 1.53 1.45 2.00 2.33 2.2 2.20 Cu 0.25 0.09 0.03 0.13 0.18 0.26 0.14 0.09 0.10 0.11 0.20 0.10 0.11 0.11 0.06 0.10 0.25 0.14 0.14 Co 0.67 0.58 0.21 0.55 0.62 0.63 0.64 0.58 0.29 0.32 0.62 0.38 0.30 0.50 0.86 0.58 0.61 1.3 1.27 Ni 0.54 0.48 0.30 0.36 0.66 0.67 0.50 0.42 0.34 0.40 0.59 0.39 0.31 0.54 0.39 0.46 0.38 0.44 0.43 Y 10-6 144.4 200.4 781.2 193.1 251.9 176.9 200.0 212.6 300.7 584.3 187.9 355.5 1 468.2 251.5 205.3 225.2 93.6 239 241 La 200.9 293.9 438.0 314.5 232.4 230.4 295.3 297.2 313.6 377.2 268.4 392.8 970.1 257.2 264.8 261.3 199.5 352 347 Ce 1 344 728.4 746.8 702.4 1210 1169 918.4 822.4 2484 1 098 1 089 2 976 1 423 1 391 1 023 1 284 1 281 1 320 1 290 Pr 45.62 55.81 67.32 55.79 47.59 46.62 59.98 59.98 45.19 59.98 55.31 59.72 82.00 44.90 45.90 48.20 42.40 72 72.2 Nd 181.3 229.3 286.6 226.3 191.8 182.0 236.1 235.0 171.8 244.2 215.4 225.8 349.8 173.5 187.6 191.0 160.6 289 291 Sm 38.43 46.32 55.92 46.55 39.85 40.26 52.96 51.43 31.78 49.24 47.00 42.26 64.10 35.20 38.80 38.80 35.70 61 60.9 Eu 9.37 11.02 13.77 11.03 9.71 9.60 12.27 11.93 7.94 12.17 11.06 10.38 16.10 8.70 9.50 9.60 8.40 14 14.2 Gd 47.03 52.20 68.60 49.84 48.47 46.27 55.01 54.16 47.38 61.57 52.29 60.42 87.10 44.70 47.70 48.90 41.50 65 66.9 Tb 6.23 7.97 10.48 7.70 6.60 6.37 8.11 8.14 5.71 8.77 7.44 7.63 12.50 6.00 6.90 6.60 5.30 9.4 9.57 Dy 37.64 52.12 71.96 48.57 42.40 39.59 51.34 52.07 37.71 60.02 47.92 48.77 86.40 39.00 44.70 42.50 32.00 58 59.8 Ho 7.05 10.26 16.60 9.73 8.47 8.27 10.16 10.51 8.75 13.86 9.46 10.89 20.00 8.40 9.70 8.90 6.10 11.3 11.7 Er 19.91 30.36 51.61 27.65 24.96 23.45 27.99 28.72 26.29 41.36 27.13 31.75 60.80 24.90 27.40 25.70 16.60 32 32.6 Tm 2.98 4.45 7.43 4.10 3.67 3.36 4.28 4.21 3.96 6.03 4.01 4.79 8.40 3.70 4.20 3.80 2.30 4.4 4.78 Yb 18.45 28.19 48.96 25.92 22.91 22.50 27.90 28.34 26.59 39.77 26.87 30.23 58.10 25.00 26.90 24.90 16.10 31 30.6 Lu 2.75 4.21 7.95 3.94 3.52 3.41 4.11 4.27 4.21 6.60 3.83 4.58 9.40 3.90 4.20 3.90 2.40 4.5 4.47 ∑REY 2 106 1 755 2 673 1 727 2 144 2 008 1 964 1 881 3 516 2 663 2 053 4 262 4 716 2 317 1 946 2 224 1 944 表 3 磷酸盐与结壳二元混合模拟数据
Table 3 Virtual data of digital simulation mixing model between Cobalt-rich crust and phosphate
×10-6 元素 磷酸盐 结壳 4% 8% 15% 元素 磷酸盐 结壳 75% 50% 25% Y 7 000.0 134.1 408.7 683.3 1 164.0 Y 500.0 134.1 408.5 317.0 225.5 La 2 160.0 297.4 371.9 446.4 576.8 La 151.2 297.4 187.7 224.3 260.8 Ce 1 944.0 1 600.0 1 613.8 1 627.5 1 651.6 Ce 136.1 1 600.0 502.1 868.0 1 234.0 Pr 408.1 59.5 73.4 87.4 111.8 Pr 28.6 59.5 36.3 44.0 51.7 Nd 1 756.7 253.0 313.2 373.3 478.6 Nd 123.0 253.0 155.5 188.0 220.5 Sm 372.6 52.4 65.2 78.0 100.4 Sm 26.1 52.4 32.7 39.3 45.8 Eu 97.6 13.1 16.5 19.9 25.8 Eu 6.8 13.1 8.4 10.0 11.5 Gd 514.6 58.5 76.7 95.0 126.9 Gd 36.0 58.5 41.6 47.2 52.9 Tb 80.7 9.1 11.9 14.8 19.8 Tb 5.7 9.1 6.5 7.4 8.2 Dy 505.7 51.4 69.6 87.8 119.6 Dy 35.4 51.4 39.4 43.4 47.4 Ho 115.3 9.8 14.0 18.2 25.6 Ho 8.1 9.8 8.5 8.9 9.4 Er 328.3 28.2 40.2 52.2 73.2 Er 23.0 28.2 24.3 25.6 26.9 Tm 51.5 4.1 6.0 7.9 11.2 Tm 3.6 4.1 3.7 3.9 4.0 Yb 292.8 25.2 35.9 46.6 65.3 Yb 20.5 25.2 21.7 22.8 24.0 Lu 42.9 3.6 5.2 6.7 9.5 Lu 3.0 3.6 3.2 3.3 3.5 ∑REE 8 670.8 2 465.2 2 713.5 2 961.7 3 396.1 ∑REE 607.0 2 465.2 1 071.5 1 536.1 2 000.7 ∑REY 15 670.8 2 599.3 3 122.2 3 645.0 4 560.0 ∑REY 1 107.0 2 599.3 1 480.0 1 853.1 2 226.2 注:4%等表示二元模拟中磷酸盐组分的含量。 -
[1] Mcmurtry G M, Vonderhaar D L, Eisenhauer A, et al. Cenozoic accumulation history of a Pacific ferromanganese crust[J]. Earth and Planetary Science Letters, 1994, 125(1-4): 105-118. doi: 10.1016/0012-821X(94)90209-7
[2] Hein J R, Schwab W C, Davis A. Cobalt- and platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands[J]. Marine Geology, 1988, 78(3-4): 255-283. doi: 10.1016/0025-3227(88)90113-2
[3] Halbach P, Hebisch U, Scherhag C. Geochemical variations of ferromanganese nodules and crusts from different provinces of the Pacific Ocean and their genetic control[J]. Chemical Geology, 1981, 34(1-2): 3-17. doi: 10.1016/0009-2541(81)90067-X
[4] Halbach P, Segl M, Puteanus D, et al. Co-fluxes and growth-rates in ferromanganese deposits from Central Pacific seamount areas[J]. Nature, 1983, 304(5928): 716-719. doi: 10.1038/304716a0
[5] Bolton B R, Ostwald J, Monzier M. Precious metals in ferromanganese crusts from the southwest Pacific[J]. Nature, 1986, 320(6062): 518-520. doi: 10.1038/320518a0
[6] 刘永刚, 何高文, 姚会强, 等.世界海底富钴结壳资源分布特征[J].矿床地质, 2013, 32(6): 1275-1284. doi: 10.3969/j.issn.0258-7106.2013.06.013 LIU Yonggang, HE Gaowen, YAO Huiqiang, et al. Global distribution characteristics of seafloor cobalt-rich encrustation resources[J]. Mineral Deposits, 2013, 32(6): 1275-1284. doi: 10.3969/j.issn.0258-7106.2013.06.013
[7] 潘家华, 刘淑琴.西太平洋富钴结壳的分布、组分及元素地球化学[J].地球学报, 1999, 20(1): 47-54. doi: 10.3321/j.issn:1006-3021.1999.01.007 PAN jiahua, LIU Shuqin. Distribution, composition and element geochemistry of Co-rich crusts in the Western Pacific[J]. Acta Geoscientia Sinica, 1999, 20(1): 47-54. doi: 10.3321/j.issn:1006-3021.1999.01.007
[8] Koschinsky A, Hein J R. Uptake of elements from seawater by ferromanganese crusts: Solid-phase associations and seawater speciation[J]. Marine Geology, 2003, 198(3-4): 331-351. doi: 10.1016/S0025-3227(03)00122-1
[9] Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: Evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts[J]. Geochemical Journal, 2009, 43(1): 37-47. doi: 10.2343/geochemj.1.0005
[10] Jiang X J, Lin X H, Yao D, et al. Enrichment mechanisms of rare earth elements in marine hydrogenic ferromanganese crusts[J]. Science China-Earth Sciences, 2011, 54(2): 197-203. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ed201102004
[11] 任向文, 石学法, 朱爱美, 等.麦哲伦海山群MK海山富钴结壳稀土元素的赋存相态[J].吉林大学学报:地球科学版, 2011, 41(3): 707-714. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201103012 REN Xiangwen, SHI Xuefa, ZHU Aimei, et al. Existing phase of rare earth elements in Co-rich Fe-Mn crusts from seamount MK of Magellan Seamount Cluster[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(3): 707-714. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201103012
[12] Baturin G N, Yushina I G. Rare earth elements in phosphate-ferromanganese crusts on Pacific seamounts[J]. Lithology and Mineral Resources, 2007, 42(2): 101-117. doi: 10.1134/S0024490207020010
[13] 崔迎春, 石学法, 刘季花, 等.磷酸盐化作用对富钴结壳元素相关性的影响[J].地质科技情报, 2008, 27(3): 61-67. doi: 10.3969/j.issn.1000-7849.2008.03.009 CUI Yingchun, SHI Xuefa, LIU Jihua, et al. Effects of phosphatization on the elemental association of cobalt-rich crusts[J]. Geological Science and Technology Information. 2008, 27(3): 61-67. doi: 10.3969/j.issn.1000-7849.2008.03.009
[14] Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater[J]. Geochimica Et Cosmochimica Acta, 1996, 60(10): 1709-1725. doi: 10.1016/0016-7037(96)00063-4
[15] Baturin G, Dubinchuk V, Azarnova L, et al. Apatite and associated minerals in ferromanganese crusts from the Magellan Seamounts[J]. Oceanology, 2006, 46(6): 869-874. doi: 10.1134/S0001437006060129
[16] Jeong K S, Jung H S, Kang J K, et al. Formation of ferromanganese crusts on northwest intertropical Pacific seamounts: electron photomicrography and microprobe chemistry[J]. Marine Geology, 2000, 162(2-4): 541-559. doi: 10.1016/S0025-3227(99)00091-2
[17] Koschinsky A, Stascheit A, Bau M, et al. Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts[J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4079-4094. doi: 10.1016/S0016-7037(97)00231-7
[18] Hein J R, Yeh H W, Gunn S H, et al. Two major Cenozoic episodes of phosphogenes is records in equatorial Pacific Seamount deposits[J]. Paleoceanography, 1993, 8: 23-29. doi: 10.1029/92PA02527
[19] 武光海, 周怀阳, 凌洪飞, 等.富钴结壳中的磷酸盐岩及其古环境指示意义[J].矿物学报, 2005, 25(1): 39-44. doi: 10.3321/j.issn:1000-4734.2005.01.007 WU Guanghai, ZHOU Huaiyang, LING Hongfei, et al.Phosphorites in Co-rich crust and their palae ooceanorgaphic singificance[J]. Acta Mineralogica Sinica, 2005, 25(1): 39-44. doi: 10.3321/j.issn:1000-4734.2005.01.007
[20] 汪在聪, 李胜荣, 刘鑫, 等.中太平洋WX海山富钴结壳磷酸盐矿物学研究及成因类型分析[J].岩石矿物学杂志, 2007, 26(5): 441-448. doi: 10.3969/j.issn.1000-6524.2007.05.007 WANG Zaicong, LI Shengrong, LIU Xin. A mineralogical study and genetic analysis of phosphate in Co-rich crusts from the Central Pacific WX seamount [J]. Acta Petrologica et Mineralogica, 2007, 26(5): 441-448. doi: 10.3969/j.issn.1000-6524.2007.05.007
[21] 潘家华, 刘淑琴, 杨忆, 等.太平洋海山磷酸盐的锶同位素成分及形成年代[J].矿床地质, 2002, 21(4):350-355. doi: 10.3969/j.issn.0258-7106.2002.04.005 PAN Jiahua, LIU Shuqin, YANG Yi, et al., Sr isotopic compositions and age dating of marine phosphates from Paciific Seamounts[J]. Mineral Deposits, 2002, 21(4):350-355. doi: 10.3969/j.issn.0258-7106.2002.04.005
[22] 潘家华, 刘淑琴, 罗照华, 等.太平洋海山磷酸盐的产状、特征及成因意义[J].矿床地质, 2007, 26(2): 195-203. doi: 10.3969/j.issn.0258-7106.2007.02.006 PAN Jiahua, LIU Shuqin, LUO Zhaohua, et al. Modes of occurrence and characteristics of phosphorates on Pacific Guyots and their genetic significance[J]. Mineral Deposits, 2007, 26(2): 195-203. doi: 10.3969/j.issn.0258-7106.2007.02.006
[23] 潘家华, 刘淑琴, 杨忆, 等.西太平洋海山磷酸盐的常量微量和稀土元素地球化学研究[J].地质论评, 2002, 48(5): 534-541 doi: 10.3321/j.issn:0371-5736.2002.05.012 PAN Jiahua, LIU Shuqin, YANG Yi, et al. Research on geochemical characteristics of major, trace and rare-earth elements in phosphates from the West Pacific seamounts[J]. Geological Review, 2002, 48(5): 534-541. doi: 10.3321/j.issn:0371-5736.2002.05.012
[24] 潘家华, 刘淑琴, DeCarlo E.大洋磷酸盐化作用对富钴结壳元素富集的影响[J].地球学报, 2002, 23(5): 403-407. doi: 10.3321/j.issn:1006-3021.2002.05.003 PAN Jiahua, LIU Shuqin, DeCarlo E. The effects of marine phospharization on element concentration of cobalt rich crust[J]. Acta Geoscientia Sinica, 2002, 23(5): 403-407. doi: 10.3321/j.issn:1006-3021.2002.05.003
[25] Duliu O G, Alexe V, Moutte J, et al. Major and trace element distributions in manganese nodules and micronodules as well as abyssal clay from the Clarion-Clipperton abyssal plain, Northeast Pacific[J]. Geo-Marine Letters, 2009, 29(2): 71-83. doi: 10.1007/s00367-008-0123-5
[26] 王吉中.磷酸盐化对中太平洋海山富钴结壳物质组分的影响[D].北京: 中国地质大学, 2005. http://cdmd.cnki.com.cn/article/cdmd-11415-2005102558.htm WANG Jizhong. Effects of phosphatization on composition of Co-rich crusts crusts on Central Pacific seamounts[D]. China University of Geosciences: Beijing, 2005. http://cdmd.cnki.com.cn/article/cdmd-11415-2005102558.htm
[27] Pan J H, De Carlo E H, Yang Y, et al. Effect of phosphatization on element concentration of cobalt-rich ferromanganese crusts[J]. Acta Geologica Sinica-English Edition, 2005, 79(3): 349-355. doi: 10.1111/j.1755-6724.2005.tb00900.x
[28] Kon Y, Hoshino M, Sanematsu K, et al. Geochemical characteristics of apatite in heavy REE-rich deep-sea mud from Minami-Torishima area, Southeastern Japan[J]. Resource Geology, 2014, 64: 47-57. doi: 10.1111/rge.12026
[29] 任江波, 姚会强, 朱克超, 等.稀土元素和钇在东太平洋CC区深海泥中的富集特征及机制[J].地学前缘, 2015, 22(4): 200-211. http://www.cqvip.com/QK/98600X/201504/665043589.html REN Jiangbo, YAO Huiqiang, ZHU Kechao, et al. Enrichment mechanisms of rare earth elements and yttrium in deep-sea mud of Clarion-Clipperton Region[J]. Earth Science Frontiers(China University of Geosciences(Beijing)), 2015, 22(4): 200-211. http://www.cqvip.com/QK/98600X/201504/665043589.html
[30] Alibo D S, Nozaki Y. Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation[J]. Geochimica Et Cosmochimica Acta, 1999, 63(3-4): 363-372. doi: 10.1016/S0016-7037(98)00279-8
[31] 潘家华, Carlo E D, 刘淑琴, 等.西太平洋富钴结壳生长与富集特征[J].地质学报, 2005, 79(1): 124-132. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200501014 PAN Jiahua, Carlo E D, LIU Shuqin, et al. Growth and enrichment characteristics of Co-rich crusts in the Western Pacific[J].Acta Geologica Sinica, 2005, 79(1): 124-132. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200501014
[32] 潘家华, 张静, 刘淑琴, 等.西北太平洋富钴结壳的钙质超微化石地层学研究及意义[J].地球学报, 2007, 28(5):411-417. doi: 10.3321/j.issn:1006-3021.2007.05.001 PAN Jiahua, ZHANG Jing, LIU Shuqin, et al.Calcareous nannofossil biostratigraphy of Co-rich crusts from Northwestern Pacific and its significance[J]. Acta Geoscientica Sinica, 2007, 28(5):411-417. doi: 10.3321/j.issn:1006-3021.2007.05.001
[33] 何高文, 孙晓明, 杨胜雄, 等.太平洋多金属结核和富钴结壳稀土元素地球化学对比及其地质意义[J].中国地质, 2011, 38(2): 462-472. doi: 10.3969/j.issn.1000-3657.2011.02.020 HE Gaowen, SUN Xiaoming, YANG Shengxiong, et al. A comparison of REE geochemistry between polymetallic nodules and cobaltrich crusts in the Pacific Ocean[J]. Geology in China, 2011, 38(2): 462-472. doi: 10.3969/j.issn.1000-3657.2011.02.020
[34] Hein J R, Conrad T, Frank M, et al. Copper-nickel-rich, amalgamated ferromanganese crust-nodule deposits from Shatsky Rise, NW Pacific[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(10): 1-23.
[35] 任江波, 姚会强, 朱克超, 等.西太平洋海山区富钴结壳的稀土元素特征及其意义[J].地质论评, 2013, 59(S): 1248-1249. http://d.old.wanfangdata.com.cn/Conference/8101661 REN Jiangbo, YAO Huiqiang, ZHU Kechao, et al. The characteristics of rare erath elements and its significance of Co-rich crusts from Western Pacific seamounts[J]. Geological Review, 2013, 59(S): 1248-1249. http://d.old.wanfangdata.com.cn/Conference/8101661
[36] Klemm V, Levasseur S, Frank M, et al. Osmium isotope stratigraphy of a marine ferromanganese crust[J]. Earth and Planetary Science Letters, 2005, 238(1-2): 42-48. doi: 10.1016/j.epsl.2005.07.016
[37] 潘家华, 刘淑琴, 钟石兰.西太平洋富钴结壳形成年代的探讨[J].地质论评, 2002, 48(5), 463-467. doi: 10.3321/j.issn:0371-5736.2002.05.003 PAN Jiahua, LIU Shuqin, ZHONG Shilan, et al. Rasearch on the age of cobalt-rich crusts in Western Pacific[J]. Geological Review, 2002, 48(5): 463-467. doi: 10.3321/j.issn:0371-5736.2002.05.003
[38] 何高文, 邓希光, 杨胜雄.中印度洋海盆多金属结核地质特征[J].海洋地质与第四纪地质, 2011, 31(2): 21-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201102003 HE Gaowen, DENG Xiguang, YANG Shengxiong. Geological characteristics of polymetallic nodules ain the central Indian Ocean [J]. Marine Geogogy and Quaternary Geology, 2011, 31(2): 21-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201102003
[39] 刘新波.太平洋中部多金属结核矿物地球化学研究[D].青岛: 中国海洋大学, 2005. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y829277 LIU Xinbo. Study on mineralogy and geochemitry of polymetallic nodules from the Central and Eastern Pacific Ocean[D].Ocean University of China, 2005. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y829277
[40] Lécuyera C, Reynardb B, Grandjean P. Rare earth element evolution of Phanerozoic seawater recorded in biogenic apatites[J]. Chemical Geology, 2004, 204(1-2): 63-102. doi: 10.1016/j.chemgeo.2003.11.003
[41] Shields G A, Webb G E. Has the REE composition of seawater changed over geological time[J]. Chemical Geology, 2004, 204(1-2): 103-107. doi: 10.1016/j.chemgeo.2003.09.010
[42] Gromet L P, Dymer R F, Haskin L A, et al. The "north American shale composition": Its complication, major and trace element characteristics[J]. Geochimica et Cosmochimica Acta, 1984, 48: 2469-2482. doi: 10.1016/0016-7037(84)90298-9
[43] Toyoda K, Tokonami M. Diffusion of rare-earth elements in fish teeth from deep-sea sediments[J]. Nature, 1990, 345: 607-609. doi: 10.1038/345607a0
[44] Paytan A, McLaughlin K. The oceanic phosphorus cycle[J]. Chemical Reviews, 2007, 107(2): 563-576. doi: 10.1021/cr0503613
[45] Elderfield H, Greaves M J. The rare earth elements in seawater[J]. Nature, 1982, 296: 214-219. doi: 10.1038/296214a0
[46] Byrne R H, Kim K H. Rare earth precipitation and coprecipitation behavior: The imiting role of PO43-: On dissolved rare earth concentrations in seawater[J]. Geochemica et Cosmochemica Acta, 1993, 57: 519-526. doi: 10.1016/0016-7037(93)90364-3
[47] Jones E J W, BouDagher-Fadel M K, Thirlwall M F. An investigation of seamount phosphorites in the Eastern Equatorial Atlantic[J]. Marine Geology, 2002, 183(1-4): 143-162. doi: 10.1016/S0025-3227(01)00254-7
[48] 潘家华, 刘淑琴, 杨忆, 等.太平洋水下海山磷酸盐的成因及形成环境[J].地球学报, 2004, 25(4):453-458. doi: 10.3321/j.issn:1006-3021.2004.04.011 PAN Jia-hua, LIU Shuqin, YANG Yi, et al., The origin and formation environment of phosphates on submarine guyots of the Pacific Ocean[J]. Acta Geoscientica Sinica, 2004, 25(4):453-458. doi: 10.3321/j.issn:1006-3021.2004.04.011
[49] Toyoda K, Nakamura Y, Masuda A. Rare earth elements of Pacific pelagic sediments[J]. Geochimica et Cosmochimica Acta, 1990, 54(4): 1093-1103. doi: 10.1016/0016-7037(90)90441-M
[50] Liu J, Shi X, Chen L, et al. REEs and εNd of clay fractions in sediments from the eastern Pacific Ocean - Evidences for clay sources[J]. Science China-Earth Sciences, 2004, 33(6): 552-561. http://www.cnki.com.cn/Article/CJFDTotal-JDXG200505009.htm
-
期刊类型引用(9)
1. 陈馨,张国良. 西菲律宾海乌尔达内塔洋底高原火山岩地球化学和地幔源区特征. 热带海洋学报. 2024(04): 42-56 . 百度学术
2. Jingjing Gao,Jihua Liu,Hui Zhang,Shijuan Yan,Xiangwen Ren,Quanshu Yan. The occurrence phases and enrichment mechanism of rare earth elements in cobalt-rich crusts from Marcus-Wake Seamounts. Acta Oceanologica Sinica. 2024(08): 58-68 . 必应学术
3. 杨燕子,陈华勇. 大洋富钴结壳研究进展及展望. 大地构造与成矿学. 2023(01): 80-97 . 百度学术
4. 高晶晶,刘季花,张辉,闫仕娟,汪虹敏,崔菁菁,何连花. 西太平洋采薇海山和徐福海山富钴结壳稀土元素地球化学特征及来源. 海洋地质与第四纪地质. 2022(03): 87-99 . 本站查看
5. 任江波,邓义楠,赖佩欣,何高文,王汾连,姚会强,邓希光,刘永刚. 太平洋调查区多金属结核的地球化学特征和成因. 地学前缘. 2021(02): 412-425 . 百度学术
6. 邓贤泽,任江波,邓希光,何高文,杨胜雄. 富钴结壳关键元素赋存状态与富集机理. 地质通报. 2021(Z1): 376-384 . 百度学术
7. 侯晓帆,王珍岩,李文建,刘凯,王青. 西太平洋卡罗琳洋脊CM4海山铁锰结壳矿物学和地球化学特征. 海洋与湖沼. 2020(05): 1118-1126 . 百度学术
8. 任江波,邓希光,邓义楠,何高文,王汾连,姚会强. 中国富钴结壳合同区海水的稀土元素特征及其意义. 地球科学. 2019(10): 3529-3540 . 百度学术
9. 任江波,何高文,朱克超,邓希光,刘纪勇,傅飘儿,姚会强,杨胜雄,孙卫东. 富稀土磷酸盐及其在深海成矿作用中的贡献. 地质学报. 2017(06): 1312-1325 . 百度学术
其他类型引用(3)