留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南极半岛Bransfield海峡6 kaBP以来的古气候变化及其对ENSO的响应

聂森艳 肖文申 王汝建

聂森艳, 肖文申, 王汝建. 南极半岛Bransfield海峡6 kaBP以来的古气候变化及其对ENSO的响应[J]. 海洋地质与第四纪地质, 2015, 35(3): 157-166. doi: 10.3724/SP.J.1140.2015.03157
引用本文: 聂森艳, 肖文申, 王汝建. 南极半岛Bransfield海峡6 kaBP以来的古气候变化及其对ENSO的响应[J]. 海洋地质与第四纪地质, 2015, 35(3): 157-166. doi: 10.3724/SP.J.1140.2015.03157
NIE Senyan, XIAO Wenshen, WANG Rujian. PALAEOCLIMATIC CHANGES OF THE BRANSFIELD STRAIT, ANTARCTIC PENINSULA SINCE 6 kaBP, AND THE TELE-CONNECTION WITH ENSO[J]. Marine Geology & Quaternary Geology, 2015, 35(3): 157-166. doi: 10.3724/SP.J.1140.2015.03157
Citation: NIE Senyan, XIAO Wenshen, WANG Rujian. PALAEOCLIMATIC CHANGES OF THE BRANSFIELD STRAIT, ANTARCTIC PENINSULA SINCE 6 kaBP, AND THE TELE-CONNECTION WITH ENSO[J]. Marine Geology & Quaternary Geology, 2015, 35(3): 157-166. doi: 10.3724/SP.J.1140.2015.03157

南极半岛Bransfield海峡6 kaBP以来的古气候变化及其对ENSO的响应


doi: 10.3724/SP.J.1140.2015.03157
详细信息
    作者简介:

    聂森艳(1990-),女,硕士,主要从事海洋地质学、古环境研究,E-mail:nsy216good@163.com

  • 基金项目:

    南北极环境综合考察与评估专项项目(CHINARE2014-01-02,CHINARE2014-04-01)

    中国地质调查局地质调查工作项目(水[2015]02-015-012)

  • 中图分类号: P736.2

PALAEOCLIMATIC CHANGES OF THE BRANSFIELD STRAIT, ANTARCTIC PENINSULA SINCE 6 kaBP, AND THE TELE-CONNECTION WITH ENSO

More Information
  • 摘要: 南极半岛是对全球变暖最敏感的区域之一,研究其全新世以来的气候变化有助于我们理解南大洋高纬地区的气候变化规律。通过中国第28次南极科学考察在南极半岛Bransfield海峡采集的D1-7岩心样品火山灰丰度统计、粗颗粒组分、粒度组分、硅藻海冰种等研究,重建了该岩心5.83 ka以来的古海洋与古气候变化。该岩心可识别出13个火山灰层,其主要来源于Deception岛,并与附近的火山灰记录有很好的对应关系。该区域粗颗粒组分和粒度组分指示了9次IRD事件(IRD 1-9,年龄分别为0.84、0.97、1.18、1.89、2.05、2.25、2.45、4.46和5.09 ka),在晚全新世,尤其是2.5 ka以来,频繁出现的IRD事件响应于ENSO活动的强弱,ENSO活动显著增强时,向南极半岛输送的水汽增多,进而使得南极半岛冰川不稳定性增加,融化速度加快,冰川的排泄增加。晚全新世3.5 ka以来,硅藻海冰种含量显著增多,指示海冰扩张;同时,分选级粉砂平均粒径的减小指示底流的减弱,反映了晚全新世以来南极半岛区域气候变冷,西风带北移。
  • [1] Mulvaney R, Abram N J, Hindmarsh R C, et al. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history[J]. Nature, 2012, 489(7414):141-144.
    [2] Steig E J, Schneider D P, Rutherford S D, et al. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year[J]. Nature, 2009, 457(7228):459-462.
    [3] Steig E J, Orsi A J. Climate Science:The heat is on in Antarctica[J]. Nature Geoscience, 2013, 6(2):87-88.
    [4] Steig E J. Climate change:Brief but warm Antarctic summer[J]. Nature, 2012, 489(7414):39-40.
    [5] Luis A J. Past, Present and Future Climate of Antarctica[J]. International Journal of Geosciences, 2013, 4(6):959-977.
    [6] Domack E, Duran D, Leventer A, et al. Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch[J]. Nature, 2005, 436(7051):681-685.
    [7] Masson V, Vimeux F, Jouzel J, et al. Holocene Climate Variability in Antarctica Based on 11 Ice-Core Isotopic Records[J]. Quaternary Research, 2000, 54(3):348-358.
    [8] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399(6735):429-436.
    [9] Monnin E, Indermuhle A, Dallenbach A, et al. Atmospheric CO2 concentrations over the last glacial termination[J]. Science, 2001, 291(5501):112-114.
    [10] Wolff E W, Fischer H, Fundel F, et al. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles[J]. Nature, 2006, 440(7083):491-496.
    [11] Barker S, Diz P, Vautravers M J, et al. Interhemispheric Atlantic seesaw response during the last deglaciation[J]. Nature, 2009, 457(7233):1097-1102.
    [12] Barbante C, Barnola J-M, Becagli S, et al. One-to-one coupling of glacial climate variability in Greenland and Antarctica[J]. Nature, 2006, 444(7116):195-198.
    [13] Pike J, Swann G E A, Leng M J, et al. Glacial discharge along the west Antarctic Peninsula during the Holocene[J]. Nature Geoscience, 2013, 6(3):199-202.
    [14] Domack E, Leventer A, Dunbar R, et al. Chronology of the Palmer Deep site, Antarctic Peninsula:a Holocene palaeoenvironmental reference for the circum-Antarctic[J]. The Holocene, 2001, 11(1):1-9.
    [15] Etourneau J, Collins L G, Willmott V, et al. Holocene climate variations in the western Antarctic Peninsula:evidence for sea ice extent predominantly controlled by changes in insolation and ENSO variability[J]. Climate of the Past, 2013, 9(4):1431-1446.
    [16] Diekmann B, Kuhn G, Rachold V, et al. Terrigenous sediment supply in the ScotiaSea (Southern Ocean):response to Late Quaternary ice dynamics in Patagonia and on the Antarctic Peninsula[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 162(3):357-387.
    [17] Esper O, Gersonde R. New tools for the reconstruction of Pleistocene Antarctic sea ice[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399(0):260-283.
    [18] Esper O, Gersonde R. Quaternary surface water temperature estimations:New diatom transfer functions for the Southern Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 414:1-19.
    [19] Esper O, Gersonde R, Kadagies N. Diatom distribution in southeastern Pacific surface sediments and their relationship to modern environmental variables[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 287(1-4):1-27.
    [20] Crosta X, Romero O, Armand L K, et al. The biogeography of major diatom taxa in Southern Ocean sediments:2. Open ocean related species[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 223(1-2):66-92.
    [21] Armand L K, Crosta X, Romero O, et al. The biogeography of major diatom taxa in Southern Ocean sediments:1. Sea ice related species[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 223(1-2):93-126.
    [22] Zielinski U, Gersonde R. Diatom distribution in Southern Ocean surface sediments (Atlantic sector):Implications for paleoenvironmental reconstructions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 129(3-4):213-250.
    [23] Gersonde R, ZielinskiU. The reconstruction of late Quaternary Antarctic sea-ice distribution-the use of diatoms as a proxy for sea-ice[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 162(3-4):263-286.
    [24] McCave I N, Crowhurst S J, Kuhn G, et al. Minimal change in Antarctic Circumpolar Current flow speed between the last glacial and Holocene[J]. Nature Geoscience, 2013, 7(2):113-116.
    [25] McCave I N, Hall I R. Size sorting in marine muds:Processes, pitfalls, and prospects for paleoflow-speed proxies[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(10), Q10N05, doi:10.1029/2006GC001284.
    [26] McCave I, Manighetti B, Robinson S. Sortable silt and fine sediment size/composition slicing:parameters for palaeocurrent speed and palaeoceanography[J]. Paleoceanography, 1995, 10(3):593-610.
    [27] Belkin I M, Gordon A L. Southern Ocean Fronts from the Greenwich meridian to Tasmania[J]. Journal of Geophysical Research, 1996, 101(C2):3675-3696.
    [28] Orsi A H, Whitworth T, Nowlin W D. On the meridional extent and fronts of the Antarctic Circumpolar Current[J]. Deep-Sea Research I, 1995, 42(5):641-673.
    [29] Toggweiler J. Shifting westerlies[J]. Science, 2009, 323(5920):1434-1435.
    [30] Orsi A H, Nowlin Jr W D, Whitworth Ⅲ T. On the circulation and stratification of the Weddell Gyre[J]. Deep Sea Research Part I:Oceanographic Research Papers, 1993, 40(1):169-203.
    [31] Schodlok M, Hellmer H, Rohardt G, et al. Weddell Sea iceberg drift:Five years of observations[J]. Journal of Geophysical Research:Oceans, 2006,1978-2012:111(C6).
    [32] Anderson J B, Andrews J T. Radiocarbon constraints on ice sheet advance and retreat in the Weddell Sea, Antarctica[J]. Geology, 1999, 27(2):179-182.
    [33] Comiso J C, Cavalieri D J, MarkusT.Sea ice concentration, ice temperature, and snow depth using AMSR-E data[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2003, 41(2):243-252.
    [34] Weber M E, Clark P U, Kuhn G, et al. Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation[J]. Nature, 2014, 510(7503):134-138.
    [35] ó Cofaigh C, Davies B J, Livingstone S J, et al. Reconstruction of ice-sheet changes in the Antarctic Peninsula since the Last Glacial Maximum[J]. Quaternary Science Reviews, 2014, 100:87-110.
    [36] Toro M, Granados I, Pla S, et al. Chronostratigraphy of the sedimentary record of LimnopolarLake, ByersPeninsula, LivingstonIsland, Antarctica[J]. Antarctic Science, 2013, 25(2):198-212.
    [37] Willmott V, Domack E W, Canals M, et al. A high resolution relative paleointensity record from the Gerlache-Boyd paleo-ice stream region, northern Antarctic Peninsula[J]. Quaternary Research, 2006, 66(1):1-11.
    [38] Smellie J L. The upper Cenozoic tephra record in the south polar region:a review[J]. Global and Planetary Change, 1999, 21(1):51-70.
    [39] Björck S, Sandgren P, Zale R. Late Holocene tephrochronology of the northern Antarctic Peninsula[J]. Quaternary Research, 1991, 36:322-328.
    [40] Denis D, Crosta X, Schmidt S, et al. Holocene glacier and deep water dynamics, Adélie Land region, East Antarctica[J]. Quaternary Science Reviews, 2009, 28(13-14):1291-1303.
    [41] Cefarelli A O, Ferrario M E, Almandoz G O, et al. Diversity of the diatom genus Fragilariopsis in the ArgentineSea and Antarctic waters:morphology, distribution and abundance[J]. Polar Biology, 2010, 33(11):1463-1484.
    [42] Geary L E. Holocene diatoms recovered from SHALDRIL Cores,MaxwellBay, Antarctica:[D]. Berkeley:FloridaStateUniversity, 2007.
    [43] Almandoz G O, Ferreyra G A, Schloss I R, et al. Distribution and ecology of Pseudo-nitzschia species (Bacillariophyceae) in surface waters of the Weddell Sea (Antarctica)[J]. Polar Biology, 2007, 31(4):429-442.
    [44] Zielinski U, Gersonde R. Plio-Pleistocene diatom biostratigraphy from ODP Leg 177, Atlantic sector of the Southern Ocean[J]. Marine Micropaleontology, 2002, 45(3):225-268.
    [45] Armand L K, Zielinski U. Diatom species of the genus Rhizosolenia from Southern Ocean sediments:Distribution and taxonomic notes[J]. Diatom Research, 2001, 16(2):259-294.
    [46] Iwai M, Winter D. Data Report:Taxonomic Notes of Neogene Diatoms from the Western Antarctic Peninsula:Ocean Drilling Program Leg 178[C]//Procceeding of the Ocean Drilling Program, Scientific Results Volume 178. College StationTX:Texaa A&M University, 2002:1-57.
    [47] Diekmann B. Sedimentary patterns in the late Quaternary Southern Ocean[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2007, 54(21-22):2350-2366.
    [48] Heroy D C, Sjunneskog C, Anderson J B. Holocene climate change in the BransfieldBasin, Antarctic Peninsula:evidence from sediment and diatom analysis[J]. Antarctic Science, 2008, 20(1):69-87.
    [49] 聂森艳, 王汝建, 肖文申. 南极半岛Bransfield海峡6000年以来的陆源组分记录及其古环境意义[J]. 第四纪研究, 2014, 34(3):590-599.

    [NIE Senyan, WANG Rujian, XIAO Wenshen. A 6000-year record of terrigeneous components from the BransfieldStrait, Antarctic Peninsula:responses to climate change[J]. Quaternary Science, 2014, 34(3):590-599.]
    [50] Stuiver M, Reimer P J. Extended 14C database and revised CALIB radiocarbon calibration program[J]. Radiocarbon, 1993, 35:215-230.
    [51] Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal.BP[J]. Radiocarbon, 2013, 55(4):1869-1887.
    [52] Gordon J E, Harkness D D. Magnitude and geographic variation of the radiocarbon content in Antarctic marine life-Implications for reservoir corrections in radiocarbon dating[J]. Quaternary Science Reviews, 1992, 11(7):697-708.
    [53] Berkman P A, Forman S L. Pre-Bomb Radiocarbon and the Reservoir Correction for Calcareous Marine Species in the Southern Ocean[J]. Geophysical Research Letter, 1996, 23(4):363-366.
    [54] Leventer A, Domack E, Barkoukis A, et al. Laminations from the Palmer Deep:A diatom-based interpretation[J]. Paleoceanography, 2002, 17(3):PAL 3-1-PAL 3-15.
    [55] Taylor F, Sjunneskog C. Postglacial marine diatom record of the Palmer Deep, Antarctic Peninsula (ODP Leg 178, Site 1098) 2. Diatom assemblages[J]. Paleoceanography, 2002, 17(3):PAL 2-1-PAL 2-12.
    [56] Conroy J L, Overpeck J T, Cole J E. El Niño/Southern Oscillation and changes in the zonal gradient of tropical Pacific sea surface temperature over the last 1.2 ka[J]. Pages News, 2010, 18(1):32-33.
    [57] Conroy J L, Overpeck J T, Cole J E, et al. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record[J]. Quaternary Science Reviews, 2008, 27(11):1166-1180.
    [58] Voigt I, Chiessi C M, Prange M, et al. Holocene shifts of the Southern Westerlies across the South Atlantic[J]. Paleoceanography, 2015.
    [59] Lamy F, Kilian R, Arz H W, et al. Holocene changes in the position and intensity of the southern westerly wind belt[J]. Nature Geoscience, 2010, 3(10):695-699.
  • [1] 郭景腾, 熊志方, 李铁刚.  晚第四纪热带西太平洋海气CO2交换影响因素 . 海洋地质与第四纪地质, 2023, 43(4): 48-55. doi: 10.16562/j.cnki.0256-1492.2023071601
    [2] 王彤, 胡艺豪, 贾奇, 郭景腾, 唐正, 熊志方, 李铁刚.  MIS 5期以来南极威德尔海生产力演化及其古海洋意义 . 海洋地质与第四纪地质, 2023, 43(3): 144-156. doi: 10.16562/j.cnki.0256-1492.2022112302
    [3] 龙飞江, 向波, 王逸卓, 张泳聪, 胡良明, 孙曦, 陆正元, 武文栋, 葛倩, 边叶萍, 韩喜彬.  南极罗斯海末次冰盛期以来的古生产力变迁 . 海洋地质与第四纪地质, 2023, 43(): 1-12. doi: 10.16562/j.cnki.0256-1492.2022111601
    [4] 唐怀能, 王永红, 黄清辉.  南极菲尔德斯半岛西海岸海滩沉积物环境磁学特征及其控制因素 . 海洋地质与第四纪地质, 2021, 41(4): 1-12. doi: 10.16562/j.cnki.0256-1492.2020092001
    [5] 王照波, 白伟明, 李宝杰.  山东中部典型冰川岩溶的发现及气候意义 . 海洋地质与第四纪地质, 2021, 41(2): 201-209. doi: 10.16562/j.cnki.0256-1492.2020071601
    [6] 文汉锋, 赵楠钰, 刘成程, 周鹏超, 王国桢, 晏宏.  西太平洋帕劳砗磲高分辨率氧同位素记录及其指示的气候环境变化 . 海洋地质与第四纪地质, 2021, 41(1): 1-13. doi: 10.16562/j.cnki.0256-1492.2020101101
    [7] 王星星, 蔡峰, 吴能友, 李清, 孙治雷, 吴林强.  海山对深水底流沉积过程及演化的影响研究进展 . 海洋地质与第四纪地质, 2020, 40(5): 68-78. doi: 10.16562/j.cnki.0256-1492.2019111101
    [8] 杨木壮, 何韵.  南极半岛西侧别林斯高晋海陆缘含水合物系统及资源潜力 . 海洋地质与第四纪地质, 2019, 39(4): 136-147. doi: 10.16562/j.cnki.0256-1492.2018111202
    [9] 郝伟杰, 肖晓彤, 赵美训.  生物标志物IP25在北极海冰变化重建中的研究进展 . 海洋地质与第四纪地质, 2019, 39(4): 56-65. doi: 10.16562/j.cnki.0256-1492.2018041801
    [10] 黄梦雪, 王汝建, 肖文申, 武力, 陈志华.  罗斯海西北陆架(JOIDES海槽)末次冰期以来冰架消融过程及水动力变化 . 海洋地质与第四纪地质, 2016, 36(5): 97-108. doi: 10.16562/j.cnki.0256-1492.2016.05.010
    [11] 刘锐, 张威.  日本山地冰期特征对我国东部“低海拔型”山地冰川的启示 . 海洋地质与第四纪地质, 2016, 36(2): 167-171. doi: 10.16562/j.cnki.0256-1492.2016.02.019
    [12] 刘合林, 陈志华, 葛淑兰, 肖文申, 王豪壮, 唐正, 黄元辉, 赵仁杰, 武力.  晚第四纪普里兹湾北部陆坡岩心沉积学记录及古海洋学意义 . 海洋地质与第四纪地质, 2015, 35(3): 209-217. doi: 10.3724/SP.J.1140.2015.03209
    [13] 陈志华, 黄元辉, 唐正, 王豪壮, 葛淑兰, 方习生, 韩喜彬, 王爱军, 武力, 朱志敏.  南极半岛东北部海域表层沉积物稀土元素特征及物源指示意义 . 海洋地质与第四纪地质, 2015, 35(3): 145-155. doi: 10.3724/SP.J.1140.2015.03145
    [14] 庞晓雷, 丁旋.  东帝汶海30 ka以来的表层水和温跃层水温度变化及其古海洋学意义 . 海洋地质与第四纪地质, 2015, 35(2): 117-124. doi: 10.3724/SP.J.1140.2015.02117
    [15] 崔航, 王杰.  基于冰川平衡线高度变化的气候重建模型研究 . 海洋地质与第四纪地质, 2013, 33(4): 17-24. doi: 10.3724/SP.J.1140.2013.04017
    [16] 石学法, 邹建军, 王昆山.  鄂霍次克海晚第四纪以来古环境演化 . 海洋地质与第四纪地质, 2011, 31(6): 1-12. doi: 10.3724/SP.J.1140.2011.06001
    [17] 薛春汀, 张勇.  中国近岸海区沿岸流和海岸流对沉积物的搬运 . 海洋地质与第四纪地质, 2010, 30(1): 1-7. doi: 10.3724/SP.J.1140.2010.01001
    [18] 石正国, 刘晓东, 程肖侠.  东亚季风和南亚季风的反相位关系及其与ENSO的联系:年际尺度和轨道尺度 . 海洋地质与第四纪地质, 2009, 29(5): 83-88. doi: 10.3724/SP.J.1140.2009.05083
    [19] 龙海燕, 庄振业, 刘升发, 吕海青, 叶银灿, 杜文博.  扬子浅滩沙波底形活动性评估 . 海洋地质与第四纪地质, 2007, 27(6): 17-24.
    [20] 史江峰, 刘禹, 蔡秋芳, 孙军艳, 易亮.  贺兰山过去196年降水的树轮宽度重建及降水变率 . 海洋地质与第四纪地质, 2007, 27(1): 95-100.
  • 加载中
计量
  • 文章访问数:  1842
  • HTML全文浏览量:  300
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-15
  • 修回日期:  2015-04-27

南极半岛Bransfield海峡6 kaBP以来的古气候变化及其对ENSO的响应

doi: 10.3724/SP.J.1140.2015.03157
    作者简介:

    聂森艳(1990-),女,硕士,主要从事海洋地质学、古环境研究,E-mail:nsy216good@163.com

基金项目:

南北极环境综合考察与评估专项项目(CHINARE2014-01-02,CHINARE2014-04-01)

中国地质调查局地质调查工作项目(水[2015]02-015-012)

  • 中图分类号: P736.2

摘要: 南极半岛是对全球变暖最敏感的区域之一,研究其全新世以来的气候变化有助于我们理解南大洋高纬地区的气候变化规律。通过中国第28次南极科学考察在南极半岛Bransfield海峡采集的D1-7岩心样品火山灰丰度统计、粗颗粒组分、粒度组分、硅藻海冰种等研究,重建了该岩心5.83 ka以来的古海洋与古气候变化。该岩心可识别出13个火山灰层,其主要来源于Deception岛,并与附近的火山灰记录有很好的对应关系。该区域粗颗粒组分和粒度组分指示了9次IRD事件(IRD 1-9,年龄分别为0.84、0.97、1.18、1.89、2.05、2.25、2.45、4.46和5.09 ka),在晚全新世,尤其是2.5 ka以来,频繁出现的IRD事件响应于ENSO活动的强弱,ENSO活动显著增强时,向南极半岛输送的水汽增多,进而使得南极半岛冰川不稳定性增加,融化速度加快,冰川的排泄增加。晚全新世3.5 ka以来,硅藻海冰种含量显著增多,指示海冰扩张;同时,分选级粉砂平均粒径的减小指示底流的减弱,反映了晚全新世以来南极半岛区域气候变冷,西风带北移。

English Abstract

参考文献 (59)

目录

    /

    返回文章
    返回