留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东帝汶海30 ka以来的表层水和温跃层水温度变化及其古海洋学意义

庞晓雷 丁旋

庞晓雷, 丁旋. 东帝汶海30 ka以来的表层水和温跃层水温度变化及其古海洋学意义[J]. 海洋地质与第四纪地质, 2015, 35(2): 117-124. doi: 10.3724/SP.J.1140.2015.02117
引用本文: 庞晓雷, 丁旋. 东帝汶海30 ka以来的表层水和温跃层水温度变化及其古海洋学意义[J]. 海洋地质与第四纪地质, 2015, 35(2): 117-124. doi: 10.3724/SP.J.1140.2015.02117
PANG Xiaolei, DING Xuan. VARIATION IN SURFACE AND THERMOCLINE TEMPERATURE OF THE EASTERN TIMOR SEA FOR THE LAST 30 KA AND ITS PALEOCEANOGRAPHIC IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2015, 35(2): 117-124. doi: 10.3724/SP.J.1140.2015.02117
Citation: PANG Xiaolei, DING Xuan. VARIATION IN SURFACE AND THERMOCLINE TEMPERATURE OF THE EASTERN TIMOR SEA FOR THE LAST 30 KA AND ITS PALEOCEANOGRAPHIC IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2015, 35(2): 117-124. doi: 10.3724/SP.J.1140.2015.02117

东帝汶海30 ka以来的表层水和温跃层水温度变化及其古海洋学意义


doi: 10.3724/SP.J.1140.2015.02117
详细信息
    作者简介:

    庞晓雷(1989-),男,硕士生,主要从事古海洋学与古气候学研究,E-mail:xiaoleipang@126.com

  • 基金项目:

    "全球变化与海汽相互作用"专项(GASI-03-04-01-03)

    国家自然科学基金项目(41376056)

  • 中图分类号: P736.22

VARIATION IN SURFACE AND THERMOCLINE TEMPERATURE OF THE EASTERN TIMOR SEA FOR THE LAST 30 KA AND ITS PALEOCEANOGRAPHIC IMPLICATIONS

More Information
  • 摘要: 研究了钻取于东帝汶海印尼穿越流出口处MD98-2172岩心沉积物,分析了浮游有孔虫表层水种Globigerinoides ruber和温跃层水种Pulleniatina obliquiloculata的Mg/Ca值,重建了30 kaBP以来东帝汶海区的表层水温度和温跃层水温度。结果显示东帝汶海区末次冰盛期以来表层水温度距早全新世的最大温差约为4.2℃;冰消期间表层水温度有两次显著的降温事件,可分别与新仙女木事件和海因里希事件1对应;约15 kaBP以来帝汶海表层水温度与南极大气温度记录同相位变化,说明热带海区与高纬度地区气候变化有着紧密联系。末次冰盛期以来温跃层水温度距早全新世的最大温差约为4℃;全新世温跃层水温度呈现出波动降低的过程,最大降温幅度约3℃;表层水温度和次表层水温度差值在全新世逐渐增加,指示了温跃层深度的持续变浅,这一变化可能与海平面上升、季风活动和厄尔尼诺-南方涛动事件影响的印度尼西亚穿越流次表层流增强有关。
  • [1] Oppo D W, Rosenthal Y. The Great Indo-Pacific Communicator[J]. Science, 2010, 328(5985):1492-1494.
    [2] Gordon A L, Sprintall J, Van Aken H M, et al. The Indonesian throughflow during 2004-2006 as observed by the INSTANT program[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2):115-128.
    [3] Sprintall J, Wijffels S E, Molcard R, et al. Direct estimates of the Indonesian Throughflow entering the Indian Ocean:2004-2006[J]. Journal of Geophysical Research-Oceans, 2009, 114:19.
    [4] Linsley B K, Rosenthal Y, Oppo D W. Holocene evolution of the Indonesian throughflow and the western Pacific warm pool[J]. Nature Geoscience, 2010, 3(8):578-583.
    [5] Gordon A L, Susanto R D, Vranes K. Cool Indonesian throughflow as a consequence of restricted surface layer flow[J]. Nature, 2003, 425(6960):824-828.
    [6] Gordon A L, Huber B A, Metzger E J, et al. South China Sea throughflow impact on the Indonesian throughflow[J]. Geophysical Research Letters, 2012, 39:7.
    [7] Wang B, Liu J, Kim H J, et al. Recent change of the global monsoon precipitation (1979-2008)[J]. Climate Dynamics, 2012, 39(5):1123-1135.
    [8] Gagan M K, Hendy E J, Haberle S G, et al. Post-glacial evolution of the Indo-Pacific Warm Pool and El Nino-Southern Oscillation[J]. Quaternary International, 2004, 118:127-143.
    [9] Ding X, Bassinot F, Guichard F, et al. Indonesian Throughflow and monsoon activity records in the Timor Sea since the last glacial maximum[J]. Marine Micropaleontology, 2013, 101:115-126.
    [10] Lea D W, Pak D K, Spero H J. Climate impact of late quaternary equatorial Pacific sea surface temperature variations[J]. Science, 2000, 289(5485):1719-1724.
    [11] Anand P, Elderfield H, Conte M H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series[J]. Paleoceanography, 2003, 18(2).
    [12] Xu J, Kuhnt W, Holbourn A, et al. Changes in the vertical profile of the Indonesian Throughflow during Termination Ⅱ:Evidence from the Timor Sea[J]. Paleoceanography, 2006, 21(4).
    [13] Mohtadi M, Luckge A, Steinke S, et al. Late Pleistocene surface and thermocline conditions of the eastern tropical Indian Ocean[J]. Quaternary Science Reviews, 2010, 29(7-8):887-896.
    [14] Dang H, Jian Z, Bassinot F, et al. Decoupled Holocene variability in surface and thermocline water temperatures of the Indo-Pacific Warm Pool[J]. Geophysical Research Letters, 2012, 39(1).
    [15] Barker S, Greaves M, Elderfield H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry[J]. Geochemistry Geophysics Geosystems, 2003, 4(9).
    [16] de Villiers S, Greaves M, Elderfield H. An intensity ratio calibration method for the accurate determination of Mg/Ca and Sr/Ca of marine carbonates by ICP-AES[J]. Geochemistry Geophysics Geosystems, 2002, 3(1).
    [17] Rosenthal Y, Lohmann G P, Lohmann K C, et al. Incorporation and preservation of Mg in Globigerinoides sacculifer:Implications for reconstructing the temperature and O-18/O-16 of seawater[J]. Paleoceanography, 2000, 15(1):135-145.
    [18] Dekens P S, Lea D W, Pak D K, et al. Core top calibration of Mg/Ca in tropical foraminifera:Refining paleotemperature estimation[J]. Geochemistry Geophysics Geosystems, 2002, 3(4):1-29.
    [19] Rosenthal Y, Lohmann G P. Accurate estimation of sea surface temperatures using dissolution-corrected calibrations for Mg/Ca paleothermometry[J]. Paleoceanography, 2002, 17(3):6.
    [20] Locarnini R A, Mishonov A V, Antonov J I, et al. World Ocean Atlas 2009, Volume 1:Temperature. S. Levitus, Ed.[C]//NOAA Atlas NESDIS 68, US Government Printing Office, Washington, DC, 2010:184.
    [21] Liu Z, Yang H. Extratropical control of tropical climate, the atmospheric bridge and oceanic tunnel[J]. Geophysical Research Letters, 2003, 30(5).
    [22] Visser K, Thunell R, Stott L. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation[J]. Nature, 2003, 421(6919):152-155.
    [23] Tian C, Tian J. Warming magnitude of Indonesian Throughflow during the penultimate deglaciation (Termination Ⅱ) and its relationship with climate change in high-latitude regions[J]. Chinese Science Bulletin, 2010, 55(32):3709-3717.
    [24] Xu J, Holbourn A, Kuhnt W G, et al. Changes in the thermocline structure of the Indonesian outflow during Terminations I and Ⅱ[J]. Earth and Planetary Science Letters, 2008, 273(1-2):152-162.
    [25] Gibbons F T. The Centennial and Millennial Variability of the IndoPacific Warm Pool and the Indonesian Throughflow[D].Massachusetts Institute of Technology,2012.
    [26] Sarnthein M, Grootes P M, Holbourn A, et al. Tropical warming in the Timor Sea led deglacial Antarctic warming and atmospheric CO2 rise by more than 500 yr[J]. Earth and Planetary Science Letters, 2011, 302(3-4):337-348.
    [27] Fan W, Jian Z, Bassinot F, et al. Holocene centennial-scale changes of the Indonesian and South China Sea throughflows:Evidences from the Makassar Strait[J]. Global and Planetary Change, 2013, 111:111-117.
    [28] Bolliet T, Holbourn A, Kuhnt W, et al. Mindanao Dome variability over the last 160 kyr:Episodic glacial cooling of the West Pacific Warm Pool[J]. Paleoceanography, 2011, 26(1).
    [29] Gordon A L. Oceanography-The brawniest retroflection[J]. Nature, 2003, 421(6926):904-905.
    [30] Griffiths M L, Drysdale R N, Gagan M K, et al. Increasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise[J]. Nature Geoscience, 2009, 2(9):636-639.
    [31] Andersen K K, Azuma N, Barnola J-M, et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431(7005):147-151.
    [32] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399(6735):429-436.
    [33] Bard E, Hamelin B, Arnold M, et al. Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge[J]. Nature, 1996, 382(6588):241-244.
    [34] Peltier W R, Fairbanks R G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record[J]. Quaternary Science Reviews, 2006, 25(23):3322-3337.
    [35] Waelbroeck C, Labeyrie L, Michel E, et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records[J]. Quaternary Science Reviews, 2002, 21(1-3):295-305.
    [36] Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Nio/Southern Oscillation activity at millennial timescales during the Holocene epoch[J]. Nature, 2002, 420(6912):162-165.
  • [1] 刘冰瑾, 黄恩清, 田军.  岁差驱动的全新世热带太平洋—印度洋水汽输送 . 海洋地质与第四纪地质, 2023, 43(4): 56-70. doi: 10.16562/j.cnki.0256-1492.2023042001
    [2] 郭景腾, 熊志方, 李铁刚.  晚第四纪热带西太平洋海气CO2交换影响因素 . 海洋地质与第四纪地质, 2023, 43(4): 48-55. doi: 10.16562/j.cnki.0256-1492.2023071601
    [3] 唐正, 熊志方, 贾奇, 秦秉斌, 李铁刚.  70万年以来西太平洋暖池区硅质生产力记录及其气候效应 . 海洋地质与第四纪地质, 2023, 43(4): 30-37. doi: 10.16562/j.cnki.0256-1492.2023080101
    [4] 鲁银涛, 杨涛涛, 许小勇, 徐宁, 刘忻蕾, 闫春, 邵大力, 范国章, 吕福亮, 李东.  印度尼西亚库泰盆地下中新统混积序列特征研究 . 海洋地质与第四纪地质, 2022, 42(2): 158-166. doi: 10.16562/j.cnki.0256-1492.2021051403
    [5] 赵小小, 吴玥汀, 董良, 章陶亮, 胡邦琦, 李清, 王风平.  细菌细胞膜脂记录的西太平洋暖池约4 Ma以来沉积物风尘陆源输入变化 . 海洋地质与第四纪地质, 2021, 41(1): 52-60. doi: 10.16562/j.cnki.0256-1492.2020090201
    [6] 文汉锋, 赵楠钰, 刘成程, 周鹏超, 王国桢, 晏宏.  西太平洋帕劳砗磲高分辨率氧同位素记录及其指示的气候环境变化 . 海洋地质与第四纪地质, 2021, 41(1): 1-13. doi: 10.16562/j.cnki.0256-1492.2020101101
    [7] 张国伟, 李三忠.  西太平洋-北印度洋及其洋陆过渡带:古今演变与论争 . 海洋地质与第四纪地质, 2017, 37(4): 1-17. doi: 10.16562/j.cnki.2056-1492.2017.04.001
    [8] 许慎栋, 陈文煌, 邓文峰, 贾国东.  南海北部沉积物中浮游有孔虫Globigerinoides ruber壳体氧同位素指示的冬季表层海水温度 . 海洋地质与第四纪地质, 2016, 36(2): 101-107. doi: 10.16562/j.cnki.0256-1492.2016.02.012
    [9] 聂森艳, 肖文申, 王汝建.  南极半岛Bransfield海峡6 kaBP以来的古气候变化及其对ENSO的响应 . 海洋地质与第四纪地质, 2015, 35(3): 157-166. doi: 10.3724/SP.J.1140.2015.03157
    [10] 张帅, 李铁刚, 常凤鸣, 王海霞, 熊志方, 俞宙菲.  西太平洋暖池核心区360 ka来上部水体的演变 . 海洋地质与第四纪地质, 2013, 33(2): 87-96. doi: 10.3724/SP.J.1140.2013.02087
    [11] 吴永华, 翦知湣, 石学法, 程振波, 李小艳, 石丰登.  菲律宾海北部19 cal.kaBP以来表层海水温度变化 . 海洋地质与第四纪地质, 2012, 32(4): 123-129. doi: 10.3724/SP.J.1140.2012.04123
    [12] 梁丹, 刘传联, 苏翔.  西太平洋暖池核心区晚第四纪颗石藻属种变化及对环境演化的响应 . 海洋地质与第四纪地质, 2012, 32(4): 115-121. doi: 10.3724/SP.J.1140.2012.04115
    [13] 金海燕, 翦知湣, 乔培军, 成鑫荣.  中更新世气候转型期西太平洋暖池的表层海水温度和氧同位素变化 . 海洋地质与第四纪地质, 2012, 32(4): 107-113. doi: 10.3724/SP.J.1140.2012.04107
    [14] 陈双喜, 李铁刚, 南青云, 唐正, 仇晓华.  西北太平洋MD06-3054孔浮游有孔虫表层海水温度估算 . 海洋地质与第四纪地质, 2011, 31(3): 61-68. doi: 10.3724/SP.J.1140.2011.03061
    [15] 路波, 李铁刚, 于心科, 常凤鸣, 南青云.  末次冰期最盛期热带西太平洋的海洋表层温度 . 海洋地质与第四纪地质, 2010, 30(4): 31-38. doi: 10.3724/SP.J.1140.2010.04031
    [16] 郭建卿, 成鑫荣, 陈荣华, 翦知湣.  西太平洋暖池核心区上新世以来浮游有孔虫氧同位素特征及古海洋变化 . 海洋地质与第四纪地质, 2010, 30(3): 87-95. doi: 10.3724/SP.J.1140.2010.03087
    [17] 石正国, 刘晓东, 程肖侠.  东亚季风和南亚季风的反相位关系及其与ENSO的联系:年际尺度和轨道尺度 . 海洋地质与第四纪地质, 2009, 29(5): 83-88. doi: 10.3724/SP.J.1140.2009.05083
    [18] 赵美训, 李大伟, 邢磊.  古菌生物标志物古海水温度指标TEX86研究进展 . 海洋地质与第四纪地质, 2009, 29(3): 75-84. doi: 10.3724/SP.J.1140.2009.03075
    [19] 黄元辉, 黄玥, 蒋辉.  南海北部15 kaBP以来表层海水温度变化:来自海洋硅藻的记录 . 海洋地质与第四纪地质, 2007, 27(5): 65-74.
    [20] 史江峰, 刘禹, 蔡秋芳, 孙军艳, 易亮.  贺兰山过去196年降水的树轮宽度重建及降水变率 . 海洋地质与第四纪地质, 2007, 27(1): 95-100.
  • 加载中
计量
  • 文章访问数:  1940
  • HTML全文浏览量:  315
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-13
  • 修回日期:  2014-08-21

东帝汶海30 ka以来的表层水和温跃层水温度变化及其古海洋学意义

doi: 10.3724/SP.J.1140.2015.02117
    作者简介:

    庞晓雷(1989-),男,硕士生,主要从事古海洋学与古气候学研究,E-mail:xiaoleipang@126.com

基金项目:

"全球变化与海汽相互作用"专项(GASI-03-04-01-03)

国家自然科学基金项目(41376056)

  • 中图分类号: P736.22

摘要: 研究了钻取于东帝汶海印尼穿越流出口处MD98-2172岩心沉积物,分析了浮游有孔虫表层水种Globigerinoides ruber和温跃层水种Pulleniatina obliquiloculata的Mg/Ca值,重建了30 kaBP以来东帝汶海区的表层水温度和温跃层水温度。结果显示东帝汶海区末次冰盛期以来表层水温度距早全新世的最大温差约为4.2℃;冰消期间表层水温度有两次显著的降温事件,可分别与新仙女木事件和海因里希事件1对应;约15 kaBP以来帝汶海表层水温度与南极大气温度记录同相位变化,说明热带海区与高纬度地区气候变化有着紧密联系。末次冰盛期以来温跃层水温度距早全新世的最大温差约为4℃;全新世温跃层水温度呈现出波动降低的过程,最大降温幅度约3℃;表层水温度和次表层水温度差值在全新世逐渐增加,指示了温跃层深度的持续变浅,这一变化可能与海平面上升、季风活动和厄尔尼诺-南方涛动事件影响的印度尼西亚穿越流次表层流增强有关。

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回