留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超大陆与全球板块重建派别

李三忠 余珊 赵淑娟 张国伟 刘鑫 曹花花 许立青 戴黎明 李涛

李三忠, 余珊, 赵淑娟, 张国伟, 刘鑫, 曹花花, 许立青, 戴黎明, 李涛. 超大陆与全球板块重建派别[J]. 海洋地质与第四纪地质, 2014, 34(6): 97-117. doi: 10.3724/SP.J.1140.2014.06097
引用本文: 李三忠, 余珊, 赵淑娟, 张国伟, 刘鑫, 曹花花, 许立青, 戴黎明, 李涛. 超大陆与全球板块重建派别[J]. 海洋地质与第四纪地质, 2014, 34(6): 97-117. doi: 10.3724/SP.J.1140.2014.06097
LI Sanzhong, YU Shan, ZHAO Shujuan, ZHANG Guowei, LIU Xin, CAO Huahua, XU Liqing, DAI Liming, LI Tao. SCHOOLS OF THOUGHT ON SUPERCONTINENT AND GLOBAL PLATE RECONSTRUCTION[J]. Marine Geology & Quaternary Geology, 2014, 34(6): 97-117. doi: 10.3724/SP.J.1140.2014.06097
Citation: LI Sanzhong, YU Shan, ZHAO Shujuan, ZHANG Guowei, LIU Xin, CAO Huahua, XU Liqing, DAI Liming, LI Tao. SCHOOLS OF THOUGHT ON SUPERCONTINENT AND GLOBAL PLATE RECONSTRUCTION[J]. Marine Geology & Quaternary Geology, 2014, 34(6): 97-117. doi: 10.3724/SP.J.1140.2014.06097

超大陆与全球板块重建派别


doi: 10.3724/SP.J.1140.2014.06097
详细信息
    作者简介:

    李三忠(1968-),男,博士,教授,博导,从事构造地质学及海洋地质学的教学和研究工作,E-mail:sanzhong@ouc.edu.cn

  • 基金项目:

    国家自然科学基金重大项目(41190072,41190070);国家杰出青年基金项目(41325009)

  • 中图分类号: P731

SCHOOLS OF THOUGHT ON SUPERCONTINENT AND GLOBAL PLATE RECONSTRUCTION

More Information
  • 摘要: 板块重建是全球构造研究的核心和前沿,而且该研究自Wegener开始就以多学科集成综合为特征,随着21世纪进入大数据时代,其多学科交叉协同创新特色更为鲜明。但当前板块重建各派依然发挥各自特长,在板块重建领域,显示出其某方面的积累和特色,总体可分成14大派别:(1)最早利用计算机从事板块重建的Scotese群体;(2)仅依据古地磁极移为依据进行重建的Piper群体;(3)以Golonka为首的群体侧重岩相古地理、古环境相结合的板块重建;(4)重点对东南亚和西太平洋地区中生代-新生代进行板块重建的Robert Hall群体;(5)发展了板块和地质重建程序的Lawrence Lawver群体;(6)以古生物地理和古气候为特色的陈旭群体;(7)以海底磁条带和古水深重建为特色的Müller群体;(8)以古地貌、动力地形和沉积岩相重建为特色的Blakey群体;(9)以古地磁条带和蛇绿岩对比为特色的Stampfli群体;(10)以古地磁极移和地质综合对比为特色的LI Zhengxiang群体;(11)以与深部地球物理(层析成像)相结合为特色的Torsvik群体;(12)以碎屑锆石年龄谱对比为特色的Cawood群体;(13)以变质动力学和碰撞造山带事件对比为特色的Zhao Guochun群体;(14)打破刚性板块理念,开启可变形板块和动力地形重建的Michael Gurnis群体。各家在重建板块的时代上也有所侧重,从20世纪初Wegener提出2.5亿年左右的Pangea重建开始,到20世纪90年代初10亿年左右的Rodinia超大陆重建,再到20世纪90年代末Zhao Guochun和Rogers古元古代18亿年的Columbia超大陆重建。
  • [1] Nance R D, Murphy J B, Santosh M. The supercontinent cycle:A retrospective essay[J]. Gondwana Research, 2014, 25:4-29.
    [2] Rogers J J W, Santosh M. Supercontinents in Earth History[J]. Gondwana Research, 2003, 6(3):357-368.
    [3] Zegers T E, de Wit M J, Dann J, et al. Vaalbara, Earth's oldest assembled continent? A combined structural, geochronological, and palaeomagnetic test[J]. Terra Nova, 1998, 10(5):250-259.
    [4] Williams H, Hoffman P E, Lewry J F, et al. Anatomy of North America:thematic portrayals of the continent[J]. Tectonophyscis, 1991, 187:117-134.
    [5] Condie K C. Earth as an evolving planetary system (second edition)[C]//Academic Press, the Netherlands, 2011.
    [6] Zhao G C, Cawood P A, Wilde S A, et al. Review of global 2.1-1.8 Ga orogens:implications for a Pre-Rodinia supercontinent[J]. Earth-Science Reviews, 2002, 59:125-162.
    [7] Rogers J J W, Santosh M. Configuration of Columbia, a Mesoproterozoic supercontinent[J]. Gondwana Research, 2002, 5:5-22.
    [8] Zhao G C, Sun M, Wilde S A, et al. A Paleo-Mesoproterozoic supercontinent:assembly, growth and breakup[J]. Earth-Science Reviews, 2004, 67:91-123.
    [9] Pesonen L J, Salminen J, Donadini F, et al. Paleomagnetic configuration of continents during the Proterozoic[J]. Tectonophysics, 2003, 375:289-324.
    [10] Franklin B S, Manoel D S, Pacca Igor I G, et al. Columbia revisited:Paleomagnetic results from the 1790 Ma colider volcanics (SW Amazonian Craton, Brazil)[J]. Precambrian Research, 2008, 164(1):40-49.
    [11] Dewey J F, Burke K C. Tibetian, Variscan, and Precambrian basement reactivation:products of continental collision[J]. Journal of Geology, 1973, 81(6):683-692.
    [12] Bogdanova S V, Pisarevsky S A, Li Z X. Assembly and breakup of Rodinia (some results of IGCP Project 440)[J]. Stratigraphy and Geological Correlation, 2009, 17(3):259-274.
    [13] McMenamin M A S, McMenamin D L. The emergence of animals:the Cambrian break though[M]. Columbia University Press, 1990, ISBN 0-231-06647-3.
    [14] Dalziel I W D. Overview:Neoproterozoic-Paleozoic geography and tectonics:review, hypothesis, environmental speculation[J]. Geological Society of America Bulletin, 1997, 109(1):16-42.
    [15] Goodge J W, Vervoort J D, Fanning C M, et al. A positive test of East Antarctica-Laurentia juxtaposition within the Rodinia supercontinent[J]. Science, 2008, 321(5886):235-240.
    [16] Wingate M T D, Pisarevsky S A, Evans D A D. Rodinia connections between Australia And Laurentia:No SWEAT, No AUSWUS?[J]. Terra Nova, 2002, 14(2):121-128.
    [17] Pisarevsky S A, Murphy J B, Cawood P A, et al. Late Neoproterozoic and Early Cambrian palaeogeography:models and problems[M]. Geological Society of London, Special Publications, 2008, 294:9-31.
    [18] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia:a synthesis[J]. Precambrian Research, 2008, 160:179-210.
    [19] Sears J W, Price R A. New look at the Siberian connection:No SWEAT[J]. Geology, 2000, 28(5):423-426.
    [20] Scotese C R. More information about the late Precambrian[R]. Paleomap Project. Retrieved, 2006.
    [21] Weil A B, Van der Voo R, Mac Niocaill C, et al. The Proterozoic supercontinent Rodinia:paleomagnetically derived reconstructions for 1100 to 800 Ma[J]. Earth and Planetary Science Letters, 1998,154:13-24.
    [22] Piper J D A. Paleopangea in Meso-Neoproterozoic times:The paleomagnetic evidence and implications to continental integrity, supercontinent from and Eocambrian break-up[J]. Journal of Geodynamics, 2010, 50:191-223.
    [23] Torsvik T H, Gaina C, Redfield T F. Antarctica and global paleogeography:From Rodinia, Through Gondwanaland and Pangea, to the birth of the Southern Ocean and the opening of gateways[C]//In:Cooper A K, Barrett P J, Stagg H, et al. Antarctica:A Keystone in a Changing World. Proceedings of the 10th International Symposium on Antarctic Earth Sciences. Washington D C, The National Academies Press, 2008:125-140.
    [24] Piper J D A. A planetary perspective on Earth evolution:Lid Tectonics before Plate Tectonics[J]. Tectonophysics, 2013, 589:44-56.
    [25] Donnadieu Y, Oddéris Y, Ramstein G, et al. A "snowball Earth" climate triggered by continental break-up through changes in runoff[J]. Nature, 2004, 428(6980):303-306.
    [26] Dalziel I W D. Neoproterozoic-Paleozoic geography and tectonics:Review, hypothesis, environmental speculation[J]. Geological Society of America Bulletin, 1997, 109(1):16-42.
    [27] Stern R J. Arc assembly and continental collision in the Neoproterozoic East Africa Orogen:implications for the consolidation of Gondwanaland[J]. Annual Reviews of Earth and Planetary Sciences, 1994, 33:319-351.
    [28] Evans D A D. Reconstructing pre-Pangean supercontinents. GSA Bulletin[J]. 125(11/12):1735-1751.
    [29] Condie K C. Plate Tectonics and Crustal Evolution[M]. Pergamon Press, 1989.
    [30] Arlo B, Weil R, Van der Voo B A, et al. Oroclinal bending and evidence against the Pangea megashear:The Cantabria-Asturias arc (northern Spain)[J]. Geology, 2001, 29(11):991-994.
    [31] Benton M J. Vertebrate Palaeontology[M]. Third edition, Oxford, 2005:25.
    [32] Barbara W, Murck Brian J Skinner. Geology Today:Understanding Our Planet, Study Guide[M]. Wiley, 1999. ISBN 978-0-471-32323-5.
    [33] Kearey P, Klepeis K A, Vine F J. Global Tectonics[M]. Third edition, Chichester:Wiley, 2009:66-67. ISBN 978-1-4051-0777-8.
    [34] Merali Z, Skinner B J. Visualizing Earth Science[M]. Wiley, 2008. ISBN 978-0-470-41847-5.
    [35] Williams C, Nield T. Pangaea, the comeback[J]. New Scientist, 2007:36-40.
    [36] Bowdler N. America and Eurasia "to meet at north pole"[N]. BBC News, 2012-02-08.
    [37] Smith K. Supercontinent Amasia to take North Pole Position[N]. Nature News, 2012-02-08.
    [38] Nance R D, Worsley T R, Moody J B. The supercontinent cycle[J]. Scientific American, 1988, 259(1):72-79.
    [39] Scotese C R, Baker C W. Continental drift reconstructions and animation[J]. J. Geol. Educ., 1975, 23:167-171.
    [40] Ziegler P A, Cloetingh S, Guiraud R, et al. Peri-Tethyan Platforms:constraints on dynamics of rifting and basin inversion[J]. Mémoire du Museum National d'Histoire Naturelle, 2001a,186:9-49.
    [41] Ziegler P A, Stampfli G M. Late Paleozoic Early Mesozoic plate boundary reorganisation:collapse of the Variscan orogen and opening of Neotethys[J]. Annali Museo Civico Scienze Naturali, 2001b, Brescia 25:17-34.
    [42] Golonka J, Ross M I, Scotese C R. Phanerozoic paleogeographic and paleoclimatic modeling maps[C]//In:Embry A F, Beauchamp B, Glass D J (eds). PANGEA:Global Environments and Resources. Can. Soc. Petrol. Geol., 1994, Memoir 17:1-48.
    [43] Scotese C R. A continental drift "flip book"[J]. Computers and Geology, 1976, 2:113-116.
    [44] Scotese C R. Late Proterozoic plate tectonics and palaeogeography:a tale of two supercontinents, Rodinia and Pannotia[M]. London, Geological Society, Special Publications, 2009, 326:67-83.
    [45] Scotese C R, Sager W W. Mesozoic and Cenozoic Plate Tectonic Reconstructions[J]. Tectonophysics, 1988, 155:27-48.
    [46] Gahagan L M, Scotese C R, Royer J Y, et al. Tectonic fabric of the ocean basins from satellite altimetry data[C]//In:Scotese C R, Sager W W (eds). Mesozoic and Cenozoic plate reconstructions. Tectonophysics, 1988, 155:1-26.
    [47] Jurdy D M, Stefanick M, Scotese C R. Paleozoic plate dynamics[J]. J. Geophys. Res., 1995,100:17965-17975.
    [48] Piper J D A. A planetary perspective on Earth evolution:Lid Tectonics before Plate Tectonics[J]. Tectonophysics, 2013a, 589:44-56.
    [49] Piper J D A. Consolidation of continental crust in late Archaean-early Proterozoic times:A palaeomagnetic test[J]. Gondwana Research, 2003, 6(3):435-448.
    [50] Piper J D A. The Neoproterozoic Supercontinent:Rodinia or Palaeopangaea?[J]. Earth Planet Sci. Lett., 2000, 176:131-146.
    [51] Piper J D A. The Neoproterozoic supercontinent Palaeopangaea[J]. Gondwana Research, 2007a, 12:202-227.
    [52] Piper J D A. Protopangaea:Palaeomagnetic definition of Earth's oldest (mid-Archaean-Palaeoproterozoic) supercontinent[J]. Journal of Geodynamics, 2010a, 50:154-165.
    [53] Piper J D A. Palaeopangaea in Meso-Neoproterozoic times:The palaeomagnetic evidence and implications to continental integrity, supercontinent form and Eocambrian break-up[J]. Journal of Geodynamics, 2010b, 50:191-123.
    [54] Piper J D A, Zhang J S, Huang B C, et al. Palaeomagnetism of Precambrian dyke swarms in the North China Shield:The~1.8 Ga LIP event and crustal consolidation in late Palaeoproterozoic times[J]. Journal of Asian Earth Sciences, 2011a, 41:504-524.
    [55] Piper J D A. SWEAT and the end of SWEAT:The Laurentia-Siberia configuration during Meso-Neoproterozoic times[J]. International Geology Review, 2011b, 53(12):1265-1279.
    [56] Piper J D A. Palaeomagnetism of the Loch Doon Granite Complex, Southern Uplands of Scotland:The Late Caledonian palaeomagnetic record and an Early Devonian episode of True Polar Wander[J]. Tectonophysics, 2007b, 432:133-157.
    [57] Piper J D A. A~90(Late Silurian-Early Devonian apparent polar wander loop:The latest inertial interchange of planet earth?[J]. Earth and Planetary Science Letters, 2006, 250:345-357.
    [58] Huang B C, Piper J D A, Zhang C, et al. Palaeomagnetism of Cretaceous rocks in the Jiaodong Peninsula, eastern China:Insights into block rotations and Neotectonic deformation in eastern Asia[J]. Journal of Geophysical Research, 2007, 112(B03106):1-21.
    [59] Hall R. Tectonic Evolution of SE Asia[C]//Hall R, Blundell D J (eds.).Geological Society of London Special Publication, 1996, 106:153-184.
    [60] Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific:computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20:353-434.
    [61] Hall R. Australia-SE Asia collision:plate tectonics and crustal flow[C]//In:Hall R, Cottam M A, Wilson M E J (eds.). The SE Asian gateway:history and tectonics of Australia-Asia collision. Geological Society of London Special Publication, 2011:75-109.
    [62] Hall R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean[J]. Tectonophysics, 2012, 570-571:1-41.
    [63] Hall R, Ali J R, Anderson C D. Cenozoic motion of the Philippine Sea Plate:palaeomagnetic evidence from eastern Indonesia[J]. Tectonics, 1995a, 14(5):1117-1132.
    [64] Hall R, Ali J R, Anderson C D, et al. Origin and motion history of the Philippine Sea Plate[J]. Tectonophysics, 1995b, 251(1-4):229-250.
    [65] Hall R, Morley C K. Continent-Ocean Interactions within the East Asian Marginal Seas[C]//Clift P, Wang P, Kuhnt W H (eds.). Washington D C:American Geophysical Union, Geophysical Monograph, 2004, 149:55-85.
    [66] Van Hattum M W A, Hall R, Pickard A L, et al. Southeast Asian sediments not from Asia:Provenance and geochronology of north Borneo sandstones[J]. Geology, 2006, 34(7):589-592.
    [67] Renema W, Bellwood D R, Braga J C, et al. Hopping hotspots:Global shifts in marine biodiversity[J]. Science, 2008, 321(5889):654-657.
    [68] Dalziel I W D, Dalla Salda L H, Gahagan L M. Paleozoic Laurentia-Gondwana interaction and the origin of the Appalachian Andean mountain system[J]. Geological Society of American Bulletin, 1994, 106:243-252.
    [69] Dalziel I W D, Dalla Salda L H, Torsvik T H, et al. Ordovician palaeogeography of Siberia and adjacent continents[J]. Journal of the Geological Society, 1996, 153(Part 2):329-330.
    [70] Dalziel I W D, Lawver L A, Murphy J B. Plumes, orogenesis, and supercontinental fragmentation[J]. Earth and Planetary Science Letters, 2000a, 178(1-2):1-11.
    [71] Dalziel I W D, Mosher S, Gahagan L M. Laurentia-Kalahari collision and the assembly of Rodinia[J]. Journal of Geology, 2000b,108:499-513.
    [72] Dalziel I W D, Lawver L A, Norton I O, et al. The Scotia Arc:Genesis, evolution, global significance[J]. Annual Review of Earth and Planetary Sciences, 2013, 41:767-793.
    [73] Dalziel I W D. Antarctica:A tale of two supercontinents?[J]. Annual Review of Earth and Planetary Sciences, 1992, 20:501-526.
    [74] Dalziel I W D. Precambrian Scotland as a Laurentia-Gondwana Link-Origin and Significance of Cratonic Promontories[J]. Geology, 1994, 22:589-592.
    [75] Dalziel I W D. A global perspective on the Scottish Caledonides[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences, 2000, 91:405-420.
    [76] Dalziel I D, Soper N J. Neoproterozoic extension on the Scottish promontory of Laurentia:Paleogeograhic and tectonic implications[J]. Journal of Geology, 2001, 109:299-317.
    [77] Dalziel I W D, Astini R A. Early Paleozoic paleogeography of Laurentia and western Gondwana:Evidence from tectonic subsidence analysis:Comment[J]. Geology, 1998, 26(6):575-576.
    [78] Scheibner E, Moore G W, Drummond K J, et al. Tectonic map of the circum-Pacific region, Pacific basin sheet, U.S. Geological Survey Circum-Pacific Map CP-52[C]. 2013, pamphlet 134 p., 2 sheets, scale 1:17,000,000, and GIS data.
    [79] Coffin M F, Eldholm O. Scratching the surface:Estimating dimensions of large igneous provinces[J]. Geology, 1993, 21:515-518.
    [80] Coffin M F, Eldholm O. Large Igneous Provinces:crustal structure, dimensions, and external consequences[J]. Reviews of Geophysics, 1994, 32(1):1-36.
    [81] Coffin M F, Eldholm O. Large igneous provinces[C]//In Steele J H, Thorpe S A, Turekian K K (eds.). Encyclopedia of Ocean Sciences. London, Academic Press, 2001:1290-1298.
    [82] Coffin M F, Pringle M S, Duncan R A, et al. Kerguelen hotspot magma output since 130 Ma[J]. Journal of Petrology, 2002, 43(7):1121-1139.
    [83] Lawver L A, Grantz A, Gahagan L M. Plate kinematic evolution of the present Arctic region since the Ordovician[C]//In:Miller E L, Grantz A, Klemperer S L (eds.). Tectonic Evolution of the Bering Shelf-Chukchi Sea-Arctic Margin and Adjacent Landmasses. Geological Society of America, Special Paper, Boulder, CO, 2002:333-358.
    [84] Wallace P J, Frey F A, Weis D, et al. Origin and evolution of the Kerguelen Plateau, Broken Ridge and Kerguelen Archipelago:Editorial[J]. Journal of Petrology, 2002, 43(7):1105-1108.
    [85] Storey M, Mahoney J J, Saunders A D, et al. Timing of hot spot-related volcanism and the breakup of Madagascar and India[J]. Science, 1995, 267:852-855.
    [86] Cunningham W D, Dalziel I W D, Lee T Y, et al. Southernmost South America-Antarctic Peninsula relative plate motions since Gondwana break-up:Implications for the tectonic evolution of the Scotia Arc region[J]. Journal of Geophysical Research, 1995, 100:8257-8266.
    [87] Lawver L A, Müller R D. Iceland hotspot track[J]. Geology, 1994, 22:311-314.
    [88] Lee T Y, Lawver L A. Cenozoic plate reconstruction of the South China Sea region[J]. Tectonophysics, 1994, 235:149-180.
    [89] Schuur C L, Coffin M F, Frohlich C, et al. Sedimentary regimes at the Macquarie Ridge Complex:Interaction of Southern Ocean circulation and plate boundary bathymetry[J]. Paleoceanography, 1998, 13(6):646-670.
    [90] Lawver L A, Gahagan L M. Opening of Drake Passage and its impact on Cenozoic ocean circulation[C]//In:Crowley T J, Burke K C (eds.). Tectonic Boundary Conditions for Climate Reconstructions. Oxford Monographs on Geology and Geophysics, Oxford Univ. Press, 1998, 39:212-223.
    [91] Herold N, Huber M, Greenwood D R, et al. Early to middle Miocene monsoon climate in Australia[J]. Geology, 2010, 39:3-6.
    [92] Herold N, You Y, Müller R D, et al. Climate model sensitivity to changes in Miocene paleotopography[J]. Australian Journal of Earth Sciences, 2010, 57:377-379.
    [93] Becker T W, Conrad C P, Buffett B, et al. Past and present seafloor age distributions and the temporal evolution of plate tectonic heat transport[J]. EPSL, 2009, 278:233-242.
    [94] Gaina C, Müller R D, Brown B, et al. Breakup and early seafloor spreading between India and Antarctica[J]. Geophysical Journal International, 2007, 170:151-169.
    [95] Coltice N, Phillips B R, Bertrand H, et al. Global warming of the mantle at the origin of flood basalts over supercontinents[J]. Geology, 2007, 35:391-394.
    [96] Müller R D, Royer J Y, Lawver L A. Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks[J]. Geology, 1993, 21:275-278.
    [97] Müller R D, Roest W R, Royer J Y, et al. Digital isochrons of the world's ocean floor[J]. Journal of Geophysical Research-Solid Earth, 1997, 102(B2):3211-3214.
    [98] Müller R D, Dutkiewicz A, Seton M, et al. Seawater chemistry driven by supercontinent assembly, breakup, and dispersal[J]. Geology, 2013, 41(8):907-910.
    [99] Müller R D. Geophysics:Sedimentary basins feeling the heat from below[J]. Science, 2010a, 329:769-770.
    [100] Müller R D. Tectonics:Sinking Continents[J]. Nature Geoscience, 2010b, 3:79-80.
    [101] Müller R D. Plate motion and mantle plumes[J]. Nature, 2011, 475:40-41.
    [102] Shephard G E, Müller R D, Liu L, et al. Miocene drainage reversal of the Amazon River driven by plate-mantle interaction[J]. Nature Geoscience, 2010, 3:870-875.
    [103] Shephard G E, Müller R D, Seton M. The tectonic evolution of the Arctic since Pangea breakup:Integrating constraints from surface geology and geophysics with mantle structure[J]. Earth-Science Reviews, 2013, 124:148-183.
    [104] Morra G, Seton M, Quevedo L, et al. Organisation of the tectonic plates in the last 200 Myr[J]. Earth and Planetary Science Letters, 2013, 373:93-101.
    [105] Whittaker J M, Müller R D, Gurnis, M. Development of the Australian-Antarctic depth anomaly[J]. Geochemistry Geophysics Geosystems, 2010, 11(Q11006):23.
    [106] Whittaker J M, Goncharov A, Williams S E, et al. Global sediment thickness dataset updated for the Australian-Antarctic Southern Ocean[J]. Geochem. Geophy. Geosyst., 2013a, 14(8):3297-3305.
    [107] Whittaker J M, Williams S E, Müller R D. Revised tectonic evolution of the Eastern Indian Ocean[J]. Geochem. Geophy. Geosyst., 2013b, 14(6):1891-1909.
    [108] Gibbons A D, Barckhausen U, Bogaard P, et al. Constraining the Jurassic extent of Greater India:tectonic evolution of the West Australian margin[J]. Geochem. Geophy. Geosyst., 2012, 13(5):25.
    [109] Gibbons A D, Whittaker J M, Müller R D. The breakup of East Gondwana:assimilating constraints from Cretaceous ocean basins around India into a best-fit tectonic model[J]. Journal of Geophysical Research, 2013, 118:1-15.
    [110] Wright N, Zahirovic S, Müller R D, et al. Towards adaptable, interactive and quantitative paleogeographic maps[J]. Biogeosciences, 2013, 10:1529-1541.
    [111] Flament N, Coltice N, Rey P. A case for late-Archaean continental emergence from thermal evolution models and hypsometry[J]. Earth and Planetary Science Letters, 2008, 275:326-336.
    [112] Flament N, Rey P F, Coltice N, et al. Lower crustal flow kept Archean continental flood basalts at sea level[J]. Geology, 2011, 39:1159-1162.
    [113] Flament N, Gurnis M, Müller R D. A review of observations and models of dynamic topography[J]. Lithosphere, 2013, 5:189-210.
    [114] Masterton S, Gubbins D, Müller R D, et al. Forward modelling of oceanic lithospheric magnetization[J]. Geophysical Journal International, 2012, 25.
    [115] Matthews K J, Müller R D, Wessel P, et al. The tectonic fabric of the ocean basins[J]. Journal of Geophysical Research, 2011a, 116(B12):28.
    [116] Matthews K J, Hale A J, Gurnis M, et al. Dynamic subsidence of Eastern Australia during the Cretaceous[J]. Gondwana Research, 2011b, 19:372-383.
    [117] Matthews K J, Seton M, Müller R D. A global-scale plate reorganization event at 105-100 Ma[J]. Earth Planet. Sci. Lett., 2012, 355-356:283-298.
    [118] Seton M, Müller R D, Zahirovic S, et al. Global continental and ocean basin reconstructions since 200 Ma[J]. Earth-Science Reviews, 2012, 113(3-4):212-270.
    [119] Herold N, Huber M, Müller R D. Modelling the Miocene climatic optimum, Part 1:land and atmosphere[J]. Journal of Climate, 2011, 24:6353-6372.
    [120] Whittaker J M, Müller R D, Leitchenkov G, et al. Response to Comment on:Major Australian-Antarctica Plate Reorganization at Hawaiian-Emperor Bend Time[J]. Science, 2008b, 321(5888):490.
    [121] Chandler M T, Wessel P, Taylor B, et al. Reconstructing Ontong Java Nui:Implications for Pacific absolute plate motion, hotspot drift and true polar wander[J]. EPSL, 2012, (331-332):140-151.
    [122] Bower J B, Gurnis M, Seton M. Lower mantle structure from paleogeographically constrained dynamic Earth models[J]. Geochem. Geophys. Geosyst., 2013,14:44-63.
    [123] Torsvik T H, Müller R D, Van der Voo R, et al. Global plate motion frames:Toward a unified model[J]. Reviews of Geophysics, 2008, 46(3):RG3004.
    [124] Rey P F, Müller R D. Fragmentation of Active Continental Plate Margins Owing to the Buoyancy of the Mantle Wedge[J]. Nature Geoscience, 2010, 3:257-261.
    [125] Heine C, Müller R D, Steinberger B, et al. Anomalous subsidence in intracontinental basins[J]. Physics of the Earth and Planetary Interiors, 2008, 171:252-264.
    [126] Heine C, Müller R D, Steinberger B, et al. Integrating deep Earth dynamics in paleogeographic reconstructions of Australia[J]. Tectonophysics, 2010, 483:135-150.
    [127] Liu L, Gurnis M, Seton M, et al. The role of oceanic plateau subduction in the Laramide orogeny[J]. Nature Geoscience, 2010, 3:353-357.
    [128] Capitanio F A, Morra G, Goes S, et al. India-Asia convergence driven by the subduction of the Greater Indian continent[J]. Nature, 2010, 3:136-139.
    [129] Dyksterhuis S, Müller R D. Cause and evolution of intraplate orogeny in Australia[J]. Geology, 2008, 36:495-498.
    [130] Xie X, Müller R D, Ren J, et al. Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea[J]. Marine Geology, 2008, 247:129-144.
    [131] Xie X, Müller R D, Li S, et al. Origin of anomalous subsidence along the northern South China Sea Margin and its relationship to dynamic topography[J]. Marine and Petroleum Geology, 2006, 23:745-765.
    [132] Whittaker J M, Müller R D, Sdrolias M, et al. Sunda-Java trench kinematics, slab window formation and overriding plate deformation since the Cretaceous[J]. Earth and Planetary Science Letters, 2007b, 255:445-457.
    [133] Sdrolias S, Müller R D. Controls on Back-arc Basin Formation[J]. Geochemistry Geophysics Geosystems, 2006,7(4):Q04016.
    [134] Whittaker J M, Müller R D, Leitchenkov G, et al. Major Australian-Antarctic Plate Reorganization at Hawaiian-Emperor Bend Time[J]. Science, 2007a, 318(5847):83-86.
    [135] Whittaker J M, Müller R D, Roest W R, et al. How supercontinents and superoceans affect seafloor roughness[J]. Nature, 2008a, 456:938-941.
    [136] Butterworth N P, Quevedo L, Morra G, et al. Influence of overriding plate geometry and rheology on subduction[J]. Geochemistry Geophysics Geosystems, 2012, 13(6):Q06W15.
    [137] Gurnis M, Turner M, Zahirovic S, et al. Plate Reconstructions with Continuously Closing Plates[J]. Computers and Geosciences, 2012, 38:35-42.
    [138] Müller R D, Dyksterhuis S, Rey P. Australian palaeo-stress fields and tectonic reactivation over the past 100 Myr[J]. Australian Journal of Earth Sciences, 2012, 59:13-28.
    [139] Müller R D, Sdrolias M, Gaina C, et al. Age, spreading rates, and spreading asymmetry of the world's ocean crust[J]. Geochemistry Geophysics Geosystems, 2008a, 9:18-36.
    [140] Müller R D, Sdrolias M, Gaina C, et al. Long-Term Sea-Level Fluctuations Driven by Ocean Basin Dynamics[J]. Science, 2008b, 319(5868):1357-1362.
    [141] Qin X, Müller R D, Cannon J, et al. The GPlates Geological Information Model and Markup Language Geosci[J]. Instrum. Method. Data Syst., 2012, 1:111-134.
    [142] Hoernle K, Hauff F, Werner R, et al. Shallow recycling of continental lithosphere:Generation of a large near-ridge seamount province[J]. Nature Geoscience, 2011, 4:883-887.
    [143] Shephard G E, Liu L, Müller R D, et al. Dynamic topography and anomalously negative residual depth of the Argentine Basin[J]. Gondwana Research Letters, 2012a, 22(2):658-663.
    [144] Shephard G E, Bunge H P, Schuberth B S A, et al. Testing absolute plate reference frames and the implications for the generation of geodynamic mantle heterogeneity structure[J]. Earth and Planetary Science Letters, 2012b, 317-318:204-217.
    [145] Blakey R C. Paleogeographic and tectonic controls on some Lower and Middle Jurassic erg deposits, Colorado Plateau[C]//In:Caputo M V, Peterson J A, Franczyk K J (eds.). Mesozoic systems of the Rocky Mountain region, USA:Rocky Mountain Section. Society of Economic Paleontologists and Mineralogists, Special Publication, 1994:273-298.
    [146] Blakey R C, Peterson F, Kocurek G. Late Paleozoic and Mesozoic eolian deposits of the Western Interior of the United States[J]. Sedimentary Geology, 1988, 56:3-125.
    [147] Blakey R C, Basham E L, Cook M J. Early and Middle Triassic paleogeography, Colorado Plateau and vicinity[C]//In:Morales M (ed.). Aspects of Mesozoic Geology and Paleontology of the Colorado Plateau. Museum of Northern Arizona Bulletin, 1993, 59:13-26.
    [148] Blakey R C, Havholm K G, Jones L S. Stratigraphic analysis of eolian interactions with marine and fluvial deposits, Middle Jurassic Page Sandstone and Carmel Formation, Colorado Plateau, USA.[J]. Journal of Sedimentary Research, 1996, 66:324-342.
    [149] Stampfli G M, Borel G D. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones[J]. Earth and Planetary Science Letters, 2002, 196:17-33.
    [150] Stampfli G M, Kozur H W. Europe from the Variscan to the Alpine cycles[J]. Geological Society of London, Memoirs, 2006, 32(1):57-82.
    [151] Von Raumer J F, Stampfli G M, Borel G D, et al. Organization of pre-Variscan basement areas at the north-Gondwanan margin[J]. International Journal of Earth Sciences, 2002, 91:35-52.
    [152] Stampfli G M. Tethyan oceans[J]. Geological Society of London, Special Publications, 2000, 173:1-23.
    [153] Wilhem C, Windley B, Stampfli G M. The Altaids of Central Asia:A tectonic and evolutionary innovative review[J]. Earth-Science Reviews, 2012, 113:303-341.
    [154] Vérard C, Flores K E, Stampfli G M. Geodynamic reconstructions of the South America-Antarctica plate system[J]. Journal of Geodynamics, 2012, 53:43-60.
    [155] Meinhold G, Arslan A, Lehnert O, et al. Global mass wasting during the Middle Ordovician:Meteoritic trigger or plate-tectonic environment?[J]. Gondwana Research, 2011, 19:535-541.
    [156] Stampfli G M, Hochard C. Plate tectonics of the Alpine realm[J]. Geological Society of London, Special Publications, 2009, 327:89-111.
    [157] Ferrari O M, Hochard C, Stampfli G M. An alternative plate tectonic model for the Palaeozoic-Early Mesozoic Palaeotethyan evolution of Southeast Asia (northern Thailand-Myanmar)[J]. Tectonophysics, 2008, 451:346-365.
    [158] Von Raumer J F, Stampfli G M, Bussy F. Gondwana-derived microcontinents-The constituents of the Variscan and Alpine collisional orogens[J]. Tectonophysics, 2003, 365:7-22.
    [159] Von Raumer J F, Stampfli G M. The birth of the Rheic Ocean-Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios[J]. Tectonophysics, 2008, 461:9-20.
    [160] Von Raumer J F, Stampfli G M. Palaeozoic peri-Gondwanan evolution[J]. Terra Nostra, 2000, 1:89.
    [161] Stampfli G M, Marcoux J, Baud A. Tethyan margins in space and time[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1991, 87:373-409.
    [162] Stampfli G M, Mosar J, Marquer D, et al. Subduction and obduction processes in the Swiss Alps[J]. Tectonophysics, 1998, 296:159-204.
    [163] Stampfli G M, Borel G D, Cavazza W, et al. Palaeotectonic and palaeogeographic evolution of the western Tethys and PeriTethyan domain (IGCP Project 369)[J]. Episodes, 2001, 24:222-228.
    [164] Stampfli G M, Von Raumer J F, Borel G D. The Palaeozoic evolution of pre-Variscan terranes:From peri-Gondwana to the Variscan collision[J]. Geological Society of America Special Papers, 2002, 364:263-280.
    [165] Hauser M, Martini R, Matter A, et al. The break-up of East Gondwana along the northeast coast of Oman:evidence from the Batain basin[J]. Geological Magazine, 2002, 139:45-157.
    [166] Fan H P, Zhu W G, Li Z X, et al. Ca. 1.5 Ga mafic magmatism in South China during the break-up of the supercontinent Nuna/Columbia:The Zhuqing Fe-Ti-V oxide ore-bearing mafic intrusions in western Yangtze Block[J]. Lithos, 2013, 168:85-98.
    [167] Pisarevsky S A, Sten-Åke E, Lauri J P, et al. Mesoproterozoic paleogeography:Supercontinent and beyond[J]. Precambrian Research, 2014, 244:207-225.
    [168] Li Z X, Evans D A D, Halverson G. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland[J]. Sedimentary Geology, 2013, 294:219-232.
    [169] Smirnov A V, Evans D A D, Ernst R E, et al. Trading partners:Tectonic ancestry of southern Africa and western Australia, in Archean supercratons Vaalbara and Zimgarn[J]. Precambrian Research, 2013, 224:11-22.
    [170] Zhang S H, Li Z X, Wu H C. New Precambrian palaeomagnetic constraints on the position of the North China Block in Rodinia[J]. Precambrian Research, 2006, 144(3-4):213-238.
    [171] Zhang N, Zhong S J, Leng W, et al. A model for the evolution of the Earth's mantle structure since the Early Paleozoic[J]. Journal of Geophysical Research-Solid Earth, 2010, 115(6):22.
    [172] Zhang S H, Li Z X, Evans D A D, et al. Pre-Rodinia supercontinent Nuna shaping up:A global synthesis with new paleomagnetic results from North China[J]. Earth and Planetary Science Letters, 2012, 353:145-155.
    [173] Li Z X, Evans D A D. Late Neoproterozoic 40 degrees intraplate rotation within Australia allows for a tighter-fitting and longer-lasting Rodinia[J]. Geology, 2011, 39(1):39-42.
    [174] Zhou J B, Li X H, Ge W C, et al. Age and origin of middle Neoproterozoic mafic magmatism in southern Yangtze Block and relevance to the break-up of Rodinia[J]. Gondwana Research, 2007, 12(1-2):184-197.
    [175] Li Z X, Zhong S J. Supercontinent-superplume coupling, true polar wander and plume mobility:Plate dominance in whole-mantle tectonics[J]. Physics of The Earth And Planetary Interiors, 2009, 176(3-4):143-156.
    [176] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia:A synthesis[J]. Precambrian Research, 2008a, 160(1-2):179-210.
    [177] Li Z X, Li X H, Li W X, et al. Was Cathaysia part of Proterozoic Laurentia? new data from Hainan Island, south China[J]. Terra Nova, 2008b, 20(2):154-164.
    [178] Zhong S J, Zhang N, Li Z X, et al. Supercontinent cycles, true polar wander, and very long-wavelength mantle convection[J]. Earth And Planetary Science Letters, 2007, 261(3-4):551-564.
    [179] Hoffman P F, Li Z X. A palaeogeographic context for Neoproterozoic glaciation[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2009, 277(3-4):158-172.
    [180] Evans D A D, Pisarevsky S A. Plate tectonics on early Earth?——weighing the paleomagnetic evidence[C]//In:Condie K, Pease V (eds.). When Did Plate Tectonics Begin? Geological Society of America, Special Paper, 2008, 440:249-263.
    [181] Bogdanova S V, Li Z X, Moores E M, et al. Testing the Rodinia hypothesis:Records in its building blocks[J]. Precambrian Research, 2008, 160(1-2):1-4.
    [182] Cocks L, Robin M, Torsvik T H. The Palaeozoic geography of Laurentia and western Laurussia:A stable craton with mobile margins[J]. Earth-Science Reviews, 2011, 106(1-2):1-51.
    [183] Cocks L, Robin M, Torsvik T H. The dynamic evolution of the Palaeozoic geography of eastern Asia[J]. Earth-Science Reviews, 2013, 117:40-79.
    [184] Conrad C P, Steinberger B, Torsvik T H. Stability of active mantle upwelling revealed by net characteristics of plate tectonics[J]. Nature, 2013, 498(7455):479-482.
    [185] Torsvik T H, Cocks L, Robin M. From Wegener until now:the development of our understanding of Earth's Phanerozoic evolution[J]. Geologica Belgica, 2012a, 15(3):181-192.
    [186] Torsvik T H, Van der Voo R, Preeden U, et al. Phanerozoic polar wander, palaeogeography and dynamics[J]. Earth-Science Reviews, 2012b, 114(3-4):325-368.
  • [1] 杜学鑫, 祝文君, 牟明杰, 尚鲁宁, 李攀峰, 尉佳, 虞义勇, 孟元库, 胡刚.  菲律宾海板块俯冲与岛弧演化的钻探靶区研究 . 海洋地质与第四纪地质, 2022, 42(5): 199-210. doi: 10.16562/j.cnki.0256-1492.2022062002
    [2] 陈建文, 许明, 雷宝华, 施剑, 刘俊.  华北-扬子板块碰撞结构的识别:来自南黄海海域的证据 . 海洋地质与第四纪地质, 2020, 40(3): 1-12. doi: 10.16562/j.cnki.0256-1492.2019070902
    [3] 马芳芳, 楼达, 戴黎明, 李三忠, 董昊, 陶建丽, 李法坤, 王亮亮, 刘泽.  俯冲板片熔融柱的数值模拟:上覆板块破坏及动力地形效应 . 海洋地质与第四纪地质, 2019, 39(5): 186-196. doi: 10.16562/j.cnki.0256-1492.2019040102
    [4] 王一丹, 于福生, 刘志娜, 王于恒, 王逸群.  板块俯冲变形过程二维离散元模拟—对东海陆架盆地成因启示 . 海洋地质与第四纪地质, 2019, 39(5): 163-173. doi: 10.16562/j.cnki.0256-1492.2019070306
    [5] 宫伟, 姜效典, 邢军辉, 李德勇, 徐冲.  新几内亚-所罗门弧俯冲体系动力过程:板块起始俯冲的制约 . 海洋地质与第四纪地质, 2019, 39(5): 115-130. doi: 10.16562/j.cnki.0256-1492.2019062801
    [6] 李春峰, 李刚, 厉子龙, 刘文潇, 章露露, 陆哲哲, 陈雪刚, 姚泽伟.  卡罗琳海板块实验:初始俯冲、初始扩张与流固耦合 . 海洋地质与第四纪地质, 2019, 39(5): 87-97. doi: 10.16562/j.cnki.0256-1492.2019031501
    [7] 张国良, 战明君.  板块俯冲和岩浆过程中碳循环及深部碳储库 . 海洋地质与第四纪地质, 2019, 39(5): 36-45. doi: 10.16562/j.cnki.0256-1492.2019092201
    [8] 赵松, 常凤鸣, 李铁刚, 徐烨.  粒度端元法在东海内陆架古环境重建中的应用 . 海洋地质与第四纪地质, 2017, 37(3): 187-196. doi: 10.16562/j.cnki.0256-1492.2017.03.019
    [9] 张正一, 董冬冬, 张广旭, 张国良.  板块俯冲侵蚀雅浦岛弧的地形制约 . 海洋地质与第四纪地质, 2017, 37(1): 41-50. doi: 10.16562/j.cnki.0256-1492.2017.01.005
    [10] 聂仕琪, 黄金水, 李三忠.  奥陶纪到志留纪全球板块重建:中国三大陆块位置及其洋陆格局的运动学检验 . 海洋地质与第四纪地质, 2015, 35(4): 177-188. doi: 10.16562/j.cnki.0256-1492.2015.04.019
    [11] 李三忠, 余珊, 赵淑娟, 张国伟, 刘鑫, 曹花花, 许立青, 戴黎明, 李涛.  超大陆旋回与全球板块重建趋势 . 海洋地质与第四纪地质, 2015, 35(1): 51-60. doi: 10.3724/SP.J.1140.2015.01051
    [12] 袁学诚.  西太平洋洋陆板块碰撞 . 海洋地质与第四纪地质, 2014, 34(6): 41-48. doi: 10.3724/SP.J.1140.2014.06041
    [13] 塔斯肯, 李江海, 李维波, 王洪浩, 杨静懿, 李文山.  三叠纪全球板块再造及岩相古地理研究 . 海洋地质与第四纪地质, 2014, 34(5): 153-162. doi: 10.3724/SP.J.1140.2014.05153
    [14] 岳保静, 廖晶, 刘鸿, 曾洁, 施剑.  中朝-扬子板块碰撞结合带东部边界及海域延伸 . 海洋地质与第四纪地质, 2014, 34(1): 75-85. doi: 10.3724/SP.J.1140.2014.01075
    [15] 余珊, 李三忠, 索艳慧, 龚淑云, 安慧婷, 熊莉娟, 薛友辰, 程世秀.  全球三维古地理重建及其地质意义 . 海洋地质与第四纪地质, 2013, 33(6): 147-163. doi: 10.3724/SP.J.1140.2013.06147
    [16] 李三忠, 余珊, 赵淑娟, 刘鑫, 龚淑云, 索艳慧, 戴黎明, 马云, 许立青, 曹现志, 王鹏程, 孙文军, 杨朝, 朱俊江.  东亚大陆边缘的板块重建与构造转换 . 海洋地质与第四纪地质, 2013, 33(3): 65-94. doi: 10.3724/SP.J.1140.2013.03065
    [17] 蔡秋芳.  贺兰山油松生长对三种不同水分指数的响应及1—7月Walter指数重建 . 海洋地质与第四纪地质, 2009, 29(6): 131-136. doi: 10.3724/SP.J.1140.2009.06131
    [18] 董红梅, 宋友桂.  黏土矿物在古环境重建中的应用 . 海洋地质与第四纪地质, 2009, 29(6): 119-130. doi: 10.3724/SP.J.1140.2009.06119
    [19] 张冉, 刘晓东, 安芷生.  青藏高原古高度重建方法研究进展 . 海洋地质与第四纪地质, 2008, 28(5): 129-136.
    [20] 鲁法伟, 周祖翼.  破裂大陆岩石圈科学计划探索 . 海洋地质与第四纪地质, 2006, 26(1): 109-116.
  • 加载中
计量
  • 文章访问数:  1917
  • HTML全文浏览量:  401
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-30
  • 修回日期:  2014-05-20

超大陆与全球板块重建派别

doi: 10.3724/SP.J.1140.2014.06097
    作者简介:

    李三忠(1968-),男,博士,教授,博导,从事构造地质学及海洋地质学的教学和研究工作,E-mail:sanzhong@ouc.edu.cn

基金项目:

国家自然科学基金重大项目(41190072,41190070);国家杰出青年基金项目(41325009)

  • 中图分类号: P731

摘要: 板块重建是全球构造研究的核心和前沿,而且该研究自Wegener开始就以多学科集成综合为特征,随着21世纪进入大数据时代,其多学科交叉协同创新特色更为鲜明。但当前板块重建各派依然发挥各自特长,在板块重建领域,显示出其某方面的积累和特色,总体可分成14大派别:(1)最早利用计算机从事板块重建的Scotese群体;(2)仅依据古地磁极移为依据进行重建的Piper群体;(3)以Golonka为首的群体侧重岩相古地理、古环境相结合的板块重建;(4)重点对东南亚和西太平洋地区中生代-新生代进行板块重建的Robert Hall群体;(5)发展了板块和地质重建程序的Lawrence Lawver群体;(6)以古生物地理和古气候为特色的陈旭群体;(7)以海底磁条带和古水深重建为特色的Müller群体;(8)以古地貌、动力地形和沉积岩相重建为特色的Blakey群体;(9)以古地磁条带和蛇绿岩对比为特色的Stampfli群体;(10)以古地磁极移和地质综合对比为特色的LI Zhengxiang群体;(11)以与深部地球物理(层析成像)相结合为特色的Torsvik群体;(12)以碎屑锆石年龄谱对比为特色的Cawood群体;(13)以变质动力学和碰撞造山带事件对比为特色的Zhao Guochun群体;(14)打破刚性板块理念,开启可变形板块和动力地形重建的Michael Gurnis群体。各家在重建板块的时代上也有所侧重,从20世纪初Wegener提出2.5亿年左右的Pangea重建开始,到20世纪90年代初10亿年左右的Rodinia超大陆重建,再到20世纪90年代末Zhao Guochun和Rogers古元古代18亿年的Columbia超大陆重建。

English Abstract

参考文献 (186)

目录

    /

    返回文章
    返回