METHANE FLUX AND DIURNAL VARIATION IN SUPRATIDAL FLAT OF QI'AO ISLAND, PEARL RIVER ESTUARY
-
摘要: 2009年8月份采用静态箱法对珠江口淇澳岛湿地甲烷通量日变化进行测定,结果表明甲烷排放通量在当日23:00和翌日早晨9:00出现两个高峰值,分别为40.07和50.99 mg·m-2·h-1;在当日17:00和翌日凌晨5:00出现两极小值,分别为1.13和1.57 mg·m-2·h-1,同步观测孔隙水中SO42-、Cl-浓度和沉积物表层温度和采样点潮位变化,发现湿地甲烷排放通量与孔隙水中SO42-浓度和潮位存在显著负相关性,因此,潮汐所导致孔隙水中SO42-浓度和上覆水深度改变,可能是控制珠江口淇澳岛潮间带湿地甲烷日排放通量变化的两个关键因素。同时计算采样点甲烷日排放净通量达到962.7 mg·m-2·d-1,表明夏季珠江口淇澳岛湿地是大气甲烷的源区。柱状沉积物孔隙水中甲烷浓度范围为0.52~5.18 mmol·dm-3,其最大值出现在9 cm深度,同时测试沉积物中总有机碳(TOC)、温度、氧化还原电位和孔隙水中SO42-的浓度,结果表明高的甲烷浓度主要是由于沉积物中高的TOC含量和孔隙水中低的SO42-浓度所导致。Abstract: The diurnal methane flux from the supratidal flat of Qi'ao Island, Pearl River estuary was measured at a 2h interval throughout the day (24h) based on static chamber during August, 2009. Two peak-values of CH4 flux occurred in midnight (23:00) and the next morning (9:00), with the value as high as 40.07 mg·m-2·h-1 and 50.99 mg·m-2·h-1respectively, whereas two minimum occurred in the evening (17:00) and the dawn of the next morning (5:00), with the value as low as 1.13 mg·m-2·h-1 and 1.59 mg·m-2·h-1. The concentration of SO42- of pore water and tidal level were simultaneous monitored, showing obviously negative correlation with the methane flux. Therefore, the tidal dynamics is the factor leading to the variations in chemical parameters of the sediment and tidal level is the key controlling factor in diurnal variations in methane flux at the supratidal flat. The diurnal mean net methane flux from sampling sites was 962.7 mg·m-2·d-1, suggesting that the tidal flat of the Qi'ao Island is an important methane contributor to the atmosphere in summer. Methane concentrations of pore water range from 0.52 to 5.18 mmol dm-3 with the maximum value occurring in the sub-surface (depth 9 cm). Total organic carbon (TOC), temperature, redox potential of sediments and SO42- of pore water were measured simultaneously. The results show that the high concentration of methane match well with the high TOC in the sediment and low SO42- in the pore water.
-
Keywords:
- methane /
- diurnal methane flux /
- static chamber /
- the flat of Qi'ao
-
-
[1] Singh S N, Kulshreshtha K, Agnihotri S. Seasonal dynamics of methane emission from wetlands[J]. Chemisphere-Global Change Science, 2000, 2:39-46.
[2] Chang T C, Yang S S. Methane emission from wetlands in Taiwan[J]. Atmospheric Environment, 2003,37:4551-4558.
[3] 宋长春, 阎百兴, 王跃思, 等. 三江平原沼泽湿地CO2和CH4通量及影响因子[J]. 科学通报, 2003, 48(23):2473-2477. [SONG Changchun, YAN Baixing, WANG Yuesi, et al., Fluxes of carbon dioxide and methane from swamp and impact factors in Sanjiang Plain,China[J]. Chinese Science Bulletin,2003,24:2749-2753.]
[4] Frankignoulle M, Middelburg J. Biogas in tidal European estuaries:the BIOGEST project[J]. Biogeochemistry, 2002,59:1-4.
[5] 黄国宏,李玉祥,陈冠雄,等. 环境因素对芦苇湿地CH4排放的影响[J]. 环境科学, 2001, 22(1):1-5. [HUANG Guohong, LI Yuxiang, CHEN Guanxiong, et al. Influence of Environmental Factors on CH4 Emission from Reed Wetland[J]. Environmental Science, 2001,22(1):1-5.]
[6] 李金华, 曹景蓉, 洪业汤,等. 贵州水稻田甲烷释放通量及同位素组成研究[J]. 地球化学, 1995, 24(suppl):98-104.[LI Jinhua, CAO Jingrong, HONG Yetang, et al. Emission flux and carbon isotopic compositions of methane from paddy fields in Guizhou[J].Geochimica,1995 ,24(Suppl):98-104.]
[7] 董云社, 章申, 齐玉春, 等. 内蒙古典型草地CO2, N2O, CH4通量的同时观测及其日变化[J]. 科学通报, 2000, 45(3):318-322. [DONG Yunshe, ZHANG Shen, QI Yuchun, et al. Fluxes of CO2, N2O and CH4 from a typical temperate grassland in Inner Mongolia and its daily variation[J].Chinese Science Bulletin,2000,17:1590-1594.]
[8] 叶勇, 卢昌义, 林鹏, 等. 河口红树林湿地CH4通量的日变化研究[J]. 海洋学报, 2000, 22(3):103-109. [YE Yong, LU Changyi, LIN Peng, et al. Diurnal change of CH4 Fluxes from esturine mangrove wetlands[J]. Acta Oceanologica Sinica, 2000,22(3):103-109.]
[9] 叶勇, 卢昌义, 林鹏. 海南岛和厦门红树林湿地CH4排放的时空变化[J]. 大气科学,2000, 24(2):152-156. [YE Ying,LU Changyi, LIN Peng. Seasonal and spatial changes of methane emissions from Mangrove Wetlands in Hainan Island and Xiamen[J]. Chinese Journal of Atmospheric Sciences, 2000,24(2):152-156.]
[10] 杨红霞,王东启,陈振楼, 等. 长江口潮滩湿地-大气界面碳通量特征[J]. 环境科学学报,2006, 26(4):667-673. [YANG Hongxia, WANG Dongqi, CHEN Zhenlou, et al. Characteristics of carbon fluxes through intertidal flat wetland-atmosphere interface of Yangtze estuary[J]. Acta Scientiae Circumstantiae,2006, 26(4):668-673.]
[11] 仝川, 闫宗平, 王维奇, 等. 闽江河口感潮湿地入侵种互花米草甲烷通量及影响因子[J].地理科学, 2008, 28(6):826-832. [TONG Chuan, YAN Zongping, WANG Weiqi, et al. Methane Flux from Invasive Species (Spartina alterniflora) and Influencing Factors in theM in River Estuary[J]. Scientia Geographica Sinica, 2008, 28(6):826-832.]
[12] 宋长春, 杨文燕, 徐小锋, 等. 沼泽湿地生态系统土壤CO2和CH4排放动态及影响因素[J]. 环境科学, 2004, 25(4):1-6. [SONG Changchun, YANG Wenyan, XU Xiaofeng, et al. Dynamics of CO2 and CH4 Concentration in the M ire Soil and Its Impact Factors[J]. Environmental Science,2004,25(4):1-6.]
[13] Schimel J P, Gulledge J. Microbial community structure and global trace gases[J]. Global Change Biology,1998,4:745-758.
[14] Froelich P N, Klinkhammer G P, Bender M L, et al. Early oxidation of organic matter in pelagic sediments of eastern equatorial Atlantic:suboxic diagenesis[J]. Geochimica Cosmochimica Acta, 1979, 43:1075-1090.
[15] Heyer J, Berger U. Methane emission from the coastal area in the Southern Baltic Sea[J]. Estuarine Coastal and Shelf Science,2000,51:13-30.
[16] 吴自军, 周怀阳, 彭晓彤, 等. 甲烷厌氧氧化作用:来自珠江口淇澳岛海岸带沉积物孔隙水的地球化学证据[J].科学通报,2006,51(17):2052-2059. [WU Zhijun. ZHOU Huaiyang, PENG Xiaotong, et al. Anaerobic oxidation of methane:Geochemical evidence from pore-water in coastal sediments of Qi'ao Island(Pearl River Estuary),southern China[J]. Chinese Science Bulletin, 2006,51:2006-2015.]
[17] Kelley C A,Martens C S, Ussler W. Methane dynamics across a tidally flooded river bank margin[J]. Limnology and Oceanography,1995, 40(6):1112-1129.
[18] Sansone F J, Martens C S. Volatile fatty acid cycling in organic-rich marine sediments[J]. Geochim Cosmochim Acta, 1982, 46:1575-1589.
[19] Krzycki J A, Kenealy W R, Deniro M J, et al. Stable carbon isotope fractionation by Methanosarcna barkeri during methanogenesis from acetate, methanol, or carbon-hydrogen[J]. Appl Environ Microbiol, 1987, 53:2597-2599.
[20] Winfrey M R, Zeikus J G. Effect of sulfate on Carbon and Eletron flow during microbial methanogenesis in freshwater sediments[J]. Appl. Environ. Microbiol., 1977, 33(2):275-281.
[21] Singh S N, Kulshreshtha K, Agnibotri S. Seasonal dynamics of methane emission from wetlands[J]. Chemosphere Global Change Science, 2000, 2:39-46.
[22] William S R. Oceanic methane biogeochemistry[J]. Chemical Reviews,2007,107:486-513.
[23] Michmerhuizen C M, Striegl R G, McDonald M E. Potential methane emission from north temperate lakes following ice melt[J]. Limnology and Oceanography, 1996, 41:985-991.
[24] Singh S N. Exploring correlation between redox potential and other edaphic factors in field and laboratory conditions in relation to methane efflux[J]. Environment International, 2001, 27:265-274.
[25] Dunfield P, Knowles R, Dumont R, et al. Methane production and consumption intemperate and subarctic peat soils:response to temperature and pH[J]. Soil Biology and Biochemistry, 1993, 25:321-326.
[26] Ramesh R, Purvaja R, Parashar D C, et al. Anthropogenic forcing on methane emission from the polluted wetlands (Adyar river) of Madras City. India[J]. Ambio, 1997, 26(6):369-374.
[27] Bartlett K B, harriss R C, Sebacher D I. Methane flux from coastal salt marshes[J]. Journal of Geophysica Reserach, 1985,90(D3):5710-5720.
[28] Middelburg J J, Klaver G, Nieuwenhuize J, Wielemaker A, et al. Organic matter mineralization in intertidal sediments along an estuarine gradient[J]. Marine Ecology Progress Series, 1996, 132:157-168.
[29] DeLaune R D, Smith C J,Patrick W H. Methane release from Gulf Coast Wetlands[J].Tellus, 1983,35:8-15.
[30] Sukanda L, Suwanchai N,Suwannee A. Estimating methane emissions from mangrove area in Ranong Province, Thailand. Songklanakarin[J].Journal of Science and Technology, 2005,27(1):153-163.
计量
- 文章访问数: 2077
- HTML全文浏览量: 264
- PDF下载量: 9