留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋沉积有机物质的降解及其模式

蒋宇轩 邢磊 张海龙 姜一晴 赵美训

蒋宇轩, 邢磊, 张海龙, 姜一晴, 赵美训. 海洋沉积有机物质的降解及其模式[J]. 海洋地质与第四纪地质, 2014, 34(4): 173-180. doi: 10.3724/SP.J.1140.2014.04173
引用本文: 蒋宇轩, 邢磊, 张海龙, 姜一晴, 赵美训. 海洋沉积有机物质的降解及其模式[J]. 海洋地质与第四纪地质, 2014, 34(4): 173-180. doi: 10.3724/SP.J.1140.2014.04173
JIANG Yuxuan, XING Lei, ZHANG Hailong, JIANG Yiqing, ZHAO Meixun. STUDY ON THE DEGRADATION OF MARINE SEDIMENTARY ORGANIC MATTER AND MODEL DEVELOPMENT[J]. Marine Geology & Quaternary Geology, 2014, 34(4): 173-180. doi: 10.3724/SP.J.1140.2014.04173
Citation: JIANG Yuxuan, XING Lei, ZHANG Hailong, JIANG Yiqing, ZHAO Meixun. STUDY ON THE DEGRADATION OF MARINE SEDIMENTARY ORGANIC MATTER AND MODEL DEVELOPMENT[J]. Marine Geology & Quaternary Geology, 2014, 34(4): 173-180. doi: 10.3724/SP.J.1140.2014.04173

海洋沉积有机物质的降解及其模式


doi: 10.3724/SP.J.1140.2014.04173
详细信息
    作者简介:

    蒋宇轩(1987-),男,硕士生,海洋化学专业,Email:moonrisegw@163.com

  • 基金项目:

    国家自然科学基金项目(41276068,41020164005)

    国家重点基础研究发展规划项目(2010CB428901)

  • 中图分类号: P736.4

STUDY ON THE DEGRADATION OF MARINE SEDIMENTARY ORGANIC MATTER AND MODEL DEVELOPMENT

More Information
  • 摘要: 作为长期碳汇,海洋沉积物中埋藏的大量有机碳对全球碳循环和气候变化有重要影响。有机碳从海洋输出到沉积物中后,在沉积物中还要经历有氧降解和无氧降解。有机物降解是一个十分复杂的过程,影响这一过程的因素有很多,包括有机物本身的分子结构和组成种类;氧化还原状态;有机物所附着的基质;温度、压力、盐度等物理环境因素以及生物因素。研究沉积有机碳的含量及埋藏量变化首先需要校正降解对沉积有机碳含量的影响。降解模式是定量估算降解对沉积有机碳的影响的一个主要手段。在前人的研究基础上,讨论了影响沉积有机碳降解的因素,对降解模式的研究进展和应用进行了综述,提出了未来降解模式的发展中存在的问题。
  • [1] Armstrong R A, Lee C, Hedges J I, et al. A new mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2001, 49:219-236.
    [2] Hedges J I, Baldock J A, Gélinas Y, et al. Evidence for nonselective preservation of organic matter in sinking marine particles[J]. Nature, 2001, 409(6822):801-804.
    [3] Berner R A. Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over phanerozoic time[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1989, 75:97-122
    [4] Berner R A, Canfield D E. A new model for atmospheric oxygen over Phanerozoic time[J]. American Journal of Science, 1989, 289:333-361.
    [5] Hedges J I, Keil R G. Sedimentary organic matter preservation:an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49:81-115.
    [6] Hartnett H E, Keil R G, Hedges J I, et al. Influence of oxygen exposure time on organic carbon reservation in continental margin sediments[J]. Nature, 1998, 391:572-574.
    [7] Canfield D E, J?rgensen B B, Fossing H, et al. Pathways of organic carbon oxidation in three continental margin sediments[J]. Marine Geology, 1993, 113:27-40.
    [8] de Leeuw J W, Largeau C. A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal, and petroleum formation[J]. Organic geochemistry:principles and applications, 1993:23:2140-2147.
    [9] Hedges J I, Eglinton G, Hatcher P G, et al. The molecularlyuncharacterized component of nonliving organic matter in natural environments[J]. Organic Geochemistry, 2000, 31:945-958.
    [10] Tegelaar E W, Derenne S, Largeau C, et al. A reappraisal of kerogen formation[J]. Geochimica et Cosmochimica Acta, 1989, 53:3103-3106.
    [11] Aller R C. Bioturbation and remineralization of sedimentary organic matter:effects of redox oscillation[J]. Chemical Geology, 1994, 114:331-345.
    [12] Sun M-Y, Aller R C, Lee C, et al. Effects of oxygen and redox oscillation on degradation of cell-associated lipids in surficial marine sediments[J]. Geochimica et Cosmochimica Acta, 2002, 66:2003-2012.
    [13] Hedges J I, Keil R G. Sedimentary organic matter preservation:an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49:81-115.
    [14] Mayer L M. Surface area control of organic carbon accumulation in continental shelf sediments[J]. Geochimica et Cosmochimica Acta, 1994, 58:1271-1284.
    [15] Deming J W, Barros J A. The early diagenesis of organic matter:bacterial activity[J]. Organic geochemistry:principles and applications, 1993:119-144.
    [16] Lee C. Controls on organic carbon preservation:the use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems[J]. Geochimica et Cosmochimica Acta, 1992, 56:3323-3335.
    [17] Smith C R, Walsh I D, Jahnke R A. Adding biology to onedimensional models of sediment-carbon degradation:the multi-B approach[J]. Deep-sea food chains and the global carbon cycle, 1992, 360:395-400.
    [18] Arnosti C, Ziervogel K, Ocampo L, et al. Enzyme activities in the water column and in shallow permeable sediments from the northeastern Gulf of Mexico[J]. Estuarine, Coastal and Shelf Science, 2009, 84:202-208.
    [19] Eckardt C B, Pearce G E S, Keely B J, et al. A widespread chlorophyll transformation pathway in the aquatic environment[J]. Organic Geochemistry, 1992, 19:217-227.
    [20] Calvert S E, Pedersen T F. Organic matter accumulation, remineralization and burial in an anoxic coastal sediment[J]. Organic Matter:Productivity, Accumulation and Preservation in Recent and Ancient Sediments, 1992:231-263.
    [21] Furlong E T, Carpenter R. Pigment preservation and remineralization in oxic coastal marine sediments[J]. Geochimica et Cosmochimica Acta, 1988, 52:87-99.
    [22] Cranwell P A. Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment[J]. Organic Geochemistry, 1981, 3:79-89.
    [23] Camacho-Ibar V F, Aveytua-Alcázar L, Carriquiry J D. Fatty acid reactivities in sediment cores from the northern Gulf of California[J]. Organic Geochemistry, 2003, 34:425-439.
    [24] Canuel E A, Martens C S. Reactivity of recently deposited organic matter:Degradation of lipid compounds near the sediment-water interface[J]. Geochimica et Cosmochimica Acta, 1996, 60:1793-1806.
    [25] Grossi V, Caradec S, Gilbert F. Burial and reactivity of sedimentary microalgal lipids in bioturbated Mediterranean coastal sediments[J]. Marine Chemistry, 2003, 81:57-69.
    [26] Haddad R I, Martens C S, Farrington J W. Quantifying early diagenesis of fatty acids in a rapidly accumulating coastal marine sediment[J]. Organic Geochemistry, 1992, 19:205-216.
    [27] Harvey H R, Macko S A. Kinetics of phytoplankton decay during simulated sedimentation:changes in lipids under oxic and anoxic conditions[J]. Organic Geochemistry, 1997, 27:129-140.
    [28] Sun M-Y, Wakeham S G. Molecular evidence for degradation and preservation of organic matter in the anoxic Black Sea Basin[J]. Geochimica et Cosmochimica Acta, 1994, 58:3395-3406.
    [29] Kristensen E, Ahmed S O, Devol A H. Aerobic and anaerobic decomposition of organic matter in marine sediment:Which is fastest[J]?Limnology and Oceanography, 1995, 40:1430-1437.
    [30] Froelich P N, Klinkhammer G P, Bender M L, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic:suboxic diagenesis[J]. Geochimica et Cosmochimica Acta, 1979, 43:1075-1090.
    [31] Wakeham S G, Canuel E A. Degradation and preservation of organic matter in marine sediments[J]. Hdb Env Chem, 2006, 2:295-321.
    [32] Harvey H R, Tuttle J H, Bell J T. Kinetics of phytoplankton decay during simulated sedimentation:Changes in biochemical composition and microbial activity under oxic and anoxic conditions[J]. Geochimica et Cosmochimica Acta, 1995, 59:3367-3377.
    [33] Sun M-Y, Wakeham S G, Lee C. Rates and mechanisms of fatty acid degradation in oxic and anoxic coastal marine sediments of Long Island Sound, New York, USA[J]. Geochimica et Cosmochimica Acta, 1997, 61:341-355.
    [34] Sun M-Y, Wakeham S G. A study of oxic/anoxic effects on degradation of sterols at the simulated sediment-water interface of coastal sediments[J]. Organic Geochemistry, 1998, 28:773-784.
    [35] Hedges J I. The association of organic molecules with clay minerals in aqueous solutions[J]. Geochimica et Cosmochimica Acta, 1977, 41:1119-1123.
    [36] Tanoue E, Handa N. Differential sorption of organic matter by various sized sediment particles in recent sediment from the Bering sea[J]. Journal of Oceanography, 1979, 35:199-208.
    [37] Weiler R R, Mills A A. Surface properties and pore structure of marine sediments[J]. Deep Sea Research and Oceanographic Abstracts, 1965, 12:511-529.
    [38] Christensen D, Blackburn T H. Turnover of 14C-labelled acetate in marine sediments[J]. Marine Biology, 1982, 71:113-119.
    [39] Gordon A S, Millero F J. Adsorption mediated decrease in the biodegradation rate of organic compounds[J]. Microbial Ecology, 1985, 11:289-298.
    [40] Wang X-C, Lee C. Adsorption and desorption of aliphatic amines, amino acids and acetate by clay minerals and marine ediments[J]. Marine Chemistry, 1993, 44:1-23.
    [41] Baldock J A, Skjemstad J O. Role of the soil matrix and minerals in protecting natural organic materials against biological attack[J]. Organic Geochemistry, 2000, 31:697-710.
    [42] Arnarson T S, Keil R G. Influence of organic-mineral aggregates on microbial degradation of the dinoflagellate Scrippsiella trochoidea[J]. Geochimica et Cosmochimica Acta, 2005, 69:2111-2117.
    [43] Arnarson T S, Keil R G. Changes in organic matter-mineral interactions for marine sediments with varying oxygen exposure times[J]. Geochimica et Cosmochimica Acta, 2007, 71:3545-3556.
    [44] Beolchini F, Rocchetti L, Regoli F, et al. Bioremediation of marine sediments contaminated by hydrocarbons:experimental analysis and kinetic modeling[J]. Journal of Hazardous Materials, 2010, 182:403-407.
    [45] Head I M, Swannell R P. Bioremediation of petroleum hydrocarbon contaminants in marine habitats[J]. Current Opinion in Biotechnology, 1999, 10:234-239.
    [46] Prince R C. Petroleum spill bioremediation in marine environments[J]. Critical Reviews in Microbiology, 1993, 19:217-242.
    [47] Swannell R P, Lee K, McDonagh M. Field evaluations of marine oil spill bioremediation[J]. Microbiological Reviews, 1996, 60:342-365.
    [48] van der Weijden C H, Reichart G J, Visser H J Enhanced preservation of organic matter in sediments deposited within the oxygen minimum zone in the northeastern Arabian Sea[J]. Deep Sea Research Part I:Oceanographic Research Papers, 1999, 46:807-830.
    [49] Dell'Anno A, Beolchini F, Rocchetti L, et al. High bacterial biodiversity increases degradation performance of hydrocarbons during bioremediation of contaminated harbor marine sediments[J]. Environmental Pollution, 2012, 167:85-92.
    [50] Berner R A. An idealized model of dissolved sulfate distribution in recent sediments[J]. Geochimica et Cosmochimica Acta, 1964, 28:1497-1503.
    [51] Westrich J T, Berner R A. The role of sedimentary organic matter in bacterial sulfate reduction:The G-model tested[J]. Limnology and Oceanography, 1984, 29:236-249.
    [52] Berner R A. A rate model for organic matter decomposition during bacterial suliate reduction in marine sediments[J]. Colloq. Intl. CNRS, 1980, 293:35-44.
    [53] Versteegh G J M, Zonneveld K A F. Use of selective degradation to separate preservation from productivity[J]. Geology, 2002, 30:615-618.
    [54] Hedges J I, Prahl F G. Early diagenesis:Consequences for applications of molecular biomarkers[J]. Organic geochemistry-principles and applications, 1993:237-253.
    [55] Middelburg J J. A simple rate model for organic matter decomposition in marine sediments[J]. Geochimica et Cosmochimica Acta, 1989, 53:1577-1581.
    [56] Westrich J T. The consequences and controls of bacterial sulfate reduction in marine sediments[J]. University Microfilms Order, 1983, 83:292.
    [57] Zimmerman A R, Canuel E A. A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments:anthropogenic influence on organic matter composition[J]. Marine Chemistry, 2000, 69:117-137.
    [58] Janssen B H. A simple method for calculating decomposition and accumulation of ‘young’ soil organic matter[J]. Plant Soil, 1984, 76:297-304.
    [59] Bottrell S H. Orangic carbon concentration profiles in recent cave sediment:records of agricultural pollution or diagenesis[J]. Environmental Pollution, 1996, 91:325-332.
    [60] Ruiz-Fernández A C, Hillaire-Marcel C, Ghaleb B, et al. Recent sedimentary history of anthropogenic impacts on the Culiacan River Estuary, northwestern Mexico:geochemical evidence from organic matter and nutrients[J]. Environmental Pollution, 2002, 118:365-377.
    [61] Zonneveld K A F, Versteegh G J M, Kasten S, et al. Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record[J]. Biogeosciences, 2010, 7:483-511.
  • [1] 王培杰, 胡利民, 闫天浩, 王厚杰, 毕乃双, 王楠, 张洋, 吴晓.  北黄海西部泥质区全新世以来沉积有机碳埋藏特征 . 海洋地质与第四纪地质, 2023, 43(): 1-10. doi: 10.16562/j.cnki.0256-1492.2023041802
    [2] 陈烨, 孙治雷, 吴能友, 刘昌岭, 徐翠玲, 辛友志, 曹红, 耿威, 张喜林, 翟滨, 孙运宝, 李晶, 张栋, 闫大伟, 吕泰衡.  海洋沉积物中甲烷代谢微生物的研究进展 . 海洋地质与第四纪地质, 2022, 42(6): 82-92. doi: 10.16562/j.cnki.0256-1492.2022021801
    [3] 于哲, 邓义楠, 陈晨, 曹珺, 方允鑫, 蒋雪筱, 黄毅.  海洋沉积物微量元素地球化学特征对天然气水合物勘探的指示意义 . 海洋地质与第四纪地质, 2022, 42(1): 111-122. doi: 10.16562/j.cnki.0256-1492.2021040101
    [4] 辛友志, 孙治雷, 王红梅, 陈烨, 徐翠玲, 耿威, 曹红, 张喜林, 张现荣, 李鑫, 闫大伟, 吴能友.  海洋沉积物中金属依赖型甲烷厌氧氧化作用研究进展及展望 . 海洋地质与第四纪地质, 2021, 41(5): 58-66. doi: 10.16562/j.cnki.0256-1492.2020122801
    [5] 修淳, 霍素霞, 周勐佳, 张旭, 邢健, 徐美娜.  南极罗斯海柱样沉积物中有机碳和氮元素地球化学特征及其来源 . 海洋地质与第四纪地质, 2019, 39(1): 83-90. doi: 10.16562/j.cnki.0256-1492.2017070201
    [6] 章伟艳, 于晓果, 汪卫国, 刘焱光, 叶黎明, 边叶萍, 许冬, 杨海丽, 姚旭莹.  近百年来楚科奇海域沉积环境变化的有机碳、氮记录 . 海洋地质与第四纪地质, 2018, 38(2): 13-24. doi: 10.16562/j.cnki.0256-1492.2018.02.002
    [7] 张艳平, 罗敏, 胡钰, 陈多福.  海底有机质早期成岩和甲烷缺氧氧化数值模型研究进展 . 海洋地质与第四纪地质, 2017, 37(5): 109-121. doi: 10.16562/j.cnki.0256-1492.2017.05.011
    [8] 邓义楠, 方允鑫, 张欣, 陈芳, 王海峰, 任江波, 刘晨晖, 关瑶.  南海琼东南海域沉积物的微量元素地球化学特征及其对天然气水合物的指示意义 . 海洋地质与第四纪地质, 2017, 37(5): 70-81. doi: 10.16562/j.cnki.0256-1492.2017.05.007
    [9] 赵德博, 万世明, 沈兴艳, 于兆杰, 矫东风.  海洋沉积物中黏土矿物的两种提取方法的对比 . 海洋地质与第四纪地质, 2015, 35(5): 173-181. doi: 10.16562/j.cnki.0256-1492.2015.05.020
    [10] 傅飘儿, 庄畅, 刘坚, 陈道华, 张欣, 陈思海.  南海西沙海槽XH-CL16柱状沉积物稀土元素特征及其物源 . 海洋地质与第四纪地质, 2015, 35(4): 63-71. doi: 10.16562/j.cnki.0256-1492.2015.04.007
    [11] 胡利民, 石学法, 刘焱光, 白亚之, 董林森, 黄元辉.  白令海西部柱样沉积物中有机碳的地球化学特征与埋藏记录 . 海洋地质与第四纪地质, 2015, 35(3): 37-47. doi: 10.3724/SP.J.1140.2015.03037
    [12] 姚鹏, 于志刚, 郭志刚.  大河影响下的边缘海沉积有机碳输运与埋藏及再矿化研究进展 . 海洋地质与第四纪地质, 2013, 33(1): 153-160. doi: 10.3724/SP.J.1140.2013.01153
    [13] 陈彬, 胡利民, 邓声贵, 范德江, 郭志刚.  渤海湾表层沉积物中有机碳的分布与物源贡献估算 . 海洋地质与第四纪地质, 2011, 31(5): 37-42. doi: 10.3724/SP.J.1140.2011.05037
    [14] 赵美训, 高文献, 邢磊, 张玉琢, 李莉, 刘健.  老黄河口海区表层沉积物有机质来源的BIT指标估算 . 海洋地质与第四纪地质, 2011, 31(4): 29-37. doi: 10.3724/SP.J.1140.2011.04029
    [15] 冯晓萍, 蔡进功.  沉积物的颗粒大小与所含有机质关系的研究进展 . 海洋地质与第四纪地质, 2010, 30(6): 141-148. doi: 10.3724/SP.J.1140.2010.06141
    [16] 曾海鳌, 吴敬禄.  外源对太湖河口沉积物有机质贡献的同位素示踪 . 海洋地质与第四纪地质, 2009, 29(1): 109-114. doi: 10.3724/SP.J.1140.2009.01109
    [17] 刘菲菲, 于增慧, 高玉花, 翟世奎, 张爱滨.  海洋沉积物的顺序萃取方法及其在冲绳海槽热液影响沉积物中的应用 . 海洋地质与第四纪地质, 2008, 28(5): 137-144.
    [18] 邱祝礼, 李有利, 南峰.  构造成因的沟谷建模及可视化 . 海洋地质与第四纪地质, 2007, 27(3): 127-132.
    [19] 邹亮, 韦刚健.  顺序提取法探讨沉积物中主量元素在不同相态的分配特征 . 海洋地质与第四纪地质, 2007, 27(2): 133-140.
    [20] 唐珉, 杨守业, 李保华, 李从先, 王强, 赵泉鸿.  长江三角洲冰后期沉积物的有机碳氮和有机碳同位素组成与古环境指示 . 海洋地质与第四纪地质, 2006, 26(5): 1-10.
  • 加载中
计量
  • 文章访问数:  1625
  • HTML全文浏览量:  213
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-29
  • 修回日期:  2013-10-02

海洋沉积有机物质的降解及其模式

doi: 10.3724/SP.J.1140.2014.04173
    作者简介:

    蒋宇轩(1987-),男,硕士生,海洋化学专业,Email:moonrisegw@163.com

基金项目:

国家自然科学基金项目(41276068,41020164005)

国家重点基础研究发展规划项目(2010CB428901)

  • 中图分类号: P736.4

摘要: 作为长期碳汇,海洋沉积物中埋藏的大量有机碳对全球碳循环和气候变化有重要影响。有机碳从海洋输出到沉积物中后,在沉积物中还要经历有氧降解和无氧降解。有机物降解是一个十分复杂的过程,影响这一过程的因素有很多,包括有机物本身的分子结构和组成种类;氧化还原状态;有机物所附着的基质;温度、压力、盐度等物理环境因素以及生物因素。研究沉积有机碳的含量及埋藏量变化首先需要校正降解对沉积有机碳含量的影响。降解模式是定量估算降解对沉积有机碳的影响的一个主要手段。在前人的研究基础上,讨论了影响沉积有机碳降解的因素,对降解模式的研究进展和应用进行了综述,提出了未来降解模式的发展中存在的问题。

English Abstract

参考文献 (61)

目录

    /

    返回文章
    返回