留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于冰川平衡线高度变化的气候重建模型研究

崔航 王杰

崔航, 王杰. 基于冰川平衡线高度变化的气候重建模型研究[J]. 海洋地质与第四纪地质, 2013, 33(4): 17-24. doi: 10.3724/SP.J.1140.2013.04017
引用本文: 崔航, 王杰. 基于冰川平衡线高度变化的气候重建模型研究[J]. 海洋地质与第四纪地质, 2013, 33(4): 17-24. doi: 10.3724/SP.J.1140.2013.04017
CUI Hang, WANG Jie. MODELS FOR CLIMATIC RECONSTRUCTION UPON GLACIER EQUILIBRIUM-LINE ALTITUDE VARIATION[J]. Marine Geology & Quaternary Geology, 2013, 33(4): 17-24. doi: 10.3724/SP.J.1140.2013.04017
Citation: CUI Hang, WANG Jie. MODELS FOR CLIMATIC RECONSTRUCTION UPON GLACIER EQUILIBRIUM-LINE ALTITUDE VARIATION[J]. Marine Geology & Quaternary Geology, 2013, 33(4): 17-24. doi: 10.3724/SP.J.1140.2013.04017

基于冰川平衡线高度变化的气候重建模型研究


doi: 10.3724/SP.J.1140.2013.04017
详细信息
    作者简介:

    崔航(1987-),男,硕士,主要从事第四纪冰川与地貌研究,E-mail:cuihang071987@gmail.com

  • 基金项目:

    国家自然科学基金重大研究计划-重点支持项目(91125008)

    国家自然科学基金项目(41171063)

    中央高校基本科研业务费专项资金项目(LZUJBKY-2013-125)

  • 中图分类号: P532

MODELS FOR CLIMATIC RECONSTRUCTION UPON GLACIER EQUILIBRIUM-LINE ALTITUDE VARIATION

More Information
  • 摘要: 冰川物质平衡线高度(equilibrium-line altitude,ELA)变化的研究是冰川学研究的重要内容,其变化情况将最终决定冰川的命运。与冰川的其他特征(如冰川长度、面积)相比,ELA的变化是气候变化最直接的反应,其变化量常被用于对比不同区域间的气候变化特征差异。基于冰川ELA变化的气候重建的统计学方法,如ELA处气温与降水关系模型、气温递减率模型(Lapse-rate model)和温度指数融化模型(Temperature index melt model),结构简单,能获得较好的模拟效果,但均未能从冰川变化的物理成因来研究影响ELA升降的气候因素,且在数据不足时理论也缺乏说服力;物理方法,如能量-物质平衡模型是基于影响冰川变化的能量因子来探讨ELA升降的机制,其参数较多、计算复杂,但精度较高。不同模型受其本身及冰川类型等因素的影响,适用性及精度差别较大。
  • [1] 谢自楚, 刘潮海. 冰川学导论[M]. 上海:科学普及出版社, 2010:116-124.[XIE Zichu, LIU Chaohai. Introduction of Glaciology[M]. Shanghai:Shanghai Popular Science Press, 2010:116

    -124.]
    [2] 鞠远江, 刘耕年, 张晓咏, 等. 山地冰川物质平衡线与气候[J]. 地理科学进展, 2004, 23(3):43-49.

    [JU Yuanjang, LIU Gengnian, ZHANG Xiaoyong, et al. High mountain glaciers' ELA0 and climate[J]. Progress in Geography, 2004, 23(3):43-49.]
    [3] Ohmura A, Kaser P, Funk M. Climate at the equilibrium line of glaciers[J]. Journal of Glaciology, 1992, 38:397-411.
    [4] Hoinkes H C. Glacier variation and weather[J]. Journal of Glaciology, 1968, 7:3-18.
    [5] Kuhn M. Climate and glaicers[Z]. IAHS Publ., 1979:3-20.
    [6] 张金华, 王晓军, 李军. 天山乌鲁木齐河源1号冰川物质平衡变化与气候相互关系的研究[J]. 冰川冻土, 1984, 6(4):25-36.

    [ZHANG Jinhua, WANG Xiaojun, LI Jun. Study on relationship between mass balance changes of Glacier No.1 at the headwater of Urumqi River, Tianshan and climate[J]. Journal of Glaciology and Geocryology, 1984, 6(4):25-36.]
    [7] 张祥松, 孙作哲, 张金华, 等. 天山乌鲁木齐河源1号冰川的变化及其与气候变化的若干关系[J]. 冰川冻土, 1984, 6(4):1-12.

    [ZHANG Xiangsong, SUN Zuozhe, ZHANG Jinhua et al. Some relationships of the fluctuation of Glacier NO.1 with climatic change at the source of Urumqi River, Tianshan[J]. Journal of Glaciology and Geocryology, 1984, 6(4):1-12.]
    [8] 白重瑗. 冰川与气候关系的研究[J]. 冰川冻土, 1989, 11(4):287-297.

    [BAI Chongyuan. A study of relationship between climate and mountain glaciers[J]. Journal of Glaciology and Geocryology, 1989, 11(4):287-297.]
    [9] 张寅生, 姚檀栋, 蒲健辰. 我国大陆型山地冰川对气候变化的响应[J]. 冰川冻土, 1998, 20(1):3-8.

    [ZHANG Yinsheng, YAO Tandong, PU Jianchen. The response of continental-type glaciers to climate change in China[J]. Journal of Glaciology and Geocryology, 1998, 20(1):3-8.]
    [10] Pu J C, Yao T D, Yang M X, et al. Rapid decrease of mass balance observed in the Xiao (Lesser) Dongkemadi Glacier, in the central Tibetan Plateau[J]. Hydrological Processes, 2008, 22:2953-2958.
    [11] 张威, 闫玲, 崔之久, 等. 长白山现代理论雪线和古雪线高度[J]. 第四纪研究, 2008, 28(4):739-745.

    [ZHANG Wei, YAN Ling, CUI Zhijiu, et al. Present and Late Pleistocene equilibrium line altitudes in Changbai Shan, Northeast China[J]. Quaternary Sciences, 2008, 28(4):739-745.]
    [12] Bowerman N D, Clark D H. Holocene glaciations of the central Sierra Nevada, California[J]. Quaternary Science Reviews, 2011, 30:1067-1085.
    [13] Bendle J M, Glasser N F. Palaeoclimatic reconstruction from Lateglacial(Younger Dryas Chronozone) cirque glaciers in Snowdonia, North Wales[J]. Proceedings of the Geologists' Association, 2012, 123:130-145.
    [14] 施雅风, 崔之久, 苏珍. 中国第四纪冰川与环境变化[M]. 河北:河北科学技术出版社, 2006:65-115.[SHI Yafeng, CUI Zhijiu, SU Zhen. The Quaternary Glaciations and Environmental Variations in China[M]. Hebei:Hebei Science and Technology Publishing House, 2006:65

    -115.]
    [15] 赖祖铭, 黄茂桓. 我国冰川的模糊聚类分析[J]. 科学通报, 1988, 33(16):1250-1253.

    [LAI Zuming, HUANG Maohuan. Glacier in China with fuzzy clustering analysis[J]. Chinese Science Bulletin, 1988, 33(16):1250-1253.]
    [16] Zhou Shangzhe, Wang Jie, Xu Liubing et al. Glacial advances in southeastern Tibet during late Quaternary and their implications for climatic changes[J]. Quaternary International, 2010, 218:58-66.
    [17] 施雅风, 黄茂桓, 任炳辉. 中国冰川概论[M]. 北京:科学出版社, 1988:11-28.[SHI Yafeng, HUANG Maohuan, REN Binghui. An Introduction to the Glaciers in China[M]. Beijing:Since Press, 1988:11

    -28.]
    [18] Ramage J M, Smith J A, Rodbell D T, et al. Comparing reconstructed Pleistocene equilibrium-line altitudes in the tropical Andes of central Peru[J]. Journal of Quaternary Science, 2005, 20:777-778.
    [19] Carr S, Coleman C. An improved technique for the reconstruction of former glacier mass-balance and dynamics[J]. Geomorphology, 2007, 92:76-90.
    [20] Seltzer G O. Climatic interpretation of Alpine snowline variations on Millennial time scales[J]. Quaternary Research, 1994, 41:154-159.
    [21] Porter S T. Present and past glaciations threshold in the Cascade Range, Washington, U.S.A.:topographic and climatic controls, and paleoclimatic implications[J]. Journal of Glaciology, 1977, 18:101-116.
    [22] Miller G H, de Vernal A. Will greenhouse warming lead to Northern Hemisphere ice-sheet growth?[J]. Nature, 1992, 355:244-246.
    [23] Gillespie A R, Burke R M, Komatsu G, et al. Late Pleistocene glaciers in Darhad Basin, northern Mongolia[J]. Quaternary Research, 2008, 69:169-187.
    [24] Braithwaite R J. On glacier energy balance, ablation, and air temperature[J]. Journal of Glaciology, 1981, 27:381-391.
    [25] Braithwaite R J, Konzelmann T, Marty C, et al. Errors in daily ablation measurements in northern Greenland, 1993-94, and their implications for glacier climate studies[J]. Journal of Glaciology, 1998, 44:583-588.
    [26] Braithwaite R J, Zhang Yu. Modelling changes in glacier mass balance that may occur as a result of climate changes[J]. Geografiska Annaler, 1999, 81:489-496.
    [27] 刘时银, 丁永健, 王宁练, 等. 天山乌鲁木齐河源1号冰川物质平衡对气候变化的敏感性研究[J]. 冰川冻土, 1998, 20(1):9-13.

    [LIU Shiyin, DING Yongjian, WANG Ninglian, et al. Mass balance sensitivity to climate change of the Glacier No.1 at the Urumqi River Head, Tianshan Mts[J]. Journal of Glaciology and Geocryology, 1998, 20(1):9-13.]
    [28] Laumann T, Reeh N. Sensitivity to climate change of the mass balance of glaciers in southern Norway[J]. Journal of Glaciology, 1993, 39:656-665.
    [29] Braithwaite R J. Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling[J]. Journal of Glaciology, 1995, 41:153-160.
    [30] Heyman B M, Heyman J, Fickert T, et al. Paleo-climate of the central European uplands during the last glacial maximum based on glacier mass-balance modeling[J]. Quaternary Research, 2013, 79:49-54.
    [31] Peyron O, Guiot J, Cheddadi R, et al. Climatic reconstruction in Europe for 18000 yr B.P. pollen data[J]. Quaternary Research, 1998, 49:183-196.
    [32] Hock R. Temperature index melt modelling in mountain areas[J]. Journal of Hydrology, 2003, 282:104-115.
    [33] 张勇, 刘时银. 度日模型在冰川与积雪研究中的应用进展[J]. 冰川冻土, 2006, 28(1):101-107.

    [ZHANG Yong, LIU Shiyin. Progress of the application of Degree-day model to study glaciers and snow cover[J]. Journal of Glaciology and Geocryology, 2006, 28(1):101-107.]
    [34] Sato A, Takahashi S, Naruse R, et al. Abaltion and heat balance of the Yukikabe Snow Patch in the Daisetsu Mountains, Hokkaido, Japan[J]. Annals of Glaciology, 1984, 5:122-126.
    [35] Ohmura A. Physical basis for the temperature-based melt-index method[J]. Journal of Applied Meteorology, 2001, 40:753-761.
    [36] 卿文武, 陈仁升, 刘时银. 冰川水文模型研究进展[J]. 水科学进展, 19(6):893-902.[QING Wenwu, CHEN Rensheng, LIU Shiyin. Progress in study of glacier hydrological model[J]. Advances in Water Science, 19

    (6):893-902.]
    [37] Kayastha R B, Ohata T, Ageta Y. Application of a mass-balance model to a Himalayan glacier[J]. Journal of Glaciology, 1999, 45:559-567.
    [38] Molg T, Hardy D R. Ablation and associate energy balance of a horizontal glacier surface on Kilimanjaro[J]. Journal of Geophysical Research, 2004, 109:1-13.
    [39] Zhang Yinsheng, Koji F, Ageta Y, et al. The response of glacier ELA to climate fluctuations on High-Asia[J]. Bulletin of Glacier Research, 1998, 16:1-11.
    [40] Rupper S, Roe G. Glacier changes and regional climate:a mass and energy balance approach[J]. Journal of Climate, 2008, 21:5384-5401.
    [41] Rupper S, Roe G, Gillespie A. Spatial patterns of Holocene glacier advance and retreat in Central Asia[J]. Quaternary Research, 2009, 72:337-346.
    [42] 施雅风, 黄茂桓, 姚檀栋, 等. 中国现代冰川与环境-现在、过去和未来[M]. 北京:科学出版社, 2000:79-100.[SHI Yafeng, HUANG Maohuan, YAO Tandong, et al. Glaciers and Their Environments in China-the Present, Past and Future[M]. Beijing:Science Press, 2000:79

    -100.]
    [43] Kane D L, Gieck M ASCE R E, Hinzman L D. Snowmelt modeling at small Alaskan Arctic watershed[J]. Journary of Hydrologic Engineering, 1997, 2:204-210.
    [44] Kaser G, Osmaston H A. Tropical Glaciers[M]. Cambridge:Cambridge University Press, 2002:149-192.
    [45] Paterson W S B. The Physics of Glaciers (3rd Edition)[M]. Oxford, UK:Pergarnon Press, 1994:53-77.
    [46] Braithwaite R J, Olesen O L. Response of the energy balance on the margin of the Greenland ice sheet to temperature changes[J]. Journal of Glaciology, 1990, 36:217-221.
    [47] Ambach W. Climatic shift of the equilibrium line concept applied to the Greenland ice cap[J]. Annals of Glaciology, 1985, 6:76-78.
    [48] Berger A L. Long-term variations of caloric insolation resulting from the Earth's orbital elements[J]. Quaternary Research, 1978, 9:139-167.
    [49] Hastenrath S L. On the Pleistocene snow-line depression in the arid regions of the south American Andes[J]. Journal of Glaciology, 1971, 10:255-267.
    [50] Leonard E M. Climatic change in the Colorado Rocky Mountains:estimates based on modern climate at Late Pleistocene equilibrium lines[J]. Arctic and Alpine Research, 1989, 21:245-255.
    [51] 张寅生, 姚檀栋, 蒲健辰. 我国大陆型冰川消融特征分析[J]. 冰川冻土, 1996, 18(2):147-154.

    [ZHANG Yinsheng, YAO Tandong, PU Jianchen. The characteristics of ablation on continental-type glaciers in china[J]. Journal of Glaciology and Geocryology, 1996, 18(2):147-154.]
  • [1] 李拴虎, 亓越, 王晓荣, 高瑜, 邢渊浩.  黄土-泥岩滑坡渐进滑动失稳的模型试验研究 . 海洋地质与第四纪地质, 2023, 43(2): 200-207. doi: 10.16562/j.cnki.0256-1492.2022082501
    [2] 王小杰, 颜中辉, 刘俊, 刘欣欣, 杨佳佳.  基于模型优化的广义自由表面多次波压制技术在印度洋深水海域的应用 . 海洋地质与第四纪地质, 2021, 41(5): 221-230. doi: 10.16562/j.cnki.0256-1492.2020101202
    [3] 宋濠男, 张泳聪, 韩喜彬, 胡栟铫, 龙飞江.  非洲东南纳塔尔海谷MIS12期以来的物质来源和古气候变化:IODP U1474孔黏土矿物记录 . 海洋地质与第四纪地质, 2021, 41(4): 142-156. doi: 10.16562/j.cnki.0256-1492.2021042001
    [4] 赵格格, 田庆春, 杜五喜, 裴瑜, 鄂崇毅.  临汾盆地黄土粒度分布的端元模型研究 . 海洋地质与第四纪地质, 2021, 41(2): 192-200. doi: 10.16562/j.cnki.0256-1492.2020082601
    [5] 徐仕琨, 叶加仁, 杨宝林, 赵牛斌.  渤海海域沙南凹陷烃源岩TOC测井预测模型优选及应用 . 海洋地质与第四纪地质, 2020, 40(5): 182-191. doi: 10.16562/j.cnki.0256-1492.2019092901
    [6] 肖晓, 冯秀丽, 林霖, 姜波, 冯智泉.  低围压下埕北海域重塑粉土振动孔压模型试验研究 . 海洋地质与第四纪地质, 2020, 40(4): 214-222. doi: 10.16562/j.cnki.0256-1492.2019070401
    [7] 邢琮琮, 徐行.  地磁场模型在海洋磁测资料处理中的应用研究 . 海洋地质与第四纪地质, 2020, 40(3): 214-221. doi: 10.16562/j.cnki.0256-1492.2020032401
    [8] 张峰, 刘丽华, 吴能友, 吴起, 金光荣.  细砂质含水合物沉积介质的非线性弹性力学模型 . 海洋地质与第四纪地质, 2019, 39(3): 193-198. doi: 10.16562/j.cnki.0256-1492.2018020701
    [9] 韦振权, 张莉, 帅庆伟, 易海, 钱星, 雷振宇, 王衍棠.  平衡剖面技术在台湾海峡盆地西部构造演化研究中的应用 . 海洋地质与第四纪地质, 2018, 38(5): 193-201. doi: 10.16562/j.cnki.0256-1492.2018.05.019
    [10] 刘浩伽, 李彦龙, 刘昌岭, 董长银, 吴能友, 孙建业.  水合物分解区地层砂粒启动运移临界流速计算模型 . 海洋地质与第四纪地质, 2017, 37(5): 166-173. doi: 10.16562/j.cnki.0256-1492.2017.05.017
    [11] 李灿苹, 勾丽敏, 尤加春, 欧触灵.  冷泉活动区气泡羽状流数值模型研究 . 海洋地质与第四纪地质, 2017, 37(5): 141-150. doi: 10.16562/j.cnki.0256-1492.2017.05.014
    [12] 陈漪馨, 刘焱光, 姚政权, 董林森, 李朝新.  末次盛冰期以来挪威海北部陆源物质输入对气候变化的响应 . 海洋地质与第四纪地质, 2015, 35(3): 95-108. doi: 10.3724/SP.J.1140.2015.03095
    [13] 吴文祥, 房茜, 葛全胜.  中国龙山时代(5.0~4.0kaBP)气候变化 . 海洋地质与第四纪地质, 2013, 33(6): 129-137. doi: 10.3724/SP.J.1140.2013.06129
    [14] 李三忠, 索艳慧, 刘鑫, 戴黎明, 余珊, 赵淑娟, 马云, 王霄飞, 程世秀, 薛友辰, 熊莉娟, 安慧婷.  南海的基本构造特征与成因模型:问题与进展及论争 . 海洋地质与第四纪地质, 2012, 32(6): 35-53. doi: 10.3724/SP.J.1140.2012.06035
    [15] 高红艳, 钟广法, 梁金强, 郭依群.  应用改进的Biot-Gassmann模型估算天然气水合物的饱和度 . 海洋地质与第四纪地质, 2012, 32(4): 83-89. doi: 10.3724/SP.J.1140.2012.04083
    [16] 史经昊, 李广雪.  三维多组分泥沙数值模型在胶州湾的应用 . 海洋地质与第四纪地质, 2010, 30(6): 15-24. doi: 10.3724/SP.J.1140.2010.06015
    [17] 张荣强, 吴时国, 周雁, 余朝华, 冯德勇, 于正军.  平衡剖面技术及其在济阳坳陷桩海地区的应用 . 海洋地质与第四纪地质, 2008, 28(6): 135-142. doi: 10.3724/SP.J.1140.2008.06135
    [18] 张冉, 刘晓东, 安芷生.  青藏高原古高度重建方法研究进展 . 海洋地质与第四纪地质, 2008, 28(5): 129-136.
    [19] 谢露华, 韦刚健.  南海北部滨珊瑚微结构的SEM分析及其对气候记录重建的意义 . 海洋地质与第四纪地质, 2008, 28(3): 1-8.
    [20] 张晓东, 许淑梅, 翟世奎, 张怀静.  东海内陆架沉积气候信息的端元分析模型反演 . 海洋地质与第四纪地质, 2006, 26(2): 25-32.
  • 加载中
计量
  • 文章访问数:  1831
  • HTML全文浏览量:  159
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-05
  • 修回日期:  2013-07-12

基于冰川平衡线高度变化的气候重建模型研究

doi: 10.3724/SP.J.1140.2013.04017
    作者简介:

    崔航(1987-),男,硕士,主要从事第四纪冰川与地貌研究,E-mail:cuihang071987@gmail.com

基金项目:

国家自然科学基金重大研究计划-重点支持项目(91125008)

国家自然科学基金项目(41171063)

中央高校基本科研业务费专项资金项目(LZUJBKY-2013-125)

  • 中图分类号: P532

摘要: 冰川物质平衡线高度(equilibrium-line altitude,ELA)变化的研究是冰川学研究的重要内容,其变化情况将最终决定冰川的命运。与冰川的其他特征(如冰川长度、面积)相比,ELA的变化是气候变化最直接的反应,其变化量常被用于对比不同区域间的气候变化特征差异。基于冰川ELA变化的气候重建的统计学方法,如ELA处气温与降水关系模型、气温递减率模型(Lapse-rate model)和温度指数融化模型(Temperature index melt model),结构简单,能获得较好的模拟效果,但均未能从冰川变化的物理成因来研究影响ELA升降的气候因素,且在数据不足时理论也缺乏说服力;物理方法,如能量-物质平衡模型是基于影响冰川变化的能量因子来探讨ELA升降的机制,其参数较多、计算复杂,但精度较高。不同模型受其本身及冰川类型等因素的影响,适用性及精度差别较大。

English Abstract

参考文献 (51)

目录

    /

    返回文章
    返回