留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海底天然气水合物生长的数值模拟研究及进展

叶鸿 杨涛 朱国荣 蒋少涌

叶鸿, 杨涛, 朱国荣, 蒋少涌. 海底天然气水合物生长的数值模拟研究及进展[J]. 海洋地质与第四纪地质, 2013, 33(2): 143-152. doi: 10.3724/SP.J.1140.2013.02143
引用本文: 叶鸿, 杨涛, 朱国荣, 蒋少涌. 海底天然气水合物生长的数值模拟研究及进展[J]. 海洋地质与第四纪地质, 2013, 33(2): 143-152. doi: 10.3724/SP.J.1140.2013.02143
YE Hong, YANG Tao, ZHU Guorong, JIANG Shaoyong. ADVANCES IN NUMERICAL MODELING OF GAS HYDRATE FORMATION IN MARINE SEDIMENTS[J]. Marine Geology & Quaternary Geology, 2013, 33(2): 143-152. doi: 10.3724/SP.J.1140.2013.02143
Citation: YE Hong, YANG Tao, ZHU Guorong, JIANG Shaoyong. ADVANCES IN NUMERICAL MODELING OF GAS HYDRATE FORMATION IN MARINE SEDIMENTS[J]. Marine Geology & Quaternary Geology, 2013, 33(2): 143-152. doi: 10.3724/SP.J.1140.2013.02143

海底天然气水合物生长的数值模拟研究及进展


doi: 10.3724/SP.J.1140.2013.02143
详细信息
    作者简介:

    叶鸿(1984-),男,博士生,主要从事流体动力学和水资源模型研究,E-mail:nergenda@gmil.com

  • 中图分类号: P744.4

ADVANCES IN NUMERICAL MODELING OF GAS HYDRATE FORMATION IN MARINE SEDIMENTS

More Information
  • 摘要: 阐述了利用数值模拟手段研究天然气水合物生成、储积、运移和分解规律的方法与进展。回顾了近20年以来国内外研究人员在该领域的研究成果,包括两大类概念模型及多个天然气水合物数值模型,并根据所采用的概念模型不同,把数值模型分为3类:低通量模型、高通量模型和混合通量模型。经过详细对比各种模型后,认为基于多孔介质水动力学流动-弥散理论的水合物数值模型具有良好的合理性与适用性,能够揭示天然气水合物的生长行为。最后对天然气水合物模型的发展前景作出了预测。
  • [1] Kvenvolden K A. Gas hydrates-geological perspective and global change[J]. Reviews of Geophysics, 1993, 31:173-187.
    [2] Hester K C, Brewer P G. Clathrate hydrates in nature[J]. Annual Review of Marine Science, 2009, 1:303-327.
    [3] Kvenvolden K A. A review of the geochemistry of methane in natural gas hydrate[J]. Organic Geochemistry, 1995, 23(11-12):997-1008.
    [4] Sloan E D Jr. Physical/chemical properties of gas hydrate and application to world margin stability and climatic change[C]//Gas Hydrate Relevance to World Margin Stability and Climate Change. Geological Society, UK. 1998.
    [5] Buffett B A. Clathrate hydrates[J]. Annual Review of Earth Planetary Science, 2000, 28:477-507.
    [6] Klauda J B, Sandler S I. Global distribution of methane hydrate in ocean sediment[J]. Energy & Fuels, 2005, 19:459-470.
    [7] 张洪涛,张海启,祝有海.中国天然气水合物调查研究现状及其进展[J].中国地质, 2007, 34(6):953-961.

    [ZHANG Hongtao, ZHANG Haiqi, ZHU Youhai. Gas hydrate investigation and research in China:Present status and progress[J]. Geology in China, 2007, 34(6):953-961.]
    [8] MacDonald G J. Role of methane clathrates in past and future climates[J]. Climatic Change, 1990, 16:247-281.
    [9] Davie M K, Buffett B A. A numerical model for the formation of gas hydrate below the seafloor[J]. Journal of Geophysical Research, 2001, 106(B1):497-514.
    [10] 吴庐山,邓希光,梁金强,等.南极陆缘天然气水合物特征及资源前景[J].海洋地质与第四纪地质, 2010, 30(1):95-107.

    [WU Lushan, DENG Xiguang, LIANG Jinqiang, et al. The characteristics and resource potential of gas hydrates in the Antarctic margins[J]. Marine Geology and Quaternary Geology, 2010, 30(1):95-107.]
    [11] 苏正,陈多福.海洋环境甲烷水合物溶解度及其对水合物发育特征的控制[J].地球物理学报,2007, 50(5):1518-1526.

    [SU Zheng, CHEN Duofu. Calculation of methane hydrate solubility in marine environment and its constraints on gas hydrate occurrence[J]. Chinese Journal of Geophysics, 2007, 50(5):1518-1526.]
    [12] 苏正,陈多福.海洋天然气水合物的类型及特征[J].大地构造与成矿学,2006, 30(3):256-264.

    [SU Zheng, CHEN Duofu. Types of gas hydrates and their characteristics in marine environments[J]. Geotectonica et Metallogenia, 2006, 30(3):256-264.]
    [13] Milkov A V. Molecular and stable isotope compositions of natural gas hydrates:A revised global dataset and basic interpretations in the context of geological settings[J]. Organic Geochemistry, 2005, 36:681-702.
    [14] Clennell M B, Hovland M, Booth J S, et al. Formation of natural gas hydrates in marine sediments. 1. Conceptual model of gas hydrate growth conditioned by host sediment properties[J]. J. Geophys. Res., 1999, 104(B10):22985-23003.
    [15] Zatsepina O Y, Buffett B A. Thermodynamic conditions for the stability of gas hydrate in the seafloor[J]. J. Geophys. Res., 1998, 103:24127-24139.
    [16] Chatterjee Sayantan, Dickens G, Bhatnagar Gaurav, et al. Pore water sulfate, alkalinity, and carbon isotope profiles in shallow sediment above marine gas hydrate systems:A numerical modeling perspective[J]. J. Geophys. Res., 2011, 116, B 09103, doi:10.1029/2011JB008290
    [17] Rempel A W, Buffett B A. Formation and accumulation of gas hydrate in porous media[J]. J. Geophys. Res., 1997, 102:10151-10164.
    [18] Xu Wenyue, Ruppel C. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments[J]. J. Geophys. Res., 1999, 104:5081-5095.
    [19] Valentine D L, Reeburgh W S. New perspectives on anaerobic methane oxidation[J]. Environmental Microbiology, 2000, 2(5):477-484.
    [20] Liu Xiaoli, Flemings P B. Dynamic multiphase flow model of hydrate formation in marine sediments[J]. J. Geophys. Res., 2007, 112, B03101,doi:10.1029/2005JB004227.
    [21] Chen Duofu, Cathles L M. A kinetic model for the pattern and amounts of hydrate precipitated from a gas steam:Application to the Bush Hill vent site, Green Canyon Block 185, Gulf of Mexico[J]. J. Geophys. Res., 2003, 108(B1):2058.
    [22] Bhatnagar Gaurav, Chapman W, Dickens G, et al. Generalization of gas hydrate distribution and saturation in marine sediments by scaling of thermodynamic and transport processes[J]. Am. J. Sci., 2007, 307:861-900.
    [23] Torres M E, McManus J, Hammond D E, et al. Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, I:Hydrological provinces[J]. Earth and Planet. Sci. Lett., 2001, 201:525-540.
    [24] Tréhu A M, Long P E, Torres M E, et al. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge:constraints from ODP Leg 204[J]. Earth and Planet. Sci. Lett., 2004, 222:845-862.
    [25] Nimblett J, Ruppel C. Permeability evolution during the formation of gas hydrates in marine sediments[J]. J. Geophys. Res., 2003, 108(B9):2420.
    [26] He Li Juan, Matsubayashi O, Lei X L. Methane hydrate accumulation model for the Central Nankai accretionary prism[J]. Marine Geol., 2006, 227:201-214.
    [27] Davie M K, Buffett B A. A steady state model for marine hydrate formation:Constraints on methane supply from pore water sulfate profiles[J]. J. Geophys. Res., 2003, 108(B10):2495.
    [28] Buffett B A, Archer D. Global inventory of methane clathrate:sensitivity to changes in the deep ocean[J]. Earth and Planet. Sci. Lett., 2004, 227:185-199.
    [29] Garg S, Pritchett J, Katoh A, et al. A mathematical model for the formation and dissociation of methane hydrates in the marine environment[J]. J. Geophys. Res., 2008, 113:B01201.
    [30] Haacke R, Westbrook G, Riley M. Controls on the formation and stability of gas hydrate-related bottom-simulating reflectors (BSRs):A case study from the west Svalbard continental slope[J]. J. Geophys. Res., 2008, 113, B05104, doi:10.1029/2007 JB005200
    [31] Zatsepina O Y, Buffett B A. Phase equilibrium of gas hydrate:Implications for the formation of hydrate in the deep sea floor[J]. Geophys. Res. Lett., 1997, 24(13):1567-1570.
    [32] Archer D E, Morford J L, Emerson S R. A model of suboxic sedimentary diagenesis suitable for automatic tuning and gridded global domains[J]. Global Biogeochemical Cycles, 2002, 16(1):10.1029/2000GB001288.
    [33] Torres M E, Wallmann K, Trehu A M et al. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon[J]. Earth and Planet. Sci. Lett., 2004, 226:225-241.
    [34] Haese R R, Meile C, Van Cappellen P, et al. Carbon geochemistry of cold seeps:Methane fluxes and transformation in sediments from Kazan mud volcano, eastern Mediterranean Sea[J]. Earth and Planet. Sci. Lett., 2003, 212:361-375.
    [35] Treude T, Boetius A, Knittel K, et al. Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean[J]. Marine Ecology Progress Series, 2003, 264:1-14.
    [36] Luff R, Wallmann K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin:Numerical modeling and mass balances[J]. Geochimica et Cosmochimica Acta, 2003, 67(18):3403-3421.
    [37] Haeckel M, Suess E, Wallmann K, et al. Rising methane gas bubbles form massive hydrate layers at the seafloor, Geochimica et Cosmochimica Acta, 2004, 68:4335-4345.
    [38] Wortmann U, Chernyavsky B. The significance of isotope specific diffusion coefficients for reaction-transport models of sulfate reduction in marine sediments[J].Geochimica et Cosmochimica Acta, 2011, 75:3046-3056.
    [39] Cathles L M, Chen Duo Fu. A compositional kinetic model of hydrate crystallization and dissolution[J]. J. Geophys. Res., 2004, 109:B08102.
    [40] Guan Jin'an, Liang Deqing, Wu Nengyou, et al. The methane hydrate formation and the resource estimate resulting from free gas migration in seeping seafloor hydrate stability zone[J]. J. Asian Earth Sci., 2009, 36:277-288.
    [41] Bear J. Dynamics of fluids in porous media[M]. American Elsevier Publishing Company Inc., 1972.
    [42] Luff R, Wallmann K, Grandel S, et al. Numerical modeling of benthic processes in the deep Arabian Sea[J]. Deep-Sea Research Ⅱ, 2000, 47:3039-3072.
    [43] Boudreau B P. A method-of-lines code for carbon and nutrient diagenesis in aquatic sediments[J]. Computers and Geosciences, 1996, 22(5):479-496.
    [44] Liu Xiaoli, Flemings P B. Passing gas through the hydrate stability zone at southern Hydrate Ridge, offshore Oregon[J]. Earth and Planet. Sci. Lett., 2006, 241:211-226.
    [45] Liu Xiaoli, Flemings P B. Capillary effects on hydrate stability in marine sediments[J]. J. Geophys. Res., 2011, 116:B07102.
    [46] Bhatnagar Gaurav, Chapman W, Dickens G, et al. Sulfate-methane transition as a proxy for average methane hydrate saturation in marine sediments[J]. Geophys. Res. Lett., 2008, 35:L03611.
    [47] Hyndman R D, Davis E E. A mechanism for the formation of methane hydrate and sea-floor bottom-simulating reflectors by vertical fluid expulsion[J]. J. Geophys. Res., 1992, 97:7025-7041.
    [48] Dickens G R, QuinbyHunt M S. Methane hydrate stability in pore water:A simple theoretical approach for geophysical applications[J]. J. Geophys. Res., 1997, 102:773-783.
    [49] Egeberg P K, Dickens G R. Thermodynamic and pore water halogen constraints on gas hydrate distribution at ODP Site 997(Blake Ridge)[J]. Chem. Geol., 1999, 153:53-79.
    [50] Henry P, Thomas M, Clennell M B. Formation of natural gas hydrates in marine sediments 2. Thermodynamic calculations of stability conditions in porous sediments[J]. J. Geophys. Res., 1999, 104(B10):23005-23022.
    [51] Gering K L. Simulations of methane hydrate phenomena over geologic timescales. Part 1:Effect of sediment compaction rates on methane hydrate and free gas accumulations[J]. Earth and Planet, Sci, Lett., 2003, 206:65-81.
    [52] Sultan N, Foucher J P, Cochonat P, et al. Dynamics of gas hydrate:case of the Congo continental slope[J]. Marine Geology, 2004, 206:1-18.
    [53] Sultan N, Cochonat P, Foucher J P, et al. Effect of gas hydrates melting on seafloor slope instability[J]. Marine Geology, 2004, 213:379-401.
    [54] Xu Wenyue, Germanovich L N. Excess pore pressure resulting from methane hydrate dissociation in marine sediments:A theoretical approach[J]. J. Geophys. Res., 2006, 111:B01104.
    [55] Daigle H, Dugan B. Origin and evolution of fracture-hosted methane hydrate deposits[J]. J. Geophys. Res., 2010, 115:B11103.
    [56] Cacas M C, Ledoux E, De Marsily G. Modeling fracture flow with a stochastic discrete fracture network:calibration and validation 2. The transport model[J]. Water Resources Res., 1990, 26(3):491-500.
    [57] Anderson M P, Woessner W W. Applied groundwater modeling, simulation of flow and advective transport[M]. Academic Press, Inc., 1992.
    [58] Zheng Chunmiao, Bennett G D. Applied Contaminant Transport Modeling (2nd edition)[M]. Wiley Interscience, 2002.
  • [1] 张峰, 刘丽华, 吴能友, 吴起, 金光荣.  细砂质含水合物沉积介质的非线性弹性力学模型 . 海洋地质与第四纪地质, 2019, 39(3): 193-198. doi: 10.16562/j.cnki.0256-1492.2018020701
    [2] 刘浩伽, 李彦龙, 刘昌岭, 董长银, 吴能友, 孙建业.  水合物分解区地层砂粒启动运移临界流速计算模型 . 海洋地质与第四纪地质, 2017, 37(5): 166-173. doi: 10.16562/j.cnki.0256-1492.2017.05.017
    [3] 李灿苹, 勾丽敏, 尤加春, 欧触灵.  冷泉活动区气泡羽状流数值模型研究 . 海洋地质与第四纪地质, 2017, 37(5): 141-150. doi: 10.16562/j.cnki.0256-1492.2017.05.014
    [4] 张艳平, 罗敏, 胡钰, 陈多福.  海底有机质早期成岩和甲烷缺氧氧化数值模型研究进展 . 海洋地质与第四纪地质, 2017, 37(5): 109-121. doi: 10.16562/j.cnki.0256-1492.2017.05.011
    [5] 张家政, 李胜利, 王明君, 赵广珍, 庞守吉, 张帅, 吴纪修.  南祁连盆地木里冻土区天然气水合物气源分析 . 海洋地质与第四纪地质, 2017, 37(5): 90-101. doi: 10.16562/j.cnki.0256-1492.2017.05.009
    [6] 张辉, 杨睿, 匡增桂, 黄丽, 阎贫.  海底沉积物中天然气水合物形成过程数值模拟:以深部流体向上供给甲烷为背景 . 海洋地质与第四纪地质, 2017, 37(1): 107-116. doi: 10.16562/j.cnki.0256-1492.2017.01.013
    [7] 钱进, 王秀娟, 董冬冬, 吴时国.  裂隙充填型天然气水合物的地震各向异性数值模拟 . 海洋地质与第四纪地质, 2015, 35(4): 149-154. doi: 10.16562/j.cnki.0256-1492.2015.04.016
    [8] 龚建明, 张莉, 张剑, 李永红, 陈晓慧, 王伟超, 杨志承.  青藏高原乌丽冻土区天然气水合物成藏条件 . 海洋地质与第四纪地质, 2015, 35(1): 145-151. doi: 10.3724/SP.J.1140.2015.01145
    [9] 沙志彬, 梁金强, 郑涛, 陆敬安, 王力峰, 苏丕波.  地震属性在天然气水合物预测中的应用 . 海洋地质与第四纪地质, 2013, 33(5): 185-192. doi: 10.3724/SP.J.1140.2013.05185
    [10] 龚跃华, 张光学, 郭依群, 梁金强, 沙志彬, 王宏斌, 梁劲.  南海北部神狐西南海域天然气水合物成矿远景 . 海洋地质与第四纪地质, 2013, 33(2): 97-104. doi: 10.3724/SP.J.1140.2013.02097
    [11] 杨睿, 张媛, 雷新华, 苏正, 梁金强, 沙志彬.  南海北部天然气水合物赋存带识别与深度预测 . 海洋地质与第四纪地质, 2011, 31(4): 141-147. doi: 10.3724/SP.J.1140.2011.04141
    [12] 张光学, 张明, 杨胜雄, 雷新华, 徐华宁, 刘学伟, 梁金强, 沙志彬.  海洋天然气水合物地震检测技术及其应用 . 海洋地质与第四纪地质, 2011, 31(4): 51-58. doi: 10.3724/SP.J.1140.2011.04051
    [13] 史经昊, 李广雪.  三维多组分泥沙数值模型在胶州湾的应用 . 海洋地质与第四纪地质, 2010, 30(6): 15-24. doi: 10.3724/SP.J.1140.2010.06015
    [14] 曾繁彩, 李绍荣, 陈宏文, 王刚龙.  基于GIS的天然气水合物数据管理系统及应用 . 海洋地质与第四纪地质, 2010, 30(5): 153-158. doi: 10.3724/SP.J.1140.2010.05153
    [15] 毕海波, 马立杰, 黄海军, 杜廷芹, 孔梅.  台西南盆地天然气水合物甲烷量估算 . 海洋地质与第四纪地质, 2010, 30(4): 179-186. doi: 10.3724/SP.J.1140.2010.04179
    [16] 吴庐山, 邓希光, 梁金强, 付少英.  南极陆缘天然气水合物特征及资源前景 . 海洋地质与第四纪地质, 2010, 30(1): 95-107. doi: 10.3724/SP.J.1140.2010.01095
    [17] 张明, 彭朝旭, 沙志彬.  天然气水合物准三维地震调查导航定位技术 . 海洋地质与第四纪地质, 2008, 28(6): 101-106. doi: 10.3724/SP.J.1140.2008.06101
    [18] 胡高伟, 张剑, 业渝光, 刁少波, 王家生.  天然气水合物的声学探测模拟实验 . 海洋地质与第四纪地质, 2008, 28(1): 135-141.
    [19] 龚跃华, 吴时国, 张光学, 王宏斌, 梁金强, 郭依群, 沙志彬.  南海东沙海域天然气水合物与地质构造的关系 . 海洋地质与第四纪地质, 2008, 28(1): 99-104.
    [20] 栾锡武, 岳保静, 鲁银涛.  东海天然气水合物的地震特征 . 海洋地质与第四纪地质, 2006, 26(5): 91-99.
  • 加载中
计量
  • 文章访问数:  1738
  • HTML全文浏览量:  170
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-12
  • 修回日期:  2012-10-26

海底天然气水合物生长的数值模拟研究及进展

doi: 10.3724/SP.J.1140.2013.02143
    作者简介:

    叶鸿(1984-),男,博士生,主要从事流体动力学和水资源模型研究,E-mail:nergenda@gmil.com

  • 中图分类号: P744.4

摘要: 阐述了利用数值模拟手段研究天然气水合物生成、储积、运移和分解规律的方法与进展。回顾了近20年以来国内外研究人员在该领域的研究成果,包括两大类概念模型及多个天然气水合物数值模型,并根据所采用的概念模型不同,把数值模型分为3类:低通量模型、高通量模型和混合通量模型。经过详细对比各种模型后,认为基于多孔介质水动力学流动-弥散理论的水合物数值模型具有良好的合理性与适用性,能够揭示天然气水合物的生长行为。最后对天然气水合物模型的发展前景作出了预测。

English Abstract

参考文献 (58)

目录

    /

    返回文章
    返回