留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南海北部ZHS-176孔古海洋学记录:氧同位素和有机碳

葛倩 孟宪伟 初凤友 薛佐 雷吉江

葛倩, 孟宪伟, 初凤友, 薛佐, 雷吉江. 南海北部ZHS-176孔古海洋学记录:氧同位素和有机碳[J]. 海洋地质与第四纪地质, 2012, 32(5): 73-80. doi: 10.3724/SP.J.1140.2012.05073
引用本文: 葛倩, 孟宪伟, 初凤友, 薛佐, 雷吉江. 南海北部ZHS-176孔古海洋学记录:氧同位素和有机碳[J]. 海洋地质与第四纪地质, 2012, 32(5): 73-80. doi: 10.3724/SP.J.1140.2012.05073
GE Qian, MENG Xianwei, CHU Fengyou, XUE Zuo, LEI Jijiang. PALEOCEANOGRAPHIC RECORDS OF CORE ZHS-176 FROM THE NORTHERN SOUTH CHINA SEA: OXYGEN ISOTOPE AND ORGANIC CARBON[J]. Marine Geology & Quaternary Geology, 2012, 32(5): 73-80. doi: 10.3724/SP.J.1140.2012.05073
Citation: GE Qian, MENG Xianwei, CHU Fengyou, XUE Zuo, LEI Jijiang. PALEOCEANOGRAPHIC RECORDS OF CORE ZHS-176 FROM THE NORTHERN SOUTH CHINA SEA: OXYGEN ISOTOPE AND ORGANIC CARBON[J]. Marine Geology & Quaternary Geology, 2012, 32(5): 73-80. doi: 10.3724/SP.J.1140.2012.05073

南海北部ZHS-176孔古海洋学记录:氧同位素和有机碳


doi: 10.3724/SP.J.1140.2012.05073
详细信息
    作者简介:

    葛倩(1983-),男,助理研究员,主要从事古海洋学方面的研究,E-mail:gq980447@hotmail.com

  • 基金项目:

    国家自然科学基金青年基金项目(41106045)

    国家海洋局第二海洋研究所基本科研业务费专项(JT1102)

  • 中图分类号: P736.2

PALEOCEANOGRAPHIC RECORDS OF CORE ZHS-176 FROM THE NORTHERN SOUTH CHINA SEA: OXYGEN ISOTOPE AND ORGANIC CARBON

More Information
  • 摘要: 对南海北部陆坡ZHS-176孔进行浮游有孔虫氧同位素和有机碳的研究,重建了末次冰期以来的古气候演化历史。ZHS-176孔浮游有孔虫氧同位素分析揭示了末次冰期期间的气候波动,如末次盛冰期、Heinrich事件1、Bølling-Allerød暖期与新仙女木事件在南海北部陆坡均有响应。同时,在全新世阶段存在3个强降水期和3个弱降水期。ZHS-176孔有机碳以生物成因为主,随着夏季风的增强,陆源物质含量增加,但在3 kaBP以后由于华南地区夏季风减弱而导致陆源输入减少。
  • [1] 钱建兴. 晚第四纪以来南海古海洋学研究[M]. 北京:科学出版社, 1999.[QIAN Jianxing. A Study of Paleoceanography in the South China Sea During the Late Quaternary[M]. Beijing:Science Press, 1999.]
    [2] Liu Z F, Tuo S T, Colin C, et al. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation[J]. Marine Geology, 2008, 255:149-155.
    [3] Wang P X, Wang L J, Bian Y H, et al. Late Quaternary paleoceanography of the South China Sea:Surface circulation and carbonate cycles[J]. Marine Geology, 1995, 127:145-165.
    [4] Jian Z M, Wang L J, Kienast M, et al. Benthic foraminiferal paleoceanography of the South China Sea over the last 40000 years[J]. Marine Geology, 1999, 156:159-186.
    [5] Wang P X, Li Q Y. The South China Sea-Paleoceanography and Sedimentology[M]. Developments in Paleoenvironmental Research Series, 13, Springer, Berlin, 2009.
    [6] Wang L J, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene:high-resolution sediment records from the South China Sea[J]. Marine Geology, 1999, 156:245-284.
    [7] Stuiver M, Reimer P J. Extended 14C data base and revised CALIB 3.014C age calibration program[J]. Radiocarbon, 1993, 35:215-230.
    [8] Grootes P M, Stuiver M, White J W C, et al. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores[J]. Nature, 1993, 366:552-554.
    [9] Yokoyama Y, Lambeck K, Deckker P D, et al. Timing of the Last Glacial Maximum from observed sea-level minima[J]. Nature, 2000, 406:713-716.
    [10] EPICA community members. Eight glacial cycles from an Antarctic ice core[J]. Nature, 2004, 429:623-628.
    [11] Li T G, Liu Z X, Hall M A, et al. Heinrich event imprints in the Okinawa Trough:evidence from oxygen isotope and planktonic foraminifera[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 176:133-146.
    [12] Xiang R, Chen M H, Li Q Y, et al. Planktonic forminiferal records of East Asia monsoon changes in the southern South China Sea during the last 40000 years[J]. Marine Micropaleontology, 2009, doi:10.1016/j.marmicro. 2009.06.004.
    [13] Steinke S, Kienast M, Groeneveld J, et al. Proxy dependence of the temporal pattern of deglacial warming in the tropical South China Sea:toward resolving seasonality[J]. Quaternary Science Reviews, 2008, 27:688-700.
    [14] An Z S. The history and variability of East Asian paleomonsoon climate[J]. Quaternary Science Reviews, 2000, 19:171-187.
    [15] Yuan D X, Cheng H, Edwards R L. Timing duration and transitions of the last interglacial monsoon[J]. Science, 2004, 304:575-578.
    [16] Alley R B, Marotzke J, Nordhaus W D, et al. Abrupt climate change[J]. Science, 2003, 299:2005-2010.
    [17] Stocker T F. Past and future reorganizations in the climate system[J].Quaternary Science Reviews, 2000, 19:301-319.
    [18] Broecker W S. Was the Younger Dryas triggered by a flood?[J].Science, 2006, 312:1146-1148.
    [19] Dansgaard W, Johnsen S J, Clausen H B, et al. Evidence for general instability of past climate from a 250-kyr ice core record[J]. Nature, 1993, 364:218-220.
    [20] Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science, 1997, 278:1257-1266.
    [21] Stuiver M, Reimer P J, Bard E, et al. Intcal98 radiocarbon age calibration, 24000-0 cal BP[J]. Radiocarbon, 1998, 40:1041-1083.
    [22] Shen J, Yang L Y, Yang, X D, et al. Lakes sediment records on climate change and human activities since the Holocene in Erhai catchment, Yunnan Province, China[J]. Science in China (Series D), 2005, 48(3):353-363.
    [23] Lin H-L, Peterson L C, Overpeck J T, et al. Late Quaternary climate change from δ18O records of multiple species of planktonic foraminifera:High-resolution records from the anoxic Cariaco Basin, Venezuela[J]. Paleoceanography, 1997, 12:415-427.
    [24] Ge Q, Chu F Y, Xue Z, et al. Paleoenvironmental records from the northern South China Sea since the Last Glacial Maximum[J]. Acta Oceanologica Sinica, 2010, 29(3):46-62.
    [25] 杨文光, 郑洪波, 谢昕, 等. 南海北部陆坡沉积记录的全新世早期夏季风极强事件[J]. 第四纪研究, 2008, 28(3):425-430.

    [YANG Wenguang., ZHENG Hongbo, XIE Xin, et al. East Asian summer monsoon maximum records in northern South China Sea during the early Holocene[J]. Quaternary Sciences, 2008, 28(3):425-430.]
    [26] 施雅风. 中国全新世大暖期气候与环境[M]. 北京:海洋出版社, 1992.[SHI Yafeng. The Climates and Environments of the Holocene Megathermal in China[M]. Beijing:Chinese Ocean Press, 1992.]
    [27] Jian Z M, Wang P X, Chen M H, et al. Foraminiferal response to major Pleistocene paleoceanographic changes in the southern South China Sea[J]. Paleoceanography, 2000, 15(2):229-243.
    [28] An Z S, Porter S C, Kutzbach J E, et al. Asynchronous Holocene optimum of the East Asian monsoon[J]. Quaternary Science Reviews, 2000, 19:743-762.
    [29] Pflaumann U, Jian Z M. Modern distribution patterns of planktonic foraminifera in the South China Sea and West Pacific:a new transfer technique to estimate regional sea-surface temperature[J]. Marine Geology, 1999, 156:41-83.
    [30] Denton G H, Karlen W. Holocene climatic variations-Their pattern and possible cause[J]. Quaternary Research, 1973, 3(2):155-174.
    [31] Gupta A K, Anderson D M, Overpeck J T. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean[J]. Nature, 2003, 421:354-357.
    [32] Alley R B, Mayewski P A, Sowers T, et al. Holocene climatic instability:A prominent, widespread event 8200yr ago[J]. Geology, 1997, 25:483-486.
    [33] Chen F H, Zhu Y, Li J J, et al. Abrupt Holocene changes of the Asian monsoon at millennial-and centennial-scales:evidence from lake sediment document in Minqin Basin, NW China[J]. Chinese Science Bulletin, 2001, 46(23):1942-1947.
    [34] Barber D C, Dyke A, Hillaire-Marcel C, et al. Forcing of the cold event of 8200 years ago by catastrophic drainage of Laurentide lakes[J]. Nature, 1999, 400:344-348.
    [35] Clarke G K C, Leverington D W, Teller J T, et al. Paleohydraulics of the last outburst flood from glacial Lake Agassiz and the 8200 aBP cold event[J]. Quaternary Science Reviews, 2004, 23:389-407.
    [36] Wu W X, Liu T S. Possible role of the "Holocene Event 3" on the collapse of Neolithic Cultures around the Central Plain of China[J]. Quaternary International, 2004, 117:153-166.
    [37] 葛倩,刘敬圃,初凤友,等. 全新世事件3与古文化变迁[J]. 地质科技情报, 2010, 29(3):15-22.

    [GE Qian, LIU Jingpu, CHU Fengyou, et al. Holocene event 3 and ancient cultural transition[J]. Geological Science and Technology Information, 2010, 29(3):15-22.]
    [38] Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon:links to solar changes and North Atlantic climate[J]. Science, 2005, 308:854-857.
    [39] Weiss H, Bradley R S. What drives social collapse?[J] Science, 2001, 291:609-610.
    [40] Peng Y B, Xu Y, Jin L Y. Climate changes over eastern China during the last millennium in simulations and reconstructions[J]. Quaternary International, 2009, doi:10.1016/j.quaint.2009.02.013.
    [41] Hu C Y, Henderson G M, Huang J H, et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records[J]. Earth and Planetary Science Letters, 2008, 266:221-232.
    [42] Crowley T J. Cause of climate change over the past 1000 years[J]. Science, 2000, 289:270-277.
    [43] Eddy J A. The Maunder Minimum[J]. Science, 1976, 192:1189-1202.
    [44] Robock A. The "Little Ice Age":Northern Hemisphere average observations and model calculations[J]. Science, 1979, 206:1402-1404.
    [45] 于革, 刘健. 全球12000 aBP以来火山爆发记录及对气候变化影响的评估[J]. 湖泊科学, 2003, 15(1):11-20.

    [YU Ge, LIU Jian. Geological records of volcanic explosions during the last 12000 years and the volcanic impacts on climate changes[J]. Journal of Lake Sciences, 2003, 15(1):11-20.]
    [46] Ruddiman W F. Cold climate during the closest Stage 11 analog to recent Millennia[J]. Quaternary Science Reviews, 2005, 24:1111-1121.
    [47] Berner R A. Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1989, 75:97-122.
    [48] Tesi T, Miserocchi S, Goni M A, et al. Organic matter origin and distribution in suspended particulate materials and surficial sediments from the western Adriatic Sea (Italy)[J]. Estuarine Coastal and Shelf Science, 2007, 73:431-446.
    [49] Hedges J I, Keil R G, Benner R. What happens to terrestrial organic matter in the ocean?[J] Organic Geochemistry, 1997, 27:195-212.
    [50] Chen M T, Shiau L J, Yu P S, et al. 500000-year records of carbonate, organic carbon, and foraminiferal sea-surface temperature from the southeastern South China Sea (near Palawan Island)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 197:113-131.
    [51] Lǒwemark L, Stenke S, Wang C-H, et al. New evidence for a glacioeustatic influence on deep water circulation, bottom water ventilation and primary productivity in the South China Sea[J]. Dynamics of Atmospheres and Oceans, 2009, 47:138-153.
    [52] Jia G D, Peng P A. Temporal and spatial variations in signatures of sedimented organic matter in Lingding Bay (Pearl estuary), southern China[J]. Marine Chemistry, 2003, 82:47-54.
    [53] Schultz D, Calder J A. Organic carbon 13C/12C variations in estuarine sediments[J]. Geochimica et Cosmochimica Acta, 1976, 40:381-385.
    [54] Hu J F, Sun X S, Peng P A, et al. Spatial and temporal variation of organic carbon in the northern South China Sea revealed by sedimentary records[J]. Quaternary International, 2009, 206:46-51.
    [55] Boutton T W. Stable Carbon Isotope Ratios of Natural Materials:Atmospheric, Terrestrial, Marine, and Freshwater Environments[M]//In:Coleman D C, Fry B (Eds.).Carbon isotope techniques. Academic Press, San Diego, 1991:155-172.
    [56] Minoura K, Hoshino K, Nakamura T, et al. Late Pleistocene-Holocene paleoproductivity circulation in the Japan Sea:sea-level control on δ13C and δ15N records of sediment organic material[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 135:41-50.
    [57] Pelejero C. Terrigenous n-alkane input in the South China Sea:high-resolution records and surface sediments[J]. Chemical Geology, 2003, 200:89-103.
    [58] Tyson R V. Sedimentary Organic Matter[M]. Chapman and Hall, London, 1995:615.
    [59] Muller P J, Erlenkeuser H, von Grafenstein R. Glacial-interglacial cycles in oceanic productivity inferred from organic carbon contents in eastern North Atlantic sediment cores[C]. In:Thiede J, Suess E (Eds.). Coastal Upwelling, Its Sediment Record. Part B. Sedimentary Records of Ancient Coastal Upwelling. NATO Conference Series IV, Marine Science. Plenum Press, New York, NY, United States, 1983:365-398.
    [60] Huang C Y, Wu S F, Zhao M, et al. Surface ocean and monsoon climate variability in the South China Sea since the last glaciations[J]. Marine Micropaleonotology, 1997, 32:71-94.
    [61] Thunell R C, Miao Q, Calvert S E, et al. Glacial-Holocene biogenic sedimentation patterns in the South China Sea:productivity variations and surface water pCO2[J]. Paleoceanography, 1992, 5:77-90.
    [62] Higginson M J, Maxwell J R, Altabet M A. Nitrogen isotope and chlorine paleoproductivity records from the Northern South China Sea:remove vs. local forcing of millennial-and orbital-scale variability[J]. Marine Geology, 2003, 201:223-250.
  • [1] 孔丽茹, 罗敏, 陈多福.  新西兰Hikurangi俯冲带沉积物成岩作用示踪研究:来自孔隙流体Sr同位素证据 . 海洋地质与第四纪地质, 2021, 41(5): 1-9.
    [2] 李法坤, 戴黎明, 李三忠, 董昊, 刘泽, 占华旺, 王亮亮, 盛世强, 胡泽明, 王迪, 王宇.  构造-沉积耦合过程的数值模拟:以南海北部阳江凹陷为例 . 海洋地质与第四纪地质, 2021, 41(5): 1-12. doi: 10.16562/j.cnki.0256-1492.2021040601
    [3] 兰蕾, 李友川, 王一博.  南海南部海陆过渡相烃源岩的两类分布模式 . 海洋地质与第四纪地质, 2021, 41(5): 1-8. doi: 10.16562/j.cnki.0256-1492.2021011802
    [4] 马晓理, 刘丽华, 徐行, 金光荣, 魏雪芹, 翟梦月.  南海南部浅表层柱状沉积物孔隙水地球化学特征对甲烷渗漏活动的指示 . 海洋地质与第四纪地质, 2021, 41(5): 1-14. doi: 10.16562/j.cnki.0256-1492.2020123101
    [5] 徐俊杰, 刘道涵, 陈松, 刘慧, 刘磊, 刘盼, 刘广宁.  北康盆地基底卷入断层特征及其对南海南部构造演化的启示 . 海洋地质与第四纪地质, 2021, 41(4): 116-128. doi: 10.16562/j.cnki.0256-1492.2020101701
    [6] 雷雁翔, 何磊, 王玉敏, 张朋朋, 张斌, 胡蕾, 吴治国, 叶思源.  渤海湾西岸晚更新世以来的沉积环境演化及碳埋藏评价 . 海洋地质与第四纪地质, 2021, (): 1-12. doi: 10.16562/j.cnki.0256-1492.2021020101
  • 加载中
计量
  • 文章访问数:  762
  • HTML全文浏览量:  110
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-13
  • 修回日期:  2012-07-16

南海北部ZHS-176孔古海洋学记录:氧同位素和有机碳

doi: 10.3724/SP.J.1140.2012.05073
    作者简介:

    葛倩(1983-),男,助理研究员,主要从事古海洋学方面的研究,E-mail:gq980447@hotmail.com

基金项目:

国家自然科学基金青年基金项目(41106045)

国家海洋局第二海洋研究所基本科研业务费专项(JT1102)

  • 中图分类号: P736.2

摘要: 对南海北部陆坡ZHS-176孔进行浮游有孔虫氧同位素和有机碳的研究,重建了末次冰期以来的古气候演化历史。ZHS-176孔浮游有孔虫氧同位素分析揭示了末次冰期期间的气候波动,如末次盛冰期、Heinrich事件1、Bølling-Allerød暖期与新仙女木事件在南海北部陆坡均有响应。同时,在全新世阶段存在3个强降水期和3个弱降水期。ZHS-176孔有机碳以生物成因为主,随着夏季风的增强,陆源物质含量增加,但在3 kaBP以后由于华南地区夏季风减弱而导致陆源输入减少。

English Abstract

参考文献 (62)

目录

    /

    返回文章
    返回