留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西北冰洋楚科奇海台P31孔晚第四纪的陆源沉积物记录及其古海洋与古气候意义

梅静 王汝建 陈建芳 程振波 陈志华 孙烨忱

梅静, 王汝建, 陈建芳, 程振波, 陈志华, 孙烨忱. 西北冰洋楚科奇海台P31孔晚第四纪的陆源沉积物记录及其古海洋与古气候意义[J]. 海洋地质与第四纪地质, 2012, 32(3): 77-86. doi: 10.3724/SP.J.1140.2012.03077
引用本文: 梅静, 王汝建, 陈建芳, 程振波, 陈志华, 孙烨忱. 西北冰洋楚科奇海台P31孔晚第四纪的陆源沉积物记录及其古海洋与古气候意义[J]. 海洋地质与第四纪地质, 2012, 32(3): 77-86. doi: 10.3724/SP.J.1140.2012.03077
MEI Jing, WANG Rujian, CHEN Jianfang, CHENG Zhenbo, CHEN Zhihua, SUN Yechen. LATE QUATERNARY TERRIGENOUS DEPOSITS FROM CORE P31 ON THE CHUKCHI PLATEAU OF WESTERN ARCTIC OCEAN AND THEIR PALEOCEANOGRAPHIC AND PALEOCLIMATIC IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2012, 32(3): 77-86. doi: 10.3724/SP.J.1140.2012.03077
Citation: MEI Jing, WANG Rujian, CHEN Jianfang, CHENG Zhenbo, CHEN Zhihua, SUN Yechen. LATE QUATERNARY TERRIGENOUS DEPOSITS FROM CORE P31 ON THE CHUKCHI PLATEAU OF WESTERN ARCTIC OCEAN AND THEIR PALEOCEANOGRAPHIC AND PALEOCLIMATIC IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2012, 32(3): 77-86. doi: 10.3724/SP.J.1140.2012.03077

西北冰洋楚科奇海台P31孔晚第四纪的陆源沉积物记录及其古海洋与古气候意义


doi: 10.3724/SP.J.1140.2012.03077
详细信息
    作者简介:

    梅静(1990-),女,本科生,海洋地质专业,E-mail:meijing0315@126.com

  • 基金项目:

    国家重点基础研究发展规划项目(2012CB957700)

    南北极环境综合考察与评估专项(CHINARE2012-03-02)

    中国地质调查局项目(水[2012]01-011-05)

    国家自然科学基金重点项目(41030859)

  • 中图分类号: P736.22

LATE QUATERNARY TERRIGENOUS DEPOSITS FROM CORE P31 ON THE CHUKCHI PLATEAU OF WESTERN ARCTIC OCEAN AND THEIR PALEOCEANOGRAPHIC AND PALEOCLIMATIC IMPLICATIONS

More Information
  • 摘要: 通过对北冰洋西部楚科奇海台P31孔沉积物进行岩性特征和颜色旋回分析、XRF元素扫描、AMS14C测年、有孔虫丰度统计、筏冰碎屑(IRD)(>250和>154 μm)含量分析以及粒度组成的综合研究,建立了该孔的地层年代框架,其沉积物被划分为MIS 3-MIS 1的沉积序列。自MIS 3以来,楚科奇海台P31孔可以识别出5个IRD事件,它们分别出现在晚MIS 1、MIS 2和早中MIS 3期。这些IRD主要被来自加拿大北极群岛的冰山或者大块冰所携带,随波弗特环流搬运至楚科奇海台并卸载到海底,这不仅反映了晚第四纪冰期-间冰期旋回中北美冰盖的崩塌事件,还反映了波弗特环流的变化历史。粒度组分变化表明,细砂级组分主要来自于冰山或大冰块的搬运,因为其高值对应于IRD的高值,粉砂级组分可能主要来自于海冰的搬运,而黏土级组分主要由波弗特环流和雾状层所搬运。两个敏感组分(5~13和110~176 μm)含量的变化呈现明显对称性分布,后者的变化对应于IRD的变化,前者可能指示了物源和沉积作用后期的影响。该孔MIS3-MIS1的沉积速率分别为2.2、0.16和1.6 cm/ka,平均沉积速率约为1.2 cm/ka。与北冰洋其他海区沉积速率资料对比显示,海冰边缘地区沉积速率较高,而永久性海冰覆盖区沉积速率低较。水深越浅,越靠近陆架物源区,沉积速率越高,纬度越高的门捷列夫-阿尔法脊和加拿大海盆区,沉积速率越低。
  • [1] Reimnitz E, Dethleff D, Nnrnbe G D. Contrasts in Arctic shelf sea ice regimes and some implications:Beaufort Sea versus Laptev Sea[J]. Marine Geology, 1994, 119:215-225.
    [2] 史久新,赵进平,矫玉田,等. 太平洋入流及其与北冰洋异常变化的联系[J]. 极地研究,2004, 16(3):253-260.

    [SHI Jiuxin, ZHAO Jingping, JIAO Yutian, et al. Pacific inflow and its links with abnormal variations in the Arctic Ocean[J]. Chinese Journal of Polar Research, 2004, 16(3):253-260.]
    [3] 孙烨忱,王汝建,肖文申,等, 北冰洋西部表层沉积物中生源和陆源粗组分及其沉积环境[J]. 海洋学报,2011,33(2):103-114.

    [SUN Yechen,WANG Rujian, Xiao Wenshen, et al. Biogenic and terrigenous coarse fractions in surface sediments of the western Arctic Ocean and their sedimentary environments[J]. Acta Oceanologica Sinica,2011, 33(2):103-144.]
    [4] Weingartner T J, Danielson S L, Royer T C. Fresh-water variability and predictability in the Alaska Coastal Current[J]. Deep-Sea Research Ⅱ, 2005, 52, 169-191. doi:110.1016/j. dsr 1012. 2004. 1009. 1030.
    [5] Phillips R L, Grantz A. Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments:Implications for the configuration of late Quaternary oceanic and atmospheric circulation in the Arctic[J]. Marine Geology, 2001, 172:91-115.
    [6] Darby D A, Zimmerman P. Ice-rafted detritus events in the Arctic during the last glacial interval and the timing of the Innuitian and Laurentide ice sheet calving events[J]. Polar Research, 2008, 27:114-127.
    [7] 王汝建,肖文申,李文宝,等. 北冰洋西部楚科奇海盆晚第四纪的冰筏碎屑事件[J]. 科学通报,2009,54(23):3761-3770.

    [WANG Rujian, XIAO Wenshen, LI Wenbao, et al. Late Quaternary ice-rafted detritus events in the Chukchi Basin, western Arctic Ocean[J]. Chinese Science Bulletin, 2009, 54(23):3761-3770.]
    [8] Darby D A, Polyak L, Bauch H A. Past glacial and interglacial conditions in the Arctic Ocean and marginal seas-A review[J]. Progress in Oceanography, 2006, 71:129-144.
    [9] Spielhagen R, Baumann K, Erlenkeuser H, et al. Arctic Ocean deep-sea record of northern Eurasian ice sheet history[J]. Quaternary Science Review, 2004, 23:1455-1483.
    [10] Darby D A, Bischof J F, Spielhagen R F, et al. Arctic ice export events and their potential impact on global climate during the late Pleistocene[J]. Paleoceanography, 2002, 17:2, doi:10.1029/2001PA000639.
    [11] 张海生.中国第三次科学考察报告[C]. 北京:海洋出版社,2009.[ZHANG Haisheng. The Report of Third Chinese Arctic Research Expedition[C]. Beijing:China Ocean Press, 2009.]
    [12] Backman J, Jakobsson M, Løvlie R, et al. Is the central Arctic Ocean a sediment starved basin?[J]. Quaternary Science Review, 2004, 23:1435-1454.
    [13] Polyak L, Bischof J, Ortiz J D, et al. Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean[J]. Global and Planetary Change, 2009, 68:5-17.
    [14] Yurco L N, Ortiz J D, Polyak L, et al. Clay mineral cycles identified by diffuse spectral refiectance in Quaternary sediments from the Northwind Ridge:implications for glacial-interglacial sedimentation patterns in the Arctic Ocean[J]. Polar Research, 2010, 29:176-197.
    [15] Stein R, Matthiessen J, Niessen F, et al. Towards a Better (Litho-) Stratigraphy and Reconstruction of Quaternary Paleoenvironment in the Amerasian Basin (Arctic Ocean)[J]. Polarforschung, 2010, 79(2):97-121.
    [16] 刘伟男,王汝建,陈建芳,等. 西北冰洋阿尔法脊晚第四纪的陆源沉积物记录及其古环境意义[J]. 地球科学进展,2012, 27(2):209-216.

    [LIU Weinan, WANG Rujian, CHEN Jianfang, et al. Late Quaternary terrigenous sedimentation in the western Arctic Ocean as exemplified by a sedimentary record from the Alpha Ridge[J]. Advances in earth science, 2012,27(2):209-216.]
    [17] Jakobsson M, L vlie R, Al-Hanbali H, et al. Manganese and color cycle in Arctic Ocean sediments constrain Pleistocene chronology[J]. Geology, 2000, 28:23-26.
    [18] Löwemark L, Jakobsson M, M rth M, et al. Arctic Ocean manganese contents and sediment color cycles[J]. Polar Research, 2008, 27:105-113.
    [19] Darby D A, Jakobsson M, Polyak L. Icebreaker expedition collects key Arctic seafloor and ice data[J]. EOS, 2005, 86:549-556.
    [20] Li Y-H, Bischoff J, Mathieu G. Migration of manganese in Arctic Basin sediment[J]. Earth and Planetary Science Letters, 1969, 7:265-270.
    [21] Ishman S E, Polyak L, Poore R Z. Expanded record of Quaternary oceanographic change:Amerasian Arctic Ocean[J]. Geology, 1996, 24:139-142.
    [22] Bischof J F, Clark D L, Vincent J S. Origin of ice-rafted debris:Pleistocene paleoceanography in the western Arctic Ocean[J]. Paleoceanography, 1996, 11:743-756.
    [23] Darby D A, Bischof J F, Jones G A. Radiocarbon chronology of depositional regimes in the western Arctic Ocean[J]. Deep-Sea ResearchⅡ, 1997, 44:1745-1757.
    [24] Mörz C, Stratmann A, Matthiessen J, et al. Manganese-rich brown layers in Arctic Ocean sediments:composition, formation mechanisms, and diagenetic overprint[J]. Geochimica et Cosmochimica Acta, 2011, 75:7668-7687.
    [25] Polyak L, Curry W B, Darby D A, et al. Contrasting glacial/interglacial regimes in the western Arctic Ocean as exemplified by a sedimentary record from the Mendeleev Ridge[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 203:73-93.
    [26] Boulay S, Colin C, Trentesaux A, et al. Sedimentary responses to the Pleistocene climatic variations recorded in the South China Sea[J]. Quaternary Research, 2007, 68:162-172.
    [27] Bischof J F, Darby D A. Mid-to Late Pleistocene ice drift in the Western Arctic Ocean:evidence for a different circulation in the past[J]. Science, 1997, 277:74-78.
    [28] Stokes C R, Clark C D, Darby D A, et al. Late Pleistocene ice export events into the Arctic Ocean from the M'Clure Strait Ice Stream, Canadian Arctic Archipelago[J]. Global and Planetary Change, 2005, 49:139-162.
    [29] Clark D L, Whitman R R, Morgan K A, et al. Stratigraphy and glacial marine sediments of the Amerasian Basin, central Arctic Ocean[J]. Geol Soc Am Spec Paper, 1980, 181:1-57.
    [30] Darby D A, Naidu A S, Mowatt T C, et al. Sediment composition and sedimentary processes in the Arctic Ocean[C]//The Arctic Seas-Climatology, Oceanography, Geology, and Biology. Van Nostrand Reinhold Co, New York, 1989:657-720.
    [31] Stewart T. Glacial marine sedimentation from tidewater glaciers in the Canadian High Arctic[C]//Glacial-Marine Sedimentation:Paleoclimatic Significance. Geol Soc Am Spec Paper, 1991, 261:95-105.
    [32] Hesse R, Khodabakhsh S, Klauke I, et al. Asymmetrical turbid surface-plume deposition near ice-outlets of the Pleistocene Laurentide ice sheet in the Labrador Sea[J]. Geo-Marine Letter, 1997, 17:179-187.
    [33] Knies J, Kleiber H-P, Matthiessen J, et al. Marine ice-rafted debris records constrain maximum extent of Saalian and Weichselian ice sheets along the northern Eurasian margin[J]. Global and Planetary Change, 2001, 31:45-64.
    [34] Polyak L, Jakobsson M. Quaternary sedimentation in the Arctic Ocean:Recent advances and further challenges[J]. Oceanography, 2011, 24(3):52-64.
  • [1] 孙晗杰, Beaufort Luc, 安佰正, 李铁刚, 常凤鸣, 南青云, 黄翠.  晚第四纪热带西太平洋Noelaerhabdaceae科颗石长度和质量变化及其影响因素 . 海洋地质与第四纪地质, 2023, 43(4): 38-47. doi: 10.16562/j.cnki.0256-1492.2023071602
    [2] 刘健, 张欣, 丁璇, 仇建东, 王红, 安郁辉.  江苏南通近岸区晚第四纪沉积序列的沉积相特征与定年 . 海洋地质与第四纪地质, 2023, 43(3): 35-48. doi: 10.16562/j.cnki.0256-1492.2023051501
    [3] 王雨楠, 周保春, 王汝建, 肖文申.  北冰洋中部阿尔法脊晚第四纪介形虫化石群与古海洋环境变迁 . 海洋地质与第四纪地质, 2022, 42(4): 39-49. doi: 10.16562/j.cnki.0256-1492.2022021601
    [4] 刘荣波, 袁晓东, 林哲远, 仇建东, 胡日军, 高军锋, 刘龙龙, 张胜江.  莱州湾晚第四纪以来沉积物元素地球化学特征及来源 . 海洋地质与第四纪地质, 2022, 42(3): 100-110. doi: 10.16562/j.cnki.0256-1492.2022012301
    [5] 刘德政, 夏非.  江苏中部海岸晚第四纪沉积物的粒度与磁化率特征及其古环境意义 . 海洋地质与第四纪地质, 2021, 41(5): 210-220. doi: 10.16562/j.cnki.0256-1492.2021051901
    [6] 张立雪, 陈爱清, 陈庆, 赖佩欣.  珠江口内伶仃洋晚第四纪黏土矿物组成特征及对源区气候变化的指示 . 海洋地质与第四纪地质, 2021, 41(5): 202-209. doi: 10.16562/j.cnki.0256-1492.2020121002
    [7] 丁大林, 张训华, 于俊杰, 王丽艳, 王丰, 商守卫.  长江三角洲北翼后缘晚第四纪以来的沉积粒度特征及环境演化 . 海洋地质与第四纪地质, 2019, 39(4): 34-45. doi: 10.16562/j.cnki.0256-1492.2019022801
    [8] 王雪木, 陈万利, 薛玉龙, 刘刚.  西沙群岛宣德环礁晚第四纪灰砂岛沉积地层 . 海洋地质与第四纪地质, 2018, 38(6): 37-45. doi: 10.16562/j.cnki.0256-1492.2018.06.004
    [9] 黄晓璇, 王汝建, 肖文申, 章陶亮.  西北冰洋楚科奇海台晚第四纪以来陆源沉积物搬运机制及其古环境意义 . 海洋地质与第四纪地质, 2018, 38(2): 52-62. doi: 10.16562/j.cnki.0256-1492.2018.02.005
    [10] 刘合林, 陈志华, 葛淑兰, 肖文申, 王豪壮, 唐正, 黄元辉, 赵仁杰, 武力.  晚第四纪普里兹湾北部陆坡岩心沉积学记录及古海洋学意义 . 海洋地质与第四纪地质, 2015, 35(3): 209-217. doi: 10.3724/SP.J.1140.2015.03209
    [11] 武力, 王汝建, 肖文申, 葛淑兰, 陈志华.  东南极普里兹湾陆坡扇晚第四纪高分辨率地层年龄模式 . 海洋地质与第四纪地质, 2015, 35(3): 197-208. doi: 10.3724/SP.J.1140.2015.03197
    [12] 周保春, 王汝建, 梅静.  末次冰消期后大西洋水进入楚科奇海台:来自介形虫化石群的证据 . 海洋地质与第四纪地质, 2015, 35(3): 73-82. doi: 10.3724/SP.J.1140.2015.03073
    [13] 章陶亮, 王汝建, 肖文申, 段肖, 胡正莹, 梅静.  西北冰洋Chukchi Borderland晚第四纪冰筏碎屑记录及其古气候意义 . 海洋地质与第四纪地质, 2015, 35(3): 49-60. doi: 10.3724/SP.J.1140.2015.03049
    [14] 王春娟, 刘焱光, 董林森, 刘大海, 王国槐, 李传顺, 闫仕娟, Anatolii Astakhov, 王汝建.  白令海与西北冰洋表层沉积物粒度分布特征及其环境意义 . 海洋地质与第四纪地质, 2015, 35(3): 1-9. doi: 10.3724/SP.J.1140.2015.03001
    [15] 崔征科, 杨文达.  东海陆架晚第四纪层序地层及其沉积环境 . 海洋地质与第四纪地质, 2014, 34(4): 1-10. doi: 10.3724/SP.J.1140.2014.04001
    [16] 王中波, 杨守业, 张志珣, 李日辉, 蓝先洪, 印萍, 张训华.  东海外陆架晚第四纪若干沉积学问题的研究现状与展望 . 海洋地质与第四纪地质, 2012, 32(3): 1-10. doi: 10.3724/SP.J.1140.2012.03001
    [17] 石学法, 邹建军, 王昆山.  鄂霍次克海晚第四纪以来古环境演化 . 海洋地质与第四纪地质, 2011, 31(6): 1-12. doi: 10.3724/SP.J.1140.2011.06001
    [18] 刘升发, 石学法, 刘焱光, 朱爱美, 杨刚.  东海内陆架泥质区沉积速率 . 海洋地质与第四纪地质, 2009, 29(6): 1-7. doi: 10.3724/SP.J.1140.2009.06001
    [19] 李军.  冲绳海槽晚更新世以来沉积速率的时空差异及其控制因素 . 海洋地质与第四纪地质, 2007, 27(4): 37-43.
    [20] 王国庆, 石学法, 李从先.  长江三角洲晚第四纪沉积地质学研究述评 . 海洋地质与第四纪地质, 2006, 26(6): 131-137.
  • 加载中
计量
  • 文章访问数:  1951
  • HTML全文浏览量:  223
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-20
  • 修回日期:  2012-05-09

西北冰洋楚科奇海台P31孔晚第四纪的陆源沉积物记录及其古海洋与古气候意义

doi: 10.3724/SP.J.1140.2012.03077
    作者简介:

    梅静(1990-),女,本科生,海洋地质专业,E-mail:meijing0315@126.com

基金项目:

国家重点基础研究发展规划项目(2012CB957700)

南北极环境综合考察与评估专项(CHINARE2012-03-02)

中国地质调查局项目(水[2012]01-011-05)

国家自然科学基金重点项目(41030859)

  • 中图分类号: P736.22

摘要: 通过对北冰洋西部楚科奇海台P31孔沉积物进行岩性特征和颜色旋回分析、XRF元素扫描、AMS14C测年、有孔虫丰度统计、筏冰碎屑(IRD)(>250和>154 μm)含量分析以及粒度组成的综合研究,建立了该孔的地层年代框架,其沉积物被划分为MIS 3-MIS 1的沉积序列。自MIS 3以来,楚科奇海台P31孔可以识别出5个IRD事件,它们分别出现在晚MIS 1、MIS 2和早中MIS 3期。这些IRD主要被来自加拿大北极群岛的冰山或者大块冰所携带,随波弗特环流搬运至楚科奇海台并卸载到海底,这不仅反映了晚第四纪冰期-间冰期旋回中北美冰盖的崩塌事件,还反映了波弗特环流的变化历史。粒度组分变化表明,细砂级组分主要来自于冰山或大冰块的搬运,因为其高值对应于IRD的高值,粉砂级组分可能主要来自于海冰的搬运,而黏土级组分主要由波弗特环流和雾状层所搬运。两个敏感组分(5~13和110~176 μm)含量的变化呈现明显对称性分布,后者的变化对应于IRD的变化,前者可能指示了物源和沉积作用后期的影响。该孔MIS3-MIS1的沉积速率分别为2.2、0.16和1.6 cm/ka,平均沉积速率约为1.2 cm/ka。与北冰洋其他海区沉积速率资料对比显示,海冰边缘地区沉积速率较高,而永久性海冰覆盖区沉积速率低较。水深越浅,越靠近陆架物源区,沉积速率越高,纬度越高的门捷列夫-阿尔法脊和加拿大海盆区,沉积速率越低。

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回