南海东北部硫酸盐还原-甲烷厌氧氧化界面——海底强烈甲烷渗溢的记录

陆红锋, 刘坚, 陈芳, 程思海, 廖志良

陆红锋, 刘坚, 陈芳, 程思海, 廖志良. 南海东北部硫酸盐还原-甲烷厌氧氧化界面——海底强烈甲烷渗溢的记录[J]. 海洋地质与第四纪地质, 2012, 32(1): 93-98. DOI: 10.3724/SP.J.1140.2012.01093
引用本文: 陆红锋, 刘坚, 陈芳, 程思海, 廖志良. 南海东北部硫酸盐还原-甲烷厌氧氧化界面——海底强烈甲烷渗溢的记录[J]. 海洋地质与第四纪地质, 2012, 32(1): 93-98. DOI: 10.3724/SP.J.1140.2012.01093
LU Hongfeng, LIU Jian, CHEN Fang, CHENG Sihai, LIAO Zhiliang. SHALLOW SULFATE-METHANE INTERFACE IN NORTHEASTERN SOUTH CHINA SEA: AN INDICATOR OF STRONG METHANE SEEPAGE ON SEAFLOOR[J]. Marine Geology & Quaternary Geology, 2012, 32(1): 93-98. DOI: 10.3724/SP.J.1140.2012.01093
Citation: LU Hongfeng, LIU Jian, CHEN Fang, CHENG Sihai, LIAO Zhiliang. SHALLOW SULFATE-METHANE INTERFACE IN NORTHEASTERN SOUTH CHINA SEA: AN INDICATOR OF STRONG METHANE SEEPAGE ON SEAFLOOR[J]. Marine Geology & Quaternary Geology, 2012, 32(1): 93-98. DOI: 10.3724/SP.J.1140.2012.01093

南海东北部硫酸盐还原-甲烷厌氧氧化界面——海底强烈甲烷渗溢的记录

基金项目: 

中国地质调查局"天然气水合物资源评价及勘探开发战略研究"下属课题(GZH200200203-04-01)

国家自然科学基金项目(40730844)

"973"项目(2009CB219502)

详细信息
    作者简介:

    陆红锋(1976-),男,博士,高级工程师,从事岩矿测试和地球化学研究,E-mail:luhongfeng@hydz.cn

  • 中图分类号: P744.4

SHALLOW SULFATE-METHANE INTERFACE IN NORTHEASTERN SOUTH CHINA SEA: AN INDICATOR OF STRONG METHANE SEEPAGE ON SEAFLOOR

  • 摘要: 南海东北部沉积物顶空气甲烷含量较高,海底存在明显的甲烷渗溢现象。该海域6个沉积物岩心的孔隙水硫酸盐浓度和顶空气甲烷含量随深度变化而变化,出现明显的硫酸盐-甲烷互相消耗区域,硫酸盐和甲烷浓度均急剧下降。HD109、HD170、HD196A、HD200、HD319和GC10等6个岩心的硫酸盐还原-甲烷厌氧氧化界面(SMI)分别位于704、911、728、636、888、792 cm处,完全落入全球水合物区富甲烷环境的SMI深度范围之内。强烈的甲烷渗溢过程使得硫酸盐-甲烷互相消耗作用加剧,并形成浅的SMI。浅的SMI显示了东北部存在强烈的甲烷渗溢活动以及强烈的甲烷厌氧氧化作用,具有天然气水合物成藏的典型特征。
    Abstract: The Northeastern part of the South China Sea (SCS) is rich in methane and there is methane seepage on the seafloor. Six sediment cores recovered from the northeastern SCS show that both sulfate and methane contents decrease with depth in the consuming zone of sulfate and methane. Headspace methane of these cores increases with depth and reaches an anomalous high at the bottom of cores. By extrapolation, the depth of sulfate-methane interface (SMI) in the cores of HD109, HD170, HD196A, HD200, HD319 and GC10 are located at 704cmbsf, 911cmbsf, 728cmbsf, 636cmbsf, 888cmbsf, 792cmbsf, respectively, indicating very shallow SMI depths. Strong methane seepage will intensify the co-consumption of sulfate and methane, leading to the shift of SMI depths towards the seafloor. The shallow SMIs, which often occur in gas hydrate localities worldwide, imply that the northeastern SCS is a good gas hydrate-prone setting.
  • [1]

    Widdel F. Microbiology and ecology of sulfate-and sulfur-reducing bacteria[C]//Biology of Anaerobic Microorganisms. 1988:469-585.

    [2]

    Barnes R O,Goldberg E D. Methane production and consumption in anaerobic marine sediments[J]. Geology, 1976,4:297-300.

    [3]

    Reeburgh W S. Methane consumption in Cariaco Trench waters and sediments[J]. Earth and Planetary Science Letters, 1976,28:337-344.

    [4]

    Martens C S, Berner R A. Interstitial water chemistry of Long Island Sound sediments, I, dissolved gases[J]. Limnology and Oceanography, 1977,22:10-25.

    [5]

    Reeburgh W S. A major sink and flux control for methane in marine sediments:anaerobic consumption[C]//The Dynamic Environment of the Ocean Floor. Lexington Books. D.C. Heath, Lexington, 1982:203-217.

    [6]

    Borowski W S, Paull C K, Ussler Ⅲ W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate[J]. Geology, 1996, 24(7):655-658.

    [7]

    Borowski W S, Paull C K, Ussler Ⅲ W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments:Sensitivity to underlying methane and gas hydrates[J]. Marine Geology, 1999,159:131-154.

    [8]

    Rodriguez N M, Paull C K, Borowski W S. Zonation of authigenic carbonates within gas hydrate-bearing sedimentary sections on the Blake Ridge:Offshore southeastern North America[C]//Proceedings of the Ocean Drilling Program, Scientific Results. 2000,164:301-312.

    [9]

    Hinrichs K U, Boetius A. The anaerobic oxidation of methane:New insights in microbial ecology and biogeochemistry[M]//Ocean Margin Systems. Springer-Verlag, Berlin, 2002:457-477.

    [10]

    Devol A H, Anderson J J, Kuivila K M, et al. A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet[J]. Geochimica et Cosmochimica Acta, 1984, 48:993-1004.

    [11]

    Iversen N, J rgensen B B. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from the Kattegat and Skagerrack (Denmark)[J]. Limnology and Oceanography, 1985, 30:944-955.

    [12]

    Guo T M, Wu B H, Zhu Y H, et al. A review on the gas hydrate research in China[J]. Journal of Petroleum Science and Engineering, 2004, 41:11-20.

    [13]

    McDonnell S L, Max M D, Cherkis M Z, et al. Tectono-sedimentary controls on the likelihood of gas hydrate occurrence near Taiwan[J]. Marine and Petroleum Geology, 2000, 17:929-936.

    [14] 祝有海,张光学,卢振权,等. 南海天然气水合物成矿条件与找矿前景[J]. 石油学报,2001,22(5):6-10.

    [ZHU Youhai, ZHANG Guangxue, LU Zhenquan,et al. Gas hydrate in the South China Sea:background and indicators[J]. Acta Petrolei Sinica, 2001,22(5):6-10.]

    [15] 吴必豪,张光学,祝有海,等. 中国近海天然气水合物的研究进展[J]. 地学前缘,2003, 10(1):177-189.

    [WU Bihao, ZHANG Guangxue, ZHU Youhai, et al. Progress of gas hydrate investigation in china offshore[J]. Earth Science Frontiers,2003,10(1):177-189.]

    [16]

    Chen D F, Huang Y Y, Yuan X L, et al. Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the Northeastern South China Sea[J]. Marine and Petroleum Geology, 2005,22:613-621.

    [17] 陆红锋, 刘坚, 陈芳, 等. 南海台西南区碳酸盐岩矿物学和稳定同位素组成特征——天然气水合物存在的主要证据之一[J]. 地学前缘, 2005,12(3):268-276.

    [LU Hongfeng, LIU Jian, CHEN Fang, et al. Mineralogy and stable isotopic composition of authigenic carbonates in bottom sediments in the off shore area of southwest Taiwan, South China Sea:Evidence for gas hydrates occurrence[J]. Earth Science Frontiers,2005, 12(3):268-276.]

    [18] 栾锡武. 天然气水合物的上界面——硫酸盐还原-甲烷厌氧氧化界面[J].海洋地质与第四纪地质,2009,29(2):91-102.

    [LUAN Xiwu. Sulfate-methane interface:the upper boundary of gas hydrate zone[J]. Marine Geology and Quaternary Geology,2009,29(2):91-102.]

  • 期刊类型引用(5)

    1. 王明健,陈晓辉,朱晓青,黄龙,李汞,潘军. 中国东部海区重点盆地演化与中深层油气资源潜力. 海洋地质前沿. 2024(09): 1-13 . 百度学术
    2. 徐长贵,杨海风,王飞龙,彭靖淞. 渤海湾盆地海域深层——超深层大型复合潜山油气藏形成条件. 石油勘探与开发. 2024(06): 1227-1239 . 百度学术
    3. XU Changgui,YANG Haifeng,WANG Feilong,PENG Jingsong. Formation conditions of deep to ultra-deep large composite buried-hill hydrocarbon reservoirs in offshore Bohai Bay Basin, China. Petroleum Exploration and Development. 2024(06): 1421-1434 . 必应学术
    4. 侯素宽,李强,王世骐,孙博阳,卢小康,史勤勤,吴飞翔,江左其杲,邓涛. 中国新近纪岩石地层划分和对比. 地层学杂志. 2021(03): 426-439 . 百度学术
    5. 王明健,张勇,潘军,黄龙,陈晓红,骆迪,侯方辉,尚鲁宁. 东部海域地学大断面地质结构特征及其对综合地层分区的约束. 中国地质. 2020(05): 1474-1485 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  2418
  • HTML全文浏览量:  277
  • PDF下载量:  60
  • 被引次数: 5
出版历程
  • 收稿日期:  2011-09-04
  • 修回日期:  2011-11-09

目录

    /

    返回文章
    返回