留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南海陆坡晚第四纪沉积物磁化率的对比及其古海洋学意义

张江勇 高红芳 彭学超 张玉兰 王英民

张江勇, 高红芳, 彭学超, 张玉兰, 王英民. 南海陆坡晚第四纪沉积物磁化率的对比及其古海洋学意义[J]. 海洋地质与第四纪地质, 2010, 30(4): 151-164. doi: 10.3724/SP.J.1140.2010.04151
引用本文: 张江勇, 高红芳, 彭学超, 张玉兰, 王英民. 南海陆坡晚第四纪沉积物磁化率的对比及其古海洋学意义[J]. 海洋地质与第四纪地质, 2010, 30(4): 151-164. doi: 10.3724/SP.J.1140.2010.04151
ZHANG Jiangyong, GAO Hongfang, PENG Xuechao, ZHANGYulan, WANG Yingmin. COMPARISON OF MAGNETIC SUSCEPTIBILITY OF LATE QUATERNARY SEDIMENT DERIVED FROM SLOPES IN THE SOUTH CHINA SEA AND IMPLICATION FOR PALEOCEANOGRAPHY[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 151-164. doi: 10.3724/SP.J.1140.2010.04151
Citation: ZHANG Jiangyong, GAO Hongfang, PENG Xuechao, ZHANGYulan, WANG Yingmin. COMPARISON OF MAGNETIC SUSCEPTIBILITY OF LATE QUATERNARY SEDIMENT DERIVED FROM SLOPES IN THE SOUTH CHINA SEA AND IMPLICATION FOR PALEOCEANOGRAPHY[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 151-164. doi: 10.3724/SP.J.1140.2010.04151

南海陆坡晚第四纪沉积物磁化率的对比及其古海洋学意义


doi: 10.3724/SP.J.1140.2010.04151
详细信息
    作者简介:

    张江勇(1978-),男,博士,工程师,主要从事南海古海洋学与海洋地质学调查和研究.E-mail:zjy905@hotmail.com

  • 基金项目:

    国家自然科学基金(40971035

    40972077)

  • 中图分类号: P736.2

COMPARISON OF MAGNETIC SUSCEPTIBILITY OF LATE QUATERNARY SEDIMENT DERIVED FROM SLOPES IN THE SOUTH CHINA SEA AND IMPLICATION FOR PALEOCEANOGRAPHY

More Information
  • 摘要: 对南海西沙群岛附近陆坡、南海南部陆坡以及东沙群岛附近陆坡晚第四纪磁化率变化特征进行了综合对比,并初步分析了磁化率与碳酸钙百分含量之间的关系。就磁化率变化特征而言,西沙群岛附近陆坡和南海南部陆坡可归为一个单元,东沙群岛附近陆坡划为另一单元,其中,前一单元晚第四纪磁化率曲线的共性表现为深海氧同位素期次的奇数期向偶数期过渡时期以磁化率峰值为特点,偶数期向奇数期过渡时期以磁化率谷值为特点;后一单元晚第四纪磁化率曲线的共性表现为磁化率曲线大致平行于有孔虫氧同位素曲线。上述两个单元内的磁化率曲线共性都具有地层学意义,但这两个单元内部某些部位的晚第四纪磁化率变化具有地方局限性,不宜当作大范围地层对比的工具。南海陆坡磁化率曲线和碳酸钙百分含量曲线的关系存在镜像和平行两大基本类型,但这两种对应关系未必意味着磁化率和碳酸钙百分含量之间存在着直接的因果联系。南海陆坡磁化率变化的原因很可能与冰期旋回中南海陆源物质通量的变化密切相关,另外,局部海域磁化率还可能严重受沉积物早期成岩作用的影响。
  • [1] 汪品先, 等. 十五万年来的南海[M]. 上海:同济大学出版社, 1995.[WANG Pinxian, et al. South China Sea since 150000 Years[M]. Shanghai:Publishing House of Tongji University, 1995.]
    [2] 杨小强, 李华梅, 周永章. 南海南部NS93-5孔沉积物磁化率特征及其对全球气候变化的记录[J]. 海洋地质与第四纪地质, 2002, 22(1):31-36.

    [YANG Xiaoqiang, LI Huamei, ZHOU Yongzhang. Magnetic susceptibility oscillation and unstable climate events of core NS93-5 from South China Sea[J]. Marine Geology & Quaternary Geology, 2002, 22(1):31-36.]
    [3] YANG Xiaoqiang, Rodney G, ZHOU Houyun, et al. Magnetic properties of sediments from the Pearl River Delta, South China:paleoenvironmental implications[J]. Science in China Series D, 2008, 51(1):56-66.
    [4] Kissel C, Laj C, Clemens S, et al. Magnetic signature of environmental changes in the last 1.2 Myr at ODP Site 1146, South China Sea. Marine Geology, 2003, 201:119-132.
    [5] 黄维, 刘志飞, 陈晓良, 等. 寻求深海碳酸盐沉积含量的物理标志[J]. 地球科学——中国地质大学学报, 2003, 28(2):157-162.

    [HUANG Wei, LIU Zhifei, CHEN Xiaoliang, et al. Searching physical indicators of carbonate contents of deep sea sediments[J]. Earth Science-Journal of China University of Geosciences, 2003, 28(2):157-162.]
    [6] Oppo D W, Sun Y. Amplitude and timing of sea-surface temperature change in the northern South China Sea:Dynamic link to the East Asian monsoon[J]. Geology, 2005, 33(10):785-788.
    [7] Liu Zhi-fei, Xu Jian, Tian Jun, et al. Calcium carbonate pump during Quaternary glacial cycles in the South China Sea[J]. Chinese Science Bulletin, 2003, 48(17):1862-1869.
    [8] LI Bao-hua, ZHAO Qian-hong, CHEN Min-ben, et al. Carbonate dissolution and deep-water paleoceanography of the South China Sea since the Middle Pleistocene[J]. Chinese Science Bulletin, 2001, 46(22):1908-1911.
    [9] Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene:high-resolution sediment records from the South China Sea[J]. Marine Geology, 1999, 156:245-284.
    [10] CHEN Mu-hong, TU Xia, ZHENG Fan, et al. Relations between sedimentary sequence and paleoclimatic changes during last 200 ka in the southern South China Sea[J]. Chinese Science Bulletin, 2000, 45(14):1334-1340.
    [11] 杨小强, 周文娟, 高芳蕾, 等. 近13万年来南沙沉积物中的剩磁记录[J]. 海洋地质与第四纪地质, 2006, 26(1):59-66.

    [YANG Xiaoqiang, ZHOU Wenjuan, GAO Fanglei, et al. Remanence magnetic records from recent 130000 years in sediments of Nansha area, South China Sea[J]. Marine Geo-logy & Quaternary Geology, 2006, 26(1):59-66.]
    [12] 涂霞, 郑范, 陈木宏. 南海南部NS93-5柱样揭示的晚第四纪以来的古海洋学特征[J]. 热带海洋, 2000, 19(4):36-44.

    [TU Xia, ZHENG Fan, CHEN Muhong. Paleoceanographic characters implied by core NS93-5 in southern South China Sea since late Quaternary[J]. Tropic Oceanology, 2000, 19(4):36-44.]
    [13] Yang X, Heller F, Wu N, et al. Geomagnetic paleointensity dating of South China Sea sediments for the last 130 kyr[J]. Earth and Planetary Science Letters, 2009, 284:258-266.
    [14] Liu Z, Colin C, Trentesaux A, et al. Erosional history of the eastern Tibetan Plateau since 190 kyr ago:clay mineralogical and geochemical investigations from the southwestern South China Sea. Marine Geology, 2004, 209:1-18.
    [15] 钱建兴. 晚第四纪以来南海海洋学研究[M]. 北京:科学出版社, 1999.[QIAN Jianxing. 1999. Paleooceanographic research in the South China Sea since late Quaternary[M]. Beijing:Science Press, 1999.]
    [16] Imbrie J, Hays J D, Martinson D G, et al. The orbital theory of Pleistocene climate:support from a revised chronology of the marine δ18O record[C]//Milankovitch and Climate. Dordrecht:Reidel Publishing Company, 1984, 269-305.
    [17] Thompson P R, Be A W H, Duplessy J C, et al. Disappearance of pink-pigmented Globigerinoides ruber at 120, 000 yr B.P. in the Indian and Pacific Ocean[J]. Nature, 1979, 280:554-558.
    [18] Farrell J W, Prell W L. Climate change and CaCO3 preservation:an 800,000 year bathymetric reconstruction from the central equatorial Pacific Ocean[J]. Paleoceanography, 1989, 4:447-466.
    [19] Curry W B, Lohmann G P. Late Quaternary carbonate sedimentation at the Sierra Leone Rise (eastern equatorial Atlantic). Marine Geology, 1986, 70:223-250.
    [20] 汪品先, 闵秋宝, 卞云华, 等. 十三万年来南海北部陆坡的浮游有孔虫及其古海洋学意义[J]. 地质学报, 1986, (3):215-225.[WANG Pinxian, MIN Qiubao, BIAN Yunhua, et al. Planktonic foraminifera in the continental slope of the northern South China Sea during the last 130

    ,000 years and there paleo-oceanographic implication[J]. Acta Geologica Sinica, 1986, (3):215-225.]
    [21] Milliman J D, Syvitski J P M. Geomorphic/tectonic control of sediment discharge to the ocean:the importance of small mountainous rivers[J]. Journal of Geology, 1992, 100(5):525-544.
    [22] Milliman J D, Farnsworth K L, Albertin C S. Flux and fate of fluvial sediments leaving large islands in the East Indies[J]. Journal of Sea Research, 1999, 41(1-2):97-107.
    [23] Kao S J, Milliman J D. Water and Sediment Discharge from Small Mountainous Rivers, Taiwan:The Roles of Lithology, Episodic Events, and Human Activities[J]. The Journal of Geology, 2008, 116:431-448.
    [24] 陈国成, 郑洪波, 李建如, 等. 48万年来南海及周边地区火山喷发作用的沉积学记录[J]. 海洋地质与第四纪地质, 2007, 27(4):69-76.

    [CHEN Guocheng, ZHENG Hongbo, LI Jianru, et al. Sedimentary records of volcanic activities in the South China Sea over the past 480 ka[J]. Marine Geology & Quaternary Geology, 2007, 27(4):69-76.]
    [25] 李丽, 王慧, 罗布次仁, 等. 南海北部4万年以来有机碳和碳酸盐含量变化及古海洋学意义[J]. 海洋地质与第四纪地质, 2008, 33(6):793-799.

    [LI Li, WANG Hui, LUO Buchiren, et al. The characterizations and paleoceanographic significances of organic and inorganic carbon in northern South China Sea during past 40 ka[J]. Marine Geology & Quaternary Geology, 2008, 33(6):79-85.]
    [26] 刘健. 磁性矿物还原成岩作用述评[J]. 海洋地质与第四纪地质, 2000, 20(4):103-107.

    [LIU Jian. Reductive diagenesis of magnetic minerals:a review[J]. Marine Geology & Quaternary Geology, 2000, 20(4):103-107.]
    [27] 陈芳, 苏新, Nurnberg D, 等. 南海东沙海域末次冰期最盛期以来的沉积特征[J]. 海洋地质与第四纪地质, 2006, 26(6):9-17.

    [CHEN Fang, SHU Xin, Nurnberg D, et al. Lithologic features of sediments characterized by high sedimentation rates since the last glacial maximum from Dongsha area of the South China Sea[J]. Marine Geology & Quaternary Geology, 2006, 26(6):9-17.]
    [28] Farrell J W, Prell W L. Climate change and CaCO3 preservation:an 800,000 year bathymetric reconstruction from the central equatorial Pacific Ocean. Paleoceanography, 1989, 4:447-466.
    [29] Wu G, Yasuda M K, Berger W H. Late Pleistocene carbonate stratigraphy on Ontong-Java Plateau in the western equatorial Pacific. Marine Geology, 1991, 99:135-150.
    [30] Zhang J, Wang P, Li Q, et al. Western equatorial Pacific productivity and carbonate dissolution over the last 550 kyr:Foraminiferal and nannofossil evidence from ODP Hole 807A. Marine Micropaleontology, 2007, 64:121-140.
    [31] Qu T, Girton J B, Whitehead J A. Deepwater Overflow through Luzon Strait. Journal of Geophysical Research, 2006, 111, 10.1029/2005JC003139.
    [32] Pelejero C, Kienast M, Wang L, et al. The flooding of Sundaland during the last deglaciation:imprints in hemipelagic sediments from the southern South China Sea. Earth Planetary Science Letters, 1999, 171:661-671.
    [33] Shao Lei, Li Xian-hua, Wei Gang-jian, et al. Provenance of a prominent sediment drift on the northern slope of the South China Sea. Science in China Series D, 2001, 44(10):919-925.
    [34] Liu Zhi-fei, Colin C, Huang Wei, et al. Clay minerals in surface sediments of the Pearl River drainage basin and their contribution to the South China Sea. Chinese Science Bulletin, 2007, 52(8):1101-1111.
    [35] Ludmann T, Wong H K, Berglar K. Upward flow of North Pacific Deep Water in the northern South China Sea as deduced from the occurrence of drift sediments. Geophysical Research Letters, 2005, 32:L05614, doi:10.1029/2004GL021967.
    [36] Liu Z, Trentesaux A, Clemens S C, et al. Clay mineral assemblages in the northern South China Sea:implications for East Asian monsoon evolution over the past 2 million years. Marine Geology, 2003, 201(1-3):133-146.
    [37] Stoner J S, Channell J E T, Hillaire-Marcel C, The magnetic signature of rapidly deposited detrital layers from the deep Labrador sea:relationship to North Atlantic Heinrich Layers, Paleoceanography, 1996, 11:309-325.
    [38] Boulay S, Colin C, Trentesaux A, et al. Sedimentary responses to the Pleistocene climatic variations recorded in the South China Sea. Quaternary Research, 2007, 68:162-172.
    [39] Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene:high-resolution sediment records from the South China Sea. Marine Geology, 1999, 156:245-284.
    [40] Froelich P N, Klinkhammer G P, Bender M L,et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlanic:suboxic diagenesis. Geochimica et Cosmachimica Acta, 1979, 43:1075-1090.
    [41] Iversen N, Jorgensen B B. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnology and Oceanography, 1985, 30(5), 944-955.
    [42] D'Hondt S, Rutherford S, Spivack A J. Metabolic activity of subsurface life in deep-sea sediments. Science, 2002, 295:2067-2070.
    [43] Berner R A. A new geochemical classification of sedimentary environments. Journal of Sedimentary Petrology, 1981, 51(2):359-365.
    [44] Hilgenfeldt K. Diagenetic dissolution of biogenic magnetite in surface sediments of the Benguela upwelling system. International Journal of Earth Sciences, 2000, 88:630-640.
    [45] Liu Jian, Zhu Ri-xiang, Li Shao-quan, et al. Magnetic mineral diagenesis in the post-glacial muddy sediments from the southeastern South Yellow Sea:Response to marine environmental changes. Science in China Series D, 2005, 48(1):134-144.
    [46] Zheng Y, Kissel C, Zheng H B, et al. Sedimentation on the inner shelf of the East China Sea:Magnetic properties, diagenesis and paleoclimate implications. Marine Geology, 2010, 268:34-42.
    [47] Lin S, Hsieh W, Lim Y C, et al. Methane migration and its influence on sulfate reduction in the Good Weather Ridge Region, South China Sea continental margin sediments. Terrestrial Atmospheric and Oceanic Sciences, 2006, 17(4):883-902.
    [48] Chen Zhong, Yan Wen, Chen Mu-hong, et al. Discovery of seep carbonate nodules as new evidence for gas venting on the northern continental slope of South China Sea. Chinese Science Bulletin, 2006, 51(10):1228-1237.
    [49] 陆红锋, 陈芳, 廖志良, 等. 南海东北部HD196A岩心的自生条状黄铁矿[J]. 地质学报, 2007, 81(4):519-525.

    [LU Hongfeng, CHEN Fang, LIAO Zhiliang, et al. Authigenic pyrite rods from the core HD196A in the northeastern South China Sea[J]. Acta Geologica Sinica, 2007, 81(4):519-525.]
    [50]
  • [1] 李华勇, 袁俊英, 杨艺萍, 梁志姣, 李智慧, 吴帅虎, 张虎才.  山东弥河流域现代洪水沉积特征与水动力过程反演 . 海洋地质与第四纪地质, 2022, 42(2): 178-189. doi: 10.16562/j.cnki.0256-1492.2021071601
    [2] 刘德政, 夏非.  江苏中部海岸晚第四纪沉积物的粒度与磁化率特征及其古环境意义 . 海洋地质与第四纪地质, 2021, 41(5): 210-220. doi: 10.16562/j.cnki.0256-1492.2021051901
    [3] 周家兴, 于娟, 杨丽君, 吴利杰.  铜川地区早中全新世黄土沉积特征及其古气候意义 . 海洋地质与第四纪地质, 2020, 40(1): 160-166. doi: 10.16562/j.cnki.0256-1492.2018091901
    [4] 王攀, 张培新, 杨振京, 石迎春, 宋超, 郭娇.  靖边黄土剖面记录的末次冰期以来的气候变化 . 海洋地质与第四纪地质, 2019, 39(3): 162-170. doi: 10.16562/j.cnki.0256-1492.2017092601
    [5] 卫蕾华, 蒋汉朝, 何宏林, 徐岳仁, 高伟, 魏占玉.  末次冰期山西洪洞高分辨率粒度和磁化率记录的H5事件及其气候演化意义 . 海洋地质与第四纪地质, 2018, 38(4): 193-202. doi: 10.16562/j.cnki.0256-1492.2018.04.017
    [6] 杜婧, 鲁瑞洁, 刘小槺, 吕志强, 陈璐.  青海湖湖东沙地全新世风成沉积物磁化率特征及其环境意义 . 海洋地质与第四纪地质, 2018, 38(2): 175-184. doi: 10.16562/j.cnki.0256-1492.2018.02.018
    [7] 于昊, 彭廷江, 李孟, 于凤霞, 叶喜艳, 郭本泓, 张军, 李吉均.  西部黄土高原兰州黄土磁化率增强模式及其驱动机制 . 海洋地质与第四纪地质, 2018, 38(2): 165-174. doi: 10.16562/j.cnki.0256-1492.2018.02.017
    [8] 张振伟, 丁寒生, 张亚金.  塔里木盆地古城地区下奥陶统碳酸盐岩碳氧同位素特征 . 海洋地质与第四纪地质, 2016, 36(2): 59-64. doi: 10.16562/j.cnki.0256-1492.2016.02.007
    [9] 滕晓华, 张志高, 彭文彬, 昝金波, 方小敏.  天山黄土岩石磁学特征及其磁化率增强机制 . 海洋地质与第四纪地质, 2013, 33(5): 147-154. doi: 10.3724/SP.J.1140.2013.05147
    [10] 张广旭, 吴时国, 朱伟林, 施和生, 陈端新.  南海北部陆坡流花碳酸盐台地地球物理响应 . 海洋地质与第四纪地质, 2011, 31(4): 105-112. doi: 10.3724/SP.J.1140.2011.04105
    [11] 张瑞虎, 谢建磊, 刘韬, 赵宝成.  长江口水下三角洲沉积物记录的古环境演化 . 海洋地质与第四纪地质, 2011, 31(1): 1-10. doi: 10.3724/SP.J.1140.2011.01001
    [12] 石培宏, 杨太保, 许善洋, 田庆春.  靖远黄土-古土壤上部磁化率变化及其影响因素 . 海洋地质与第四纪地质, 2010, 30(4): 193-200. doi: 10.3724/SP.J.1140.2010.04193
    [13] 刘宪光, 方念乔.  远洋沉积岩心天然热释光剖面的异常特征与古气候变化的关系 . 海洋地质与第四纪地质, 2010, 30(4): 165-169. doi: 10.3724/SP.J.1140.2010.04165
    [14] 陆红锋, 陈芳, 刘坚, 周洋, 廖志良.  南海东北部甲烷成因碳酸盐岩的矿物学及同位素组成 . 海洋地质与第四纪地质, 2010, 30(2): 51-59. doi: 10.3724/SP.J.1140.2010.02051
    [15] 吴健, 沈吉.  兴凯湖沉积物磁化率和色度反映的28 kaBP以来区域古气候环境演化 . 海洋地质与第四纪地质, 2009, 29(3): 123-131. doi: 10.3724/SP.J.1140.2009.03123
    [16] 梁剑鸣, 周杰, 何忠, 刘卫国, 梁银丽, 程积民.  黄土高原现代自然降尘的特征——以固原安塞为例 . 海洋地质与第四纪地质, 2009, 29(1): 103-108. doi: 10.3724/SP.J.1140.2009.01103
    [17] 李秉成, 雷祥义, 李正泽, 王世尧, 温金梅, 王艳娟, 胡培华.  西安白鹿塬全新世黄土剖面磁化率的古气候特征 . 海洋地质与第四纪地质, 2008, 28(1): 115-121.
    [18] 王勇, 潘保田, 管清玉, 王建力.  西北干旱区黄土-古土壤磁化率变化特征 . 海洋地质与第四纪地质, 2008, 28(1): 111-114.
    [19] 姚远, 张恩楼, 沈吉, 蒋庆丰.  云南属都湖流域人类活动的湖泊沉积响应 . 海洋地质与第四纪地质, 2007, 27(5): 115-120.
    [20] 陈国成, 郑洪波, 李建如, 谢昕, 梅西.  48万年来南海及周边地区火山喷发作用的沉积学记录 . 海洋地质与第四纪地质, 2007, 27(4): 69-76.
  • 加载中
计量
  • 文章访问数:  1582
  • HTML全文浏览量:  168
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-02-15
  • 修回日期:  2010-03-18

南海陆坡晚第四纪沉积物磁化率的对比及其古海洋学意义

doi: 10.3724/SP.J.1140.2010.04151
    作者简介:

    张江勇(1978-),男,博士,工程师,主要从事南海古海洋学与海洋地质学调查和研究.E-mail:zjy905@hotmail.com

基金项目:

国家自然科学基金(40971035

40972077)

  • 中图分类号: P736.2

摘要: 对南海西沙群岛附近陆坡、南海南部陆坡以及东沙群岛附近陆坡晚第四纪磁化率变化特征进行了综合对比,并初步分析了磁化率与碳酸钙百分含量之间的关系。就磁化率变化特征而言,西沙群岛附近陆坡和南海南部陆坡可归为一个单元,东沙群岛附近陆坡划为另一单元,其中,前一单元晚第四纪磁化率曲线的共性表现为深海氧同位素期次的奇数期向偶数期过渡时期以磁化率峰值为特点,偶数期向奇数期过渡时期以磁化率谷值为特点;后一单元晚第四纪磁化率曲线的共性表现为磁化率曲线大致平行于有孔虫氧同位素曲线。上述两个单元内的磁化率曲线共性都具有地层学意义,但这两个单元内部某些部位的晚第四纪磁化率变化具有地方局限性,不宜当作大范围地层对比的工具。南海陆坡磁化率曲线和碳酸钙百分含量曲线的关系存在镜像和平行两大基本类型,但这两种对应关系未必意味着磁化率和碳酸钙百分含量之间存在着直接的因果联系。南海陆坡磁化率变化的原因很可能与冰期旋回中南海陆源物质通量的变化密切相关,另外,局部海域磁化率还可能严重受沉积物早期成岩作用的影响。

English Abstract

参考文献 (50)

目录

    /

    返回文章
    返回