留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南极陆缘天然气水合物特征及资源前景

吴庐山 邓希光 梁金强 付少英

吴庐山, 邓希光, 梁金强, 付少英. 南极陆缘天然气水合物特征及资源前景[J]. 海洋地质与第四纪地质, 2010, 30(1): 95-107. doi: 10.3724/SP.J.1140.2010.01095
引用本文: 吴庐山, 邓希光, 梁金强, 付少英. 南极陆缘天然气水合物特征及资源前景[J]. 海洋地质与第四纪地质, 2010, 30(1): 95-107. doi: 10.3724/SP.J.1140.2010.01095
WU Lushan, DENG Xiguang, LIANG Jinqiang, FU Shaoying. THE CHARACTERISTICS AND RESOURCE POTENTIAL OF GAS HYDRATES IN THE ANTARCTIC MARGINS[J]. Marine Geology & Quaternary Geology, 2010, 30(1): 95-107. doi: 10.3724/SP.J.1140.2010.01095
Citation: WU Lushan, DENG Xiguang, LIANG Jinqiang, FU Shaoying. THE CHARACTERISTICS AND RESOURCE POTENTIAL OF GAS HYDRATES IN THE ANTARCTIC MARGINS[J]. Marine Geology & Quaternary Geology, 2010, 30(1): 95-107. doi: 10.3724/SP.J.1140.2010.01095

南极陆缘天然气水合物特征及资源前景


doi: 10.3724/SP.J.1140.2010.01095
详细信息
    作者简介:

    吴庐山(1970-),男,博士生,高级工程师,主要从事海洋地质和天然气水合物调查与研究,E-mail:563wls@163.com

  • 基金项目:

    中国地质调查局基础调查项目(GZH200200201)

    国土资源部公益性行业科研专项(200811014)

  • 中图分类号: P618.13

THE CHARACTERISTICS AND RESOURCE POTENTIAL OF GAS HYDRATES IN THE ANTARCTIC MARGINS

More Information
  • 摘要: 首先,根据地震反射剖面的似海底反射特征、深海钻探计划(DSDP)和大洋钻探计划(ODP)钻孔沉积物的高甲烷含量、高有机碳含量以及孔隙水盐度、氯离子浓度和硫酸根离子浓度异常等地球物理和地球化学证据推测,南极陆缘有7个潜在的天然气水合物分布区,它们分别为南设得兰陆缘、南极半岛的太平洋陆缘、罗斯海陆缘、威尔克斯地陆缘、普林斯湾陆缘、里瑟-拉森海陆缘和南奥克尼群岛东南陆缘等。其次,从气源条件、沉积条件、热流及温压条件和地质构造条件等对南极陆缘天然气水合物的成藏条件进行了分析,认为该陆缘具备天然气水合物形成和赋存的有利地质条件。最后,对南极陆缘天然气水合物的资源前景进行了探讨,认为其资源量非常可观。
  • [1] Kvenvolden K A. Methane hydrate-a major reservoir of carbon in the shallow geosphere?[J]. Chemical Geology, 1988, 71(1):41-51.
    [2] Kvenvolden K A.Gas hydrates-geological perspective and global change[J]. Rev. Geophys., 1993, 31:173-187.
    [3] MacDonald G J. The future of methane as an energy resource[J]. Annual Review of Energy, 1990, 15:53-83.
    [4] Kvenvolden K A, Lorenson T D. The global occurrence of natural gas hydrate[C]//Paull C K, Dillon W P(eds). Natural Gas Hydrate Occurrence, Distribution, and Detection, Vol. 124 of Geophysical Monographs. American Geophysical Union:Washington D.C. 2001:3-18.
    [5] Markl R G, Bryan G M, Ewing J I. Structure of the Blake-Bahama outer ridge[J]. J. Geophys. Res., 1970, 75:4539-4555.
    [6] Hyndman R D, Spence G D. A seismic study of methane hydrate marine bottom simulating reflectors[J]. J. Geophys. Res., 1992, 97:6683-6698.
    [7] Yuan T, Hyndman R D, Spence G D, et al. Seismic velocity increase and deep-sea hydrate concentration above a bottom simulating reflector on the northern Cascadian slope[J]. J. Geophys. Res., 1996, 101:13655-13671.
    [8] 宋海斌,张岭,江为为,等.海洋天然气水合物的地球物理研究(Ⅲ):似海底反射[J].地球物理学进展,2003,18(2):182-187.

    [SONG Haibin, ZHANG Ling, JIANG Weiwei, et al. Geophysical researches on marine gas hydrates(Ⅲ):bottom simulating reflection[J]. Progress in Geophysics, 2003, 18(2):182-187.]
    [9] Shipley T H, Didyk B M. Occurrence of methane hydrates offshore southern Mexico[C]//Deep Sea Drilling Project, Initial Reports, 1982, 66:547-555.
    [10] 吴能友,陈弘,蔡秋蓉,等.科学大洋钻探与天然气水合物[J].地球科学进展,2003,18(5):753-758.

    [WU Nengyou, CHEN Hong, CAI Qiurong, et al. Scientific Ocean Drilling and gas-hydrate[J]. Advance in Earth Sciences, 2003, 18(5):753-758.]
    [11] Expedition 311 Scientists. Expedition 311 summary[C]//Riedel M, Collett T S, Malone M J and the Expedition 311 Scientists. Proc. IODP, Volume 311:Washington DC (Integrated Ocean Drilling Program Management International, Inc.). 2006:1-68.
    [12] Milkov A V, Claypool G E, Lee Y J. In situ methane concentrations at Hydrate Ridge, offshore Oregon:New constraints on the global gas hydrate inventory from an active margin[J]. Geology, 2003, 31(10):833-836.
    [13] Borowski W S. A review of methane and gas hydrates in the dynamic, stratified system of the Blake Ridge region, offshore southeastern North America[J]. Chemical Geology, 2004, 205:311-346.
    [14] Borowski W S, Paull C K,Ussler W Ⅲ. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments:Sensitivity to underlying methane and gas hydrates[J]. Marine Geology, 1999, 159:131-154.
    [15] Hesse R, Frape S K, Egeberg P K, et al. Stable isotope studies (Cl, O, and H) of interstitial waters from Site 997, Blake Ridge gas hydrate field, West Atlantic[C]//Paull C K, Matsumoto R, Wallace P J, et al. Proceedings of the Ocean Drilling Program, Scientific Results Volume 164:College Station TX (Ocean Drilling Program).2000:129-137.
    [16] Tomaru H, Matsumoto R, Torres M E, et al. Geological and geochemical constraints on the isotopic composition of interstitial waters from the Hydrate Ridge region, Cascadia continental margin[C]//Tréhu A M, Bohrmann G, Torres M E, et al. Proceedings of the Ocean Drilling Program, Scientific Results Volume 204:College Station, TX (Ocean Drilling Program).2006:1-20.
    [17] Malinverno A, Kastner M, Torres M E, et al. Gas hydrate occurrence from pore water chlorinity and downhole logs in a transect across the northern Cascadia margin (Integrated Ocean Drilling Program Expedition 311)[J]. Journal of Geophysical Research, 2008, 113:1-18.
    [18] Davey F J. The Antarctic margin and its possible hydrocarbon potential[J]. Tectonophysics, 1985, 114:443-470.
    [19] McIver R D. Hydrocarbon gases in canned core samples from Leg 28 Sites 271, 272, AND 273, Ross Sea[C]//Hayes D E, Frakes L A, et al. Deep Sea Drilling Project, Initial Reports Volume 28:Washington (U.S.Government Printing Office).1975:815-817.
    [20] Kvenvolden K A, Golan-Bac M, Rapp J B. Hydrocarbon geochemistry of sediments offshore from Antarctica:Wilkes Land continental margin[C]//Eittreim S L, Hampton M A. The Antarctic continental margin:Geology and Geophysics of Offshore Wilkes Land. Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series, Houston, Texas.1987:5A:205-213.
    [21] Shipboard Scientific Party, Site 695[C]//Barker P E, Kennett J P, et al. Proceedings of the Ocean Drilling Program, Initial Reports, Volume. 113:College Station, TX (Ocean Drilling Program).1988:527-606.
    [22] Lodolo E, Camerlenghi A, Brancolini G. A bottom simulating reflector on the South Shetland margin, Antarctic Peninsula[J]. Antarctic Sci., 1993, 5(2):201-210.
    [23] Ishihara T, Tanahashi M, Sato M, et al. Preliminary report of geophysical and geological surveys of the west Wilkes Land margin[C]//Proc. NIPR Symp. Antarc. Geosci., 1996, 9:91-108.
    [24] Rebesco M, Larter R D, Barker P F, et al. The history of sedimentation on the continental rise west of the Antarctic Peninsula[C]//Barker P F, Cooper A. Geology and Seismic Stratigraphy of the Antarctic Margin:Part 2 AGU, Antarct. Res Ser., 1997, 71:29-49.
    [25] Lodolo E, Tinivella U, Pellis G, et al. Seismic investigation of Bottom Simulating Reflectors on the South Shetland margin[J]. Terra Antarctica Report, 1998, 2:71-74.
    [26] Jin Y K, Lee M W, Kim Y, et al. Gas hydrate volume estimations on the South Shetland continental margin, Antarctic Peninsula[J]. Antarctic Science, 2003, 15(2):271-282.
    [27] Kuvaas B, Kristoffersen Y K, Leitchenkov G, et al. Seismic expression of glaciomarine deposits in the eastern Riiser-Larsen Sea, Antarctica[J]. Marine Geology, 2004, 207:1-15.
    [28] Solli K, Kuvaas B, Kristoffersen Y, et al. A seismo-stratigraphic analysis of glaciomarine deposits in the eastern Riiser-Larsen Sea (Antarctica)[J]. Mar. Geophys. Res., 2007, 28:43-57.
    [29] Close D I, Stagg H M J, O'Brien P E. Seismic stratigraphy and sediment distribution on the Wilkes Land and Terre Adélie margins, East Antarctica[J]. Marine Geology, 2007, 239:33-57.
    [30] Tinivella U, Accaino F, Vedova B D. Gas hydrates and active mud volcanism on the South Shetland continental margin, Antarctic Peninsula[J].Geo-Mar. Lett., 2008, 28:97-106.
    [31] Shipboard Scientific Party. Site 1165[C]//O'Brien P E, Cooper A K, Richter C, et al. Proceedings of the Ocean Drilling Program, Initial Reports Volume 188:College Station TX (Ocean Drilling Program). 2001:1-191.
    [32] de Wit M J. The evolution of the Scotia Arc as a key to the reconstruction of the southwestern Gondwanaland[J]. Tectonophysics, 1977, 37:53-81.
    [33] Maldonado A, Larter R D, Aldaya F. Forearc tectonic evolution of the South Shetland Margin, Antarctic Peninsula[J]. Tectonics, 1994, 13:1345-1370.
    [34] Tinivella U, Lodolo E, Camerlenghi A, et al. Seismic tomography study of a bottom simulating reflector off the South Shetland Islands (Antarctica)[C]//Henriet J P, Mienert J. Gas hydrate:relevance to world margin stability and climate change. Geol. Soc. Lond. Spec. Publ., 1998:137:141-151.
    [35] Tinivella U, Accaino F. Compressional velocity structure and Poisson's ratio in marine sediments with gas hydrate and free gas by inversion of reflected and refracted seismic data (South Shetland Islands, Antarctica)[J]. Marine Geology, 2000, 164:13-27.
    [36] Lodolo E, Tinivella U, Pellis, et al. Seismic investigation of Bottom Simulating Reflectors on the South Shetland margin[J]. Terra Antarctica Report, 1998, 2:71-74.
    [37] Lodolo E, Camerlenghi A, Madrussani G, et al. Assessment of gas hydrate and free gas distribution on the South Shetland margin (Antarctica) based on multichannel seismic reflection data[J]. Geophys. J. Int., 2002, 148:103-119.
    [38] Hamilton E L. Sound velocity gradients in marine sediments[J]. J. acoust. Soc. Am., 1978, 65:909-922.
    [39] Zelt C A, Smith R B. Seismic travel time inversion for 2-D crystal velocity structure[J]. Geophys. J. Int. 1992, 108:16-34.
    [40] Roberts H H, Hardage B A, Shedd W W, et al. Seafloor reflectivity-an important seismic property for interpreting fluid/gas expulsion geology and the presence of gas hydrate[J]. The Leading Edge, 2006, 25:620-628.
    [41] Storey B C, Vaughan A P M, Millar I L. Geodynamic evolution of the Antarctic Peninsula during Mesozoic times and its bearing on Weddell Sea history[C]//Storey B C, King E C, Livermore R A. Weddell Sea Tectonics and Gondwana Breakup. Geol. Soc. London, Spec. Publ., 1996, 108:87-103.
    [42] Barker P F. The Cenozoic subduction history of the Pacific margin of the Antarctic Peninsula:ridge crest-trench collisions[J]. J. Geol. Soc. Lond., 1982, 139:787-801.
    [43] Larter R D, Barker P F. Effects of ridge crest-trench interaction on Antarctic-Phoenix spreading:forces on a young subducting plate[J]. J. Geophys. Res., 1991, 96(19):583-607.
    [44] Barker P F, Camerlenghi A. Glacial history of the Antarctic Peninsula from Pacific margin sediments[C]//Barker P F, Camerlenghi A, Acton G D, et al. Proceedings of the Ocean Drilling Program, Scientific Results Volume 178:College Station, TX (Ocean Drilling Program), 2002:1-40.
    [45] Rebesco M, Larter R D, Camerlenghi A, et al. Giant sediment drifts on the continental rise west of the Antarctic Peninsula[J]. Geo. Mar. Lett., 1996, 16:65-75.
    [46] Lucchi R, Rebesco M, Camerlenghi A, et al. Glaciomarine sedimentary processes of a high-latitude, Deep-sea sediment drift (Antarctic Peninsula Pacific margin)[J]. Mar. Geol., 2002, 189:343-370.
    [47] Shipboard Scientific Party. Site 1096[C]//Barker P F, Camerlenghi A, Acton G D, et al. Proceedings of the Ocean Drilling Program, Initial Reports Volume 178:College Station TX (Ocean Drilling Program). 1999.
    [48] Shipboard Scientific Party. Palmer Deep (Sites 1098 and 1099)[C]//Barker P F, Camerlenghi A, Acton G D, et al. Proceedings of the Ocean Drilling Program, Initial Reports Volume 178:College Station TX (Ocean Drilling Program). 1999.
    [49] Hayes D E, Davey F J. A geophysical study of the Ross Sea, Antarctic[C]//Hayes D E, Frakes L A, et al. Initial Reports of the Deep Sea Drilling Project, Volume 28, Washington (U.S. Government Printing Office). 1975:887-907.
    [50] Rebesco M, Camerlenghi A. Late Pliocene margin development and mega debris flow deposits on the Antarctic continental margins:Evidence of the onset of the modern Antarctic Ice Sheet?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 260:149-167.
    [51] Shipboard Scientific Party. Sites 270, 271, 272[C]//Hayes D E, Frakes L A, et al. Initial Reports of the Deep Sea Drilling Project, Volume 28, Washington (U.S. Government Printing Office). 1975:211-334.
    [52] Mann R, Gieskes J M. Interstitial water studies, Leg 28[C]//Hayes D E, Frakes L A, et al. Initial Reports of the Deep Sea Drilling Project, Volume 28, Washington (U.S. Government Printing Office). 1975:805-814.
    [53] Geletti R, Praeg D, Busetti M. Evidence of gas hydrates and mud volcanoes in the western Ross Sea, Antarctica[C]//33rd International Geological Congress (Abstracts), Oslo, 2008.
    [54] Eittreim S L. Transition from continental to oceanic crust on the Wilkes-Adelie margin of Antarctica[J]. Journal of Geophysical Research, 1994, 99:24189-24205.
    [55] Tanahashi M, Eittreim S, Wanneson J. Seismic stratigraphic sequences of the Wilkes Land margin[J]. Terra Antarctica, 1994, 1(2):391-393.
    [56] Eittreim S L, Cooper A K, Wannesson J. Seismic stratigraphic evidence of icesheet advances on the Wilkes Land margin of Antarctica[J]. Sedimentary Geology, 1995, 96:131-156.
    [57] Escutia C, Eittreim S L, Cooper A K, et al. Morphology and acoustic character of the Antarctic Wilkes Land turbidite systems:Ice-sheet sourced versus riversourced fans[J]. Journal of Sedimentary Research, 2000, 70(1):84-93.
    [58] Shipboard Scientific Party, Leg 188 summary:Prydz Bay-Cooperation Sea, Antarctic[C]//O'Brien P E, Cooper A K, Richter C, et al. Proceedings of the Ocean Drilling Program, Initial Reports Volume 188:College Station TX (Ocean Drilling Program). 2001:1-65.
    [59] Claypool G E, Lorenson T D, Johnson C A. Authigenic carbonates, methane generation, and oxidation in continental rise and shelf sediments, ODP Leg 188 Sites 1165 and 1166, offshore Antarctic(Prydz Bay)[C]//Cooper A K, O'Brien P E, Richter C. Proceedings of the Ocean Drilling Program, Scientific Results Volume 188:College Station TX (Ocean Drilling Program). 2004:1-15.
    [60] Marks K M, Tikku A A. Cretaceous reconstruction of East Antarctica, Africa and Madagascar[J]. Earth and Planetary Science Letters, 2001, 186:479-495.
    [61] Lodolo E, Camerlenghi A. The occurrence of BSRs on the Antarctic margin[C]//Michael D M. Natural gas hydrate in oceanic and permafrost environments. Dordrecht:Kluwer Academic Publishers. 2000:199-212.
    [62] Shipboard Scientific Party. Site 696[C]//Barker P E, Kennett J P, et al. Proceedings of the Ocean Drilling Program, Initial Reports, Volume. 113:College Station, TX (Ocean Drilling Program). 1988:607-704.
    [63] Lonsdale M J. The relationship between silica diagenesis, methane, and seismic reflections on the South Orkney microcontinent[C]//Barker P E, Kennett J P, et al. Proceeding of the Ocean Drilling Program, Scientific Results, Volume 113:College Station, TX (Ocean Drilling Program). 1990:27-37.
    [64] Nagao T. Heat flow measurements in the Weddell Sea, Antarctica:ODP Leg 113[C]//Barker P E, Kennett J P, et al. Proceeding of the Ocean Drilling Program, Scientific Results, Volume 113:College Station, TX (Ocean Drilling Program). 1990:17-26.
    [65] Waseda A. Organic carbon content, bacterial methanogenesis, and accumulation processes of gas hydrates in marine sediments[J]. Geochemical Journal, 1998, 32(3):143-157.
    [66] Dunbar R B, Anderson J B, Domack E W, et al. Oceanographic influences on sedimentation along the Antarctic continental shelf[J]. AGU, Antarctic Res., 1985, 43:291-312.
    [67] 李国玉,金之钧.新编世界含油气盆地图集[M].北京:石油工业出版社,2005:109.[LI Guoyu, JIN Zhijun. New World Atlas of Oil and Gas Basins[M]. Beijing:Petroleum Industry Press, 2005:109.]
    [68] John B S. Antarctica-geology and hydrocarbon potential[C]//Halbouty M T. Future Petroleum Provinces of the World. AAPG memoir 40. 1986:55-100.
    [69] Cooper A K, Barrett P J B, Hinz K, et al. Cenozoic prograding sequences of the Antarctic continental margin:a record of glacio-eustatic and tectonic events[J]. Marine Geology, 1991, 102:175-213.
    [70] Barker P F, Diekmann B, Escutia C. Onset of Cenozoic Antarctic glaciation[J]. Deep-Sea Research Ⅱ, 2007, 54:2293-2307.
    [71] The Shipboard Scientific Party. Introduction[C]//Hayes D E, Frakes L A, et al. Initial Reports of the Deep Sea Drilling Project, Volume 28, Washington (U.S. Government Printing Office). 1975:5-18.
    [72] 金春爽,汪集旸,王永新,等.天然气水合物地热场分布特征[J].地质科学,2004,39(3):416-423.

    [JIN Chunshuang, WANG Jiyang, WANG Yongxin, et al. Geothermal field characteristics in the areas of gas hydrates distribution[J]. Chinese Journal of Geology, 2004, 39(3):416-423.]
    [73] Lee M, Hutchinson D, Dillon W, et al. Method of estimating the amount of in situ gas hydrates in the deep marine sediments[J]. Marine and Petroleum Geology, 1993, 10:493-506.
    [74] Kvenvolden K A, McMenamin M A. Hydrocarbon gases in sediment of the shelf, slope, and basin of the Bering Sea[J]. Geochim. Cosmochim. Acta, 1980, 44:1145-1150.
    [75] Hyndman R D, Spence G D, Chapman R, et al. Geophysical studies of marine gas hydrate in Nort hern Cascadia[J]. Gas Hydrate in Northern Cascadia, 2001:273-295.
    [76] 张光学,黄永样,祝有海,等.活动大陆边缘水合物分布规律及成藏过程[J].海洋地质动态,2001,17(7):3-7.

    [ZHANG Guangxue, HUANG Yongyang, ZHU Youhai, et al. Gas hydrate on the active continental margin and its pool-formation process[J]. Marine Geology Letters, 2001, 17(7):3-7.]
    [77] 张光学,祝有海,徐华宁.非活动大陆边缘的天然气水合物及其成藏过程述评[J].地质论评,2003,49(2):181-186.

    [ZHANG Guangxue, ZHU Youhai, XU Huaning. Gas hydrate on the passive continental margin and its pool-formation process[J]. Geological Review, 2003, 49(2):181-186.]
    [78] Barker P F, Burrell J. The influence upon Southern Ocean circulation, sedimentation and climate of the opening of Drake Passage[C]//Craddock C, Antarctic Geoscience. University of Wisconsin Press:Madison, 1982:377-386.
    [79] Cande S E, Mutter J C. A revised identification of the oldest seafloor spreading anomalies between Australia and Antarctica[J]. Earth Planet. Sci. Lett., 1982, 58:151-160.
    [80] Cooper A K, Barrett P J, Hinz K, et al. Cenozoic prograding sequences of the Antarctic continental margin:a record of glacio-eustatic and tectonic events[J]. Marine Geology, 1991, 102:175-213.
    [81] Tinivella U, Accaino F, Camerlenghi A. Gas hydrate and free gas distribution from inversion of seismic data on the South Shetland margin (Antarctica)[J]. Marine Geophysical Researches, 2002, 23:109-123.
    [82] Domenico S N. Elastic properties of unconsolidated porous sand reservoirs[J]. Geophysics, 1977, 42:1339-1368.
  • [1] 赖亦君, 杨涛, 梁金强, 张光学, 苏丕波, 方允鑫.  南海北部陆坡珠江口盆地东南海域GMGS2-09井孔隙水地球化学特征及其对天然气水合物的指示意义 . 海洋地质与第四纪地质, 2019, 39(3): 135-142. doi: 10.16562/j.cnki.0256-1492.2018010201
    [2] 张家政, 李胜利, 王明君, 赵广珍, 庞守吉, 张帅, 吴纪修.  南祁连盆地木里冻土区天然气水合物气源分析 . 海洋地质与第四纪地质, 2017, 37(5): 90-101. doi: 10.16562/j.cnki.0256-1492.2017.05.009
    [3] 杨涛, 叶鸿, 赖亦君.  南海北部陆坡天然气水合物的沉积物孔隙水地球化学研究进展 . 海洋地质与第四纪地质, 2017, 37(5): 48-58. doi: 10.16562/j.cnki.0256-1492.2017.05.005
    [4] 王力峰, 尚久靖, 梁金强, 徐行, 沙志彬, 陆敬安, 王静丽.  南海东北部陆坡水合物钻探区海底表层热导率分布特征 . 海洋地质与第四纪地质, 2016, 36(2): 29-37. doi: 10.16562/j.cnki.0256-1492.2016.02.004
    [5] 唐玲, 杨木壮, 沙志彬, 张光学.  南极近海南设得兰陆缘天然气水合物成矿条件与机理 . 海洋地质与第四纪地质, 2014, 34(3): 125-132. doi: 10.3724/SP.J.1140.2014.03125
    [6] 王真真, 王秀娟, 郭依群, 陈端新, 吴时国.  白云凹陷陆坡峡谷沉积与迁移特征及其对天然气水合物成藏的影响 . 海洋地质与第四纪地质, 2014, 34(3): 105-113. doi: 10.3724/SP.J.1140.2014.03105
    [7] 沙志彬, 梁金强, 郑涛, 陆敬安, 王力峰, 苏丕波.  地震属性在天然气水合物预测中的应用 . 海洋地质与第四纪地质, 2013, 33(5): 185-192. doi: 10.3724/SP.J.1140.2013.05185
    [8] 苏明, 杨睿, 张翠梅, 丛晓荣, 梁金强, 沙志彬.  深水沉积体系研究进展及其对南海北部陆坡区天然气水合物研究的启示 . 海洋地质与第四纪地质, 2013, 33(3): 109-116. doi: 10.3724/SP.J.1140.2013.03109
    [9] 龚跃华, 张光学, 郭依群, 梁金强, 沙志彬, 王宏斌, 梁劲.  南海北部神狐西南海域天然气水合物成矿远景 . 海洋地质与第四纪地质, 2013, 33(2): 97-104. doi: 10.3724/SP.J.1140.2013.02097
    [10] 杨睿, 张媛, 雷新华, 苏正, 梁金强, 沙志彬.  南海北部天然气水合物赋存带识别与深度预测 . 海洋地质与第四纪地质, 2011, 31(4): 141-147. doi: 10.3724/SP.J.1140.2011.04141
    [11] 张光学, 张明, 杨胜雄, 雷新华, 徐华宁, 刘学伟, 梁金强, 沙志彬.  海洋天然气水合物地震检测技术及其应用 . 海洋地质与第四纪地质, 2011, 31(4): 51-58. doi: 10.3724/SP.J.1140.2011.04051
    [12] 杨木壮, 潘安定, 沙志彬.  陆缘地区天然气水合物成藏地质模式 . 海洋地质与第四纪地质, 2010, 30(6): 85-90. doi: 10.3724/SP.J.1140.2010.06085
    [13] 曾繁彩, 李绍荣, 陈宏文, 王刚龙.  基于GIS的天然气水合物数据管理系统及应用 . 海洋地质与第四纪地质, 2010, 30(5): 153-158. doi: 10.3724/SP.J.1140.2010.05153
    [14] 毕海波, 马立杰, 黄海军, 杜廷芹, 孔梅.  台西南盆地天然气水合物甲烷量估算 . 海洋地质与第四纪地质, 2010, 30(4): 179-186. doi: 10.3724/SP.J.1140.2010.04179
    [15] 沙志彬, 郭依群, 杨木壮, 梁金强, 王力峰.  南海北部陆坡区沉积与天然气水合物成藏关系 . 海洋地质与第四纪地质, 2009, 29(5): 89-98. doi: 10.3724/SP.J.1140.2009.05089
    [16] 张明, 彭朝旭, 沙志彬.  天然气水合物准三维地震调查导航定位技术 . 海洋地质与第四纪地质, 2008, 28(6): 101-106. doi: 10.3724/SP.J.1140.2008.06101
    [17] 胡高伟, 张剑, 业渝光, 刁少波, 王家生.  天然气水合物的声学探测模拟实验 . 海洋地质与第四纪地质, 2008, 28(1): 135-141.
    [18] 龚跃华, 吴时国, 张光学, 王宏斌, 梁金强, 郭依群, 沙志彬.  南海东沙海域天然气水合物与地质构造的关系 . 海洋地质与第四纪地质, 2008, 28(1): 99-104.
    [19] 曾繁彩, 吴琳, 张光学, 梁金强, 王宏斌.  蒙特卡罗法在天然气水合物资源量计算中的应用 . 海洋地质与第四纪地质, 2006, 26(5): 139-144.
    [20] 栾锡武, 岳保静, 鲁银涛.  东海天然气水合物的地震特征 . 海洋地质与第四纪地质, 2006, 26(5): 91-99.
  • 加载中
计量
  • 文章访问数:  1814
  • HTML全文浏览量:  237
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-10-07
  • 修回日期:  2009-12-07

南极陆缘天然气水合物特征及资源前景

doi: 10.3724/SP.J.1140.2010.01095
    作者简介:

    吴庐山(1970-),男,博士生,高级工程师,主要从事海洋地质和天然气水合物调查与研究,E-mail:563wls@163.com

基金项目:

中国地质调查局基础调查项目(GZH200200201)

国土资源部公益性行业科研专项(200811014)

  • 中图分类号: P618.13

摘要: 首先,根据地震反射剖面的似海底反射特征、深海钻探计划(DSDP)和大洋钻探计划(ODP)钻孔沉积物的高甲烷含量、高有机碳含量以及孔隙水盐度、氯离子浓度和硫酸根离子浓度异常等地球物理和地球化学证据推测,南极陆缘有7个潜在的天然气水合物分布区,它们分别为南设得兰陆缘、南极半岛的太平洋陆缘、罗斯海陆缘、威尔克斯地陆缘、普林斯湾陆缘、里瑟-拉森海陆缘和南奥克尼群岛东南陆缘等。其次,从气源条件、沉积条件、热流及温压条件和地质构造条件等对南极陆缘天然气水合物的成藏条件进行了分析,认为该陆缘具备天然气水合物形成和赋存的有利地质条件。最后,对南极陆缘天然气水合物的资源前景进行了探讨,认为其资源量非常可观。

English Abstract

参考文献 (82)

目录

    /

    返回文章
    返回