留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天然气水合物释放甲烷对晚第四纪气候影响的古环境记录

葛倩 初凤友 方银霞 孟宪伟

葛倩, 初凤友, 方银霞, 孟宪伟. 天然气水合物释放甲烷对晚第四纪气候影响的古环境记录[J]. 海洋地质与第四纪地质, 2010, 30(1): 87-94. doi: 10.3724/SP.J.1140.2010.01087
引用本文: 葛倩, 初凤友, 方银霞, 孟宪伟. 天然气水合物释放甲烷对晚第四纪气候影响的古环境记录[J]. 海洋地质与第四纪地质, 2010, 30(1): 87-94. doi: 10.3724/SP.J.1140.2010.01087
GE Qian, CHU Fengyou, FANG Yinxia, MENG Xianwei. PALEOENVIRONMENTAL RECORDS OF INFLUENCE OF GAS HYDRATE-DERIVED METHANE ON CLIMATE OF THE LATE QUATERNARY[J]. Marine Geology & Quaternary Geology, 2010, 30(1): 87-94. doi: 10.3724/SP.J.1140.2010.01087
Citation: GE Qian, CHU Fengyou, FANG Yinxia, MENG Xianwei. PALEOENVIRONMENTAL RECORDS OF INFLUENCE OF GAS HYDRATE-DERIVED METHANE ON CLIMATE OF THE LATE QUATERNARY[J]. Marine Geology & Quaternary Geology, 2010, 30(1): 87-94. doi: 10.3724/SP.J.1140.2010.01087

天然气水合物释放甲烷对晚第四纪气候影响的古环境记录


doi: 10.3724/SP.J.1140.2010.01087
详细信息
    作者简介:

    葛倩(1983-),男,博士生,主要从事海洋地质研究,E-mail:gq980447@hotmail.com

  • 基金项目:

    国家重点基础研究发展规划项目(2007CB411704)

    海洋公益性行业科研专项项目(JG0708)

  • 中图分类号: P618.13

PALEOENVIRONMENTAL RECORDS OF INFLUENCE OF GAS HYDRATE-DERIVED METHANE ON CLIMATE OF THE LATE QUATERNARY

More Information
  • 摘要: 天然气水合物作为全球碳循环中最大的碳储库,在全球变暖或海平面变化导致压力减小的情况下将分解释放大量甲烷进入水体和大气,对气候和环境造成巨大的影响。自从1995年Dickens等提出形成晚古新世温度峰值事件(LPTM)的主要原因是海底天然气水合物大规模分解释放甲烷这一假说以来,地质历史时期天然气水合物演化的研究蓬勃发展。而晚第四纪以来经历了一系列气候变化过程,在加利福尼亚的圣巴巴拉盆地、瓜伊马斯盆地、俄罗斯的贝加尔湖、格陵兰海、秘鲁、东格陵兰陆架、巴布亚新几内亚以及南海等地都记录了天然气水合物分解释放而形成的碳同位素负偏的古环境信息。主要针对这些古环境记录进行整理总结,为进一步研究天然气水合物的动态演化提供基础。
  • [1] Chappellaz J, Barnola J M, Raynaud D, et al. Ice-core record of atmospheric methane over the past 160,000 years[J]. Nature, 1990, 345:127-131.
    [2] Lorius C, Jouzel J, Raynaud D, et al. The ice-core record:Climate sensitivity and future greenhouse warming[J]. Nature, 1990, 347:139-145.
    [3] Dansgaard W, Johnsen S J, Clausen H B, et al. Evidence for general instability of past climate from a 250-kyr ice-core record[J]. Nature, 1993, 364:218-220.
    [4] Raynaud D, Barnola J M, Chappellaz J, et al. The ice record of greenhouse gases:A view in the context of future changes[J]. Quaternary Science Review, 2000, 19:9-17.
    [5] Hendy I L, Kennett J P. Latest Quaternary north Pacific surface-water responses imply atmospheric-driven climate instability[J]. Geology, 1999, 27:291-294.
    [6] Hendy I L, Kennett J P. Dansgaard-Oeschger cycles and the California current system:Planktonic foraminiferal response to rapid climate change in Santa Barbara Basin, ocean drilling program hole 893A[J]. Paleoceanography, 2000, 15:30-42.
    [7] Smith L M, Sachs J P, Jennings A E, et al. Light δ13C events during deglaciation of the East Greenland continental shelf attributed to methane release from gas hydrates[J]. Geophysical Research Letters, 2001, 28(11):2217-2220.
    [8] Hendy I L, Kennett J P, Roark E B, et al. Apparent synchroneity of submillennial scale climate events between Greenland and Santa Barbara Basin, California from 30-10ka[J]. Quaternary Science Review, 2002, 21:1167-1184.
    [9] Severinghaus J P, Sowers T, Brook E J, et al. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice[J]. Nature, 1998, 391:141-146.
    [10] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399:429-436.
    [11] Severinghaus J P, Brook E J. Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice[J]. Science, 1999, 286:930-933.
    [12] Ehhalt D, Prather M, Dentener F, et al. Atmospheric chemistry and greenhouse gases[C]//Climate Change 2001:The Scientific Basis:Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge:Cambridge University Press, 2001:239-287.
    [13] Leggett J. The nature of the greenhouse threat[R]. Global Warming:The Greenpeace Report, New York:Oxford University Press, 1990, 30:40-41.
    [14] Brook E J, Sowers T, Orchardo J. Rapid variations in atmospheric methane concentration during the past 110000 years[J]. Science, 1996, 273:1087-1091.
    [15] Blunier T, Chappellaz J, Schwander J, et al. Asynchrony of Antarctic and Greenland climate change during the last glacial period[J]. Nature, 1998, 394:739-743.
    [16] Nisbet E G. Sources of atmospheric CH4 in early postglacial time[J]. Journal of Geophysical Research, 1992, 97:12849-12867.
    [17] Kennett J P, Cannariato K G, Hendy I L, et al. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials[J]. Science, 2000, 288:128-133.
    [18] Kvenvolden K A. Methane hydrates and global climate[J]. Global Biogeochemical Cycles, 1988, 2:221-229.
    [19] Kvenvolden K A. A review of the geochemistry of methane in natural gas hydrate[J]. Organic Geochemistry, 1995, 23:997-1008.
    [20] Brewer P G, Orr F M, Friederich G, et al. Deep-ocean field test of methane hydrate formation from a remotely operated vehicle[J]. Geology, 1997, 25:407-410.
    [21] Dickens G R, O'Neil J R, Rea D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene[J]. Paleoceanography, 1995, 10, 965-971.
    [22] Kennedy M J, Christie-Blick N, Sohl L E. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals?[J]. Geology, 2001, 29:443-446.
    [23] Jiang G, Kennedy M J, Christie-Blick N. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates[J]. Nature, 2003, 426:822-826.
    [24] Wang J, Jiang G, Xiao S, et al. Carbon isotope evidence for widespread methane seeps in the ca. 635 Ma Doushantuo cap carbonate in south China[J]. Geology, 2008, 36(5):347-350.
    [25] Krull E S, Retallack G J. δ13C depth profiles from Paleosols across the Permian-Triassic boundary; evidence for methane release[J]. GSA Bull., 2000, 112:1459-1472.
    [26] Heydari E, Hassanzadeh J, Deev Jahi. Model of the Permian-Triassic boundary mass extinction:a case for gas hydrate as the main cause of biological crisis on Earth[J]. Sedimentary Geology, 2003, 163:147-163.
    [27] Retallack G J, Smith R M H, Ward P D. Vertebrate extinction across Permian-Triassic boundary in Karoo Basin, South Africa[J]. GSA Bull., 2003, 115:1133-1152.
    [28] Ryskin G J. Methane-driven oceanic eruptions and mass extinctions[J]. Geology, 2003, 31:741-744.
    [29] Hesselbo S P, Grocke D R, Jenkyns H C, et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event[J]. Nature, 2000, 406:392-395.
    [30] Padden M, Weissert H, de Rafelis M. Evidence for Late Jurassic release of methane from gas hydrate[J]. Geology, 2001, 29:223-226.
    [31] Jahren A H, Arens N C, Sarmiento G, et al. Terrestrial record of methane hydrate dissociation in the Early Cretaceous[J]. Geology, 2001, 29:159-162.
    [32] Jahren A H, Conrad C R, Jenkyns H C, et al. A plate tectonic mechanism for methane hydrate release along subduction zones[J]. Earth Planetary Science Letters, 2005, 236:691-704.
    [33] Kennett J P, Cannariato K G, Hendy I L, et al. Primary cause of Quaternary instability of methane hydrates[C]//Methane Hydrates in Quaternary Climate Change:the Clathrate Gun Hypothesis. Washington, D C:American Geophysical Union, 2002:113-124.
    [34] Prokopenko A A, Williams D F. Deglacial methane emission signals in the carbon isotopic record of Lake Baikal[J]. Earth and Planetary Science Letters, 2004, 218:135-147.
    [35] Hill T M, Kennett J P, Spero H J. High-resolution records of methane hydrate dissociation:ODP Site 893, Santa Barbara Basin[J]. Earth Planetary Science Letters, 2004, 223:127-140.
    [36] 卢苗安,马宗晋,陈木宏,等. 倒数第二次冰消期西太平洋边缘海地区δ13C值快速负偏事件及其成因[J]. 第四纪研究,2002, 22(4):349-358.

    [LU Miaoan, MA Zongjin, CHEN Muhong, et al. Rapid carbon-isotope negative excursion events during the penultimate deglaciation in Western Pacific marginal sea areas and their origins[J]. Quaternary Sciences, 2002, 22(4):349-358.]
    [37] Keigwin L D. Late Pleistocene-Holocene paleoceanography and ventilation of the Gulf of California[J]. Journal of Oceanography, 2002, 58:421-432.
    [38] Millo C, Sarnthein M, Erlenkeuser H, et al. Methane-driven late Pleistocene δ13C minima and overflow reversals in the southwestern Greenland Sea[J]. Geology, 2005, 33:873-876.
    [39] Wefer G, Heinze P-M, Berger W H. Clues to ancient methane release[J]. Nature, 1994, 369:282.
    [40] de Garidel-Thoron T, Beaufort L, Bassinot F, et al. Evidence for large methane releases to the atmosphere from deep-sea gas-hydrate dissociation during the last glacial episode[J]. PNAS, 2004, 101:9187-9192.
    [41] Brook E J, Harder S, Severinghaus J, et al. On the origin and timing of rapid changes in atmospheric methane during the last glacial period[J]. Global Biogeochemical Cycles, 2000, 14:559-572.
    [42] Blunier T, Chappellaz J, Schwander J, et al. Asynchrony of Antarctic and Greenland climate change during the last glacial period[J]. Nature, 1998, 394:739-743.
    [43] Blunier T. "Frozen" methane escapes from the sea floor[J]. Science, 2000, 288:68-69.
    [44] Matsumoto R, Borowski W S. Gas hydrate estimates from parently determined oxygen isotopic fractionation (αGH-IW) and δ18O anomalies of the interstitial water:Leg 164, Blake Ridge[C]//Proceedings of the Ocean Drilling Program, Scientific Results. 2000, 164:147-149.
    [45] Chen Z, Yan W, Chen M H, et al. Discovery of seep carbonate nodules as new evidence for gas venting on the northern continental slope of South China Sea[J]. Chinese Science Bulletin, 2006, 51(10):1228-1237.
    [46] 姚伯初. 南海北部陆缘天然气水合物初探[J]. 海洋地质与第四纪地质, 1998, 18(4):11-18.

    [YAO Bochu. Preliminary exploration of gas hydrate in the northern margin of the South China Sea[J]. Marine Geology and Quaternary Geology, 1998, 18(4):11-18.]
    [47] 杨涛,薛紫晨,杨竞红,等. 南海北部地区海洋沉积物中孔隙水的氢、氧同位素组成特征[J]. 地球学报, 2003, 24(6):511-514.

    [YANG Tao, XUE Zichen, YANG Jinghong, et al. Oxygen and hydrogen isotopic compositions of pore water from marine sediements in the northern South China Sea[J]. Acta Geosicientia Sinica, 2003, 24(6):511-514.]
    [48] 蒋少涌,杨涛,薛紫晨,等. 南海北部海区海底沉积物中孔隙水的Cl-和SO42-浓度异常特征及其对天然气水合物的指示意义[J]. 现代地质, 2005, 19(1):45-54.

    [JIANG Shaoyong, YANG Tao, XUE Zichen, et al. Chlorine and sulfate concentrations in pore waters from marine sediments in the north margin of the South China Sea and their implications for gas hydrate exploration[J]. Geoscience, 2005, 19(1):45-54.]
    [49] 王建桥,祝有海,吴必豪,等. 南海ODP1146站位烃类气体地球化学特征及其意义[J]. 海洋地质与第四纪地质, 2005, 25(3):53-60.

    [WANG Jianqiao, ZHU Youhai, WU Bihao, et al. Geochemistry of hydrocarbon gases from site 1146, ODP Leg 184, the South China Sea and the implications[J]. Marine Geology and Quaternary Geology, 2005, 25(3):53-60.]
    [50] 邓希光,付少英,黄永样,等. 南海北部东沙群岛HD196站位地球化学特征及其对水合物的指示[J]. 现代地质, 2006, 20(1):92-102.

    [DENG Xiguang, FU Shaoying, HUANG Yongyang, et al. Geochemical characteristics of sediments at site HD 196 in Dongsha Islands, the north of South China Sea, and their implication for gas hydrates[J]. Geoscience, 2006, 20(1):92-102.]
    [51] 杨涛,蒋少涌,葛璐,等. 南海北部陆坡西沙海槽XS-01站位沉积物孔隙水的地球化学特征及其对天然气水合物的指示意义[J]. 第四纪研究, 2006, 26(3):442-448.

    [YANG Tao, JIANG Shaoyong, GE Lu, et al. Geochemical characteristics of sediment pore water from site XS-01 in the Xisha Trough of South China Sea and their significance for gas hydrate occurrence[J]. Quaternary Sciences, 2006, 26(3):442-448.]
    [52] 姚伯初. 南海的天然气水合物矿藏[J]. 热带海洋学报,2001, 20(2):20-28.

    [YAO Bochu. The gas hydrate in the South China Sea[J]. Journal of Tropical Oceanography, 2001, 20(2):20-28.]
    [53] 张光学,黄永样,陈邦彦. 海域天然气水合物地震学[M]. 北京:海洋出版社,2003.[ZHANG Guangxue, HUANG Yongyang, CHEN Bangyan. Seismology of Marine Gas Hydrate[M]. Beijing:China Ocean Press, 2003.]
    [54] 陈多福,黄永样,冯东,等. 南海北部冷泉碳酸盐岩和石化微生物细菌及地质意义[J]. 矿物岩石地球化学通报, 2005, 24(3):185-189.

    [CHEN Duofu, HUANG Yongyang, FENG Dong, et al. Seep carbonate and preserved bacteria fossils in the northern of the South China Sea and their geological implications[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2005, 24(3):185-189.]
    [55] Chen D F, Huang Y Y, Xun L Y, et al. Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the Northeastern South China Sea[J]. Marine and Petroleum Geology, 2005, 22:613-621.
    [56] 陈忠,颜文,陈木宏,等. 南海北部大陆坡冷泉碳酸盐结核的发现:天然气水合物新证据[J]. 热带海洋学报, 2006, 25(1):83.[CHEN Zhong, YAN Wen, CHEN Muhong, et al. Discovery of seep authigenic carbonate nodules on northern continental slope of South China Sea:New evidence of gas hydrate[J]. Journal of Tropical Oceanography, 2006

    , 25(1):83.]
    [57] Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea[J]. Marine Geology, 2004, 209:45-67.
    [58] Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85:208-224.
    [59] Paull C K, Buelow W J, Ussler W, et al. Increased continental-margin slumping frequency during sea-level lowstands above gas hydrate-bearing sediments[J]. Geology, 1996, 24:143-146.
    [60] Kayen R E, Lee H J. Pleistocene slope instability of gas hydrate-laden sediment on the Beaufort Sea margin[J]. Marine Geotechnology, 1991, 10:125-141.
    [61] Maslin M, Mikkelsen N, Vilela C, et al. Sea-level and gas-hydrate-controlled catastrophic sediment failures of the Amazon Fan[J]. Geology, 1998, 26:1107-1110.
    [62] Dickens G R, Paull C K, Wallace P, et al. Direct measurement of in site methane quantities in a large gas hydrate reservoir[J]. Nature, 1997, 385:426-428.
    [63] Kvenvolden K A. Gas hydrates-geological perspective and global change[J]. Reviews of Geophysics, 1993, 31:173-187.
  • [1] 孙晗杰, Beaufort Luc, 安佰正, 李铁刚, 常凤鸣, 南青云, 黄翠.  晚第四纪热带西太平洋Noelaerhabdaceae科颗石长度和质量变化及其影响因素 . 海洋地质与第四纪地质, 2023, 43(4): 38-47. doi: 10.16562/j.cnki.0256-1492.2023071602
    [2] 陈烨, 孙治雷, 吴能友, 刘昌岭, 徐翠玲, 辛友志, 曹红, 耿威, 张喜林, 翟滨, 孙运宝, 李晶, 张栋, 闫大伟, 吕泰衡.  海洋沉积物中甲烷代谢微生物的研究进展 . 海洋地质与第四纪地质, 2022, 42(6): 82-92. doi: 10.16562/j.cnki.0256-1492.2022021801
    [3] 刘荣波, 袁晓东, 林哲远, 仇建东, 胡日军, 高军锋, 刘龙龙, 张胜江.  莱州湾晚第四纪以来沉积物元素地球化学特征及来源 . 海洋地质与第四纪地质, 2022, 42(3): 100-110. doi: 10.16562/j.cnki.0256-1492.2022012301
    [4] 刘德政, 夏非.  江苏中部海岸晚第四纪沉积物的粒度与磁化率特征及其古环境意义 . 海洋地质与第四纪地质, 2021, 41(5): 210-220. doi: 10.16562/j.cnki.0256-1492.2021051901
    [5] 张立雪, 陈爱清, 陈庆, 赖佩欣.  珠江口内伶仃洋晚第四纪黏土矿物组成特征及对源区气候变化的指示 . 海洋地质与第四纪地质, 2021, 41(5): 202-209. doi: 10.16562/j.cnki.0256-1492.2020121002
    [6] 刘杰, 刘丽华, 吴能友, 邬黛黛, 金光荣, 杨睿.  南海东沙海域深水区末次冰期以来天然气水合物稳定带演化 . 海洋地质与第四纪地质, 2021, 41(2): 146-155. doi: 10.16562/j.cnki.0256-1492.2020061801
    [7] 伏梦璇, 于世永, 吴金甲, 陈诗越, 侯战方, 周瑞文, 李政, 魏本杰.  巴丹吉林沙漠南缘高台盐湖记录的中晚全新世气候变化 . 海洋地质与第四纪地质, 2020, 40(4): 192-203. doi: 10.16562/j.cnki.0256-1492.2019110602
    [8] 丁大林, 张训华, 于俊杰, 王丽艳, 王丰, 商守卫.  长江三角洲北翼后缘晚第四纪以来的沉积粒度特征及环境演化 . 海洋地质与第四纪地质, 2019, 39(4): 34-45. doi: 10.16562/j.cnki.0256-1492.2019022801
    [9] 张辉, 杨睿, 匡增桂, 黄丽, 阎贫.  海底沉积物中天然气水合物形成过程数值模拟:以深部流体向上供给甲烷为背景 . 海洋地质与第四纪地质, 2017, 37(1): 107-116. doi: 10.16562/j.cnki.0256-1492.2017.01.013
    [10] 章陶亮, 王汝建, 肖文申, 段肖, 胡正莹, 梅静.  西北冰洋Chukchi Borderland晚第四纪冰筏碎屑记录及其古气候意义 . 海洋地质与第四纪地质, 2015, 35(3): 49-60. doi: 10.3724/SP.J.1140.2015.03049
    [11] 尹希杰, 何拥军, 孙治雷, 邵长伟.  珠江口淇澳岛湿地甲烷排放通量及日变化规律 . 海洋地质与第四纪地质, 2014, 34(5): 39-46. doi: 10.3724/SP.J.1140.2014.05039
    [12] 骆丁, 肖渊甫, 叶思源, 余国春.  宁波平原晚第四纪的古气候变化 . 海洋地质与第四纪地质, 2013, 33(5): 155-161. doi: 10.3724/SP.J.1140.2013.05155
    [13] 庄畅, 陈芳, 张金鹏, 周洋, 程思海.  南海西沙海槽近120 ka以来的浮游有孔虫特征及其古气候意义 . 海洋地质与第四纪地质, 2013, 33(5): 89-96. doi: 10.3724/SP.J.1140.2013.05089
    [14] 弋双文, 鹿化煜, 周亚利, 王先彦, 刘全玉.  晚第四纪科尔沁黄土堆积的Rb-Sr地球化学特征及古气候变化 . 海洋地质与第四纪地质, 2013, 33(2): 129-136. doi: 10.3724/SP.J.1140.2013.02129
    [15] 梁丹, 刘传联, 苏翔.  西太平洋暖池核心区晚第四纪颗石藻属种变化及对环境演化的响应 . 海洋地质与第四纪地质, 2012, 32(4): 115-121. doi: 10.3724/SP.J.1140.2012.04115
    [16] 梅静, 王汝建, 陈建芳, 程振波, 陈志华, 孙烨忱.  西北冰洋楚科奇海台P31孔晚第四纪的陆源沉积物记录及其古海洋与古气候意义 . 海洋地质与第四纪地质, 2012, 32(3): 77-86. doi: 10.3724/SP.J.1140.2012.03077
    [17] 陆红锋, 刘坚, 陈芳, 程思海, 廖志良.  南海东北部硫酸盐还原-甲烷厌氧氧化界面——海底强烈甲烷渗溢的记录 . 海洋地质与第四纪地质, 2012, 32(1): 93-98. doi: 10.3724/SP.J.1140.2012.01093
    [18] 石学法, 邹建军, 王昆山.  鄂霍次克海晚第四纪以来古环境演化 . 海洋地质与第四纪地质, 2011, 31(6): 1-12. doi: 10.3724/SP.J.1140.2011.06001
    [19] 毕海波, 马立杰, 黄海军, 杜廷芹, 孔梅.  台西南盆地天然气水合物甲烷量估算 . 海洋地质与第四纪地质, 2010, 30(4): 179-186. doi: 10.3724/SP.J.1140.2010.04179
    [20] 董广辉, 贾鑫, 安成邦, 汪海斌, 刘姣, 马敏敏.  青海省长宁遗址沉积物元素对晚全新世人类活动和气候变化的响应 . 海洋地质与第四纪地质, 2008, 28(2): 115-119.
  • 加载中
计量
  • 文章访问数:  1837
  • HTML全文浏览量:  260
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-18
  • 修回日期:  2009-10-27

天然气水合物释放甲烷对晚第四纪气候影响的古环境记录

doi: 10.3724/SP.J.1140.2010.01087
    作者简介:

    葛倩(1983-),男,博士生,主要从事海洋地质研究,E-mail:gq980447@hotmail.com

基金项目:

国家重点基础研究发展规划项目(2007CB411704)

海洋公益性行业科研专项项目(JG0708)

  • 中图分类号: P618.13

摘要: 天然气水合物作为全球碳循环中最大的碳储库,在全球变暖或海平面变化导致压力减小的情况下将分解释放大量甲烷进入水体和大气,对气候和环境造成巨大的影响。自从1995年Dickens等提出形成晚古新世温度峰值事件(LPTM)的主要原因是海底天然气水合物大规模分解释放甲烷这一假说以来,地质历史时期天然气水合物演化的研究蓬勃发展。而晚第四纪以来经历了一系列气候变化过程,在加利福尼亚的圣巴巴拉盆地、瓜伊马斯盆地、俄罗斯的贝加尔湖、格陵兰海、秘鲁、东格陵兰陆架、巴布亚新几内亚以及南海等地都记录了天然气水合物分解释放而形成的碳同位素负偏的古环境信息。主要针对这些古环境记录进行整理总结,为进一步研究天然气水合物的动态演化提供基础。

English Abstract

参考文献 (63)

目录

    /

    返回文章
    返回