留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

孢粉稳定碳同位素研究进展

边叶萍 翁成郁

边叶萍, 翁成郁. 孢粉稳定碳同位素研究进展[J]. 海洋地质与第四纪地质, 2009, 29(3): 141-148. doi: 10.3724/SP.J.1140.2009.03141
引用本文: 边叶萍, 翁成郁. 孢粉稳定碳同位素研究进展[J]. 海洋地质与第四纪地质, 2009, 29(3): 141-148. doi: 10.3724/SP.J.1140.2009.03141
BIAN Yeping, WENG Chengyu. AN OVERVIEW OF CARBON STABLE ISOTOPE ANALYSIS OF POLLEN[J]. Marine Geology & Quaternary Geology, 2009, 29(3): 141-148. doi: 10.3724/SP.J.1140.2009.03141
Citation: BIAN Yeping, WENG Chengyu. AN OVERVIEW OF CARBON STABLE ISOTOPE ANALYSIS OF POLLEN[J]. Marine Geology & Quaternary Geology, 2009, 29(3): 141-148. doi: 10.3724/SP.J.1140.2009.03141

孢粉稳定碳同位素研究进展


doi: 10.3724/SP.J.1140.2009.03141
详细信息
    作者简介:

    边叶萍(1983-),女,博士生,从事海洋地质学研究,E-mail:ping981201@163.com

  • 基金项目:

    国家自然科学基金项目(40621063,40771072)

    国家重点基础研究发展规划项目(2007CB815900)

  • 中图分类号: P597

AN OVERVIEW OF CARBON STABLE ISOTOPE ANALYSIS OF POLLEN

More Information
  • 摘要: 由于植物的光合作用途径不同,C3和C4植物的δ13C值有明显不同的分布范围,这可以用来研究环境的变化。花粉的碳同位素分析结果显示其δ13C值与植物的δ13C值变化规律一致,也能很好地反映植物的光合作用途径,进而间接反映其所处的气候环境条件。相比于植物体,化石花粉颗粒组成成分较单一,而其生成时间短,因而其碳同位素或许能较好地反映植物开花期时的环境条件,如雨水、大气CO2等的性质,为更精确的环境重建提供可能。初步的研究结果也显示花粉的δ13C值与开花期的温度存在线性关系。高精度结果的取得依赖于实验技术和仪器设备的改进,研究表明传统孢粉的醋酸酐处理过程中存在碳同位素污染,采用浓H2SO4浸泡可达到相同的去除纤维素的目的而避免污染。另外,通过对质谱仪的改进——装配旋转镍丝等进样系统(SWiM-IRMS),使实验所需的测试量大大减少,对单粒花粉进行测定也已经成为可能,但实验的精度还待进一步提高。
  • [1] Boom A, Marchant R, Hooghiemstra H, et al. CO2-and temperature-controlled altitudinal shifts of C4-and C3-dominated grasslands allow reconstruction of palaeoatmospheric pCO2[J]. Palaeogeogr. Palaeoclimat. Palaeoecol., 2002, 177:151-168.
    [2] Francey R, Farquhar G. An explanation of 13C/12C variations in tree rings[J]. Nature, 1982, 297:28-31.
    [3] Leavitt S, Long A. Evidence for 13C/12C fractionation between tree leaves and wood[J]. Nature, 1982, 298:742-744.
    [4] Meyers P. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 1997, 27:213-250.
    [5] Meyers P. Applications of organic geochemistry to paleolimnological reconstructions:a summary of examples from the Laurentian Great Lakes[J]. Organic Geochemistry, 2003, 34:261-289.
    [6] Street-Perrot F, Huang Y, Perrott R, et al. Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems[J]. Science, 1997, 278:1422-1426.
    [7] Scott L. Grassland development under glacial and interglacial conditions in southern Africa:review of pollen, phytolith and isotope evidence[J]. Palaeogeogr. Palaeoclimat. Palaeoecol., 2002, 177:47-57.
    [8] Huang Y, Street-Perrot F, Metcalfe S. Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance[J]. Science, 2001, 293:1647-1651.
    [9] van der Kaars S. A Late Quaternary palaeoecological record from the Banda Sea, Indonesia:patterns of vegetation, climate and biomass burning in Indonesia and northern Australia[J]. Palaeogeogr. Palaeoclimat. Palaeoecol., 2000, 155:135-153.
    [10] Loader N, Hemming D. The stable isotope analysis of pollen as an indicator of terrestrial palaeoenvironmental change:a review of progress and recent developments[J]. Quat. Sci. Rev., 2004, 23:893-900.
    [11] Nordt L, Boutton T, Jacob J, et al. C4 plant productivity and climate CO2 variations in south-central Texas during the late Quaternary[J]. Quat. Res., 2002, 58:182-188.
    [12] Jahren A. The carbon stable isotope composition of pollen[J]. Rev. Palaeobot. Palynol., 2004, 132:291-313.
    [13] Benner R, Fogel M, Sprague E, et al. Depletion of 13C in lignin and its implication for stable carbon isotope studies[J]. Nature, 1987, 329:708-710.
    [14] Lockheart M, van Bergen P, Evershed R. Variations in the stable carbon isotope compositions of individual lipids from the leaves of modern angiosperms:implications for the study of higher land plant-derived sedimentary organic matter[J]. Organic Geochemistry, 1997,26:137-153.
    [15] Amundson R, Evett R, Jahren A, et al. Stable carbon isotope composition of Poaceae pollen and its potential in paleovegetational reconstructions[J]. Rev. Palaeobot. Palynol., 1997, 99:17-24.
    [16] Smith B, Epstein S. Two categories of 13C/12C ratios for higher plants[J]. Plant Physiology, 1971, 47:380-384.
    [17] Loader N, Hemming D. Spatial variation in pollen δ13C correlates with temperature and seasonal development timing[J]. Holocene, 2001, 11:587-592.
    [18] Bowman W, Hubick K, von Caemmerer S, et al. Short term changes in leaf carbon isotope discrimination in salt and water-stressed C4 grasses[J]. Plant Physiology, 1989, 90:162-166.
    [19] Brugnoli E, Hubick K, von Caemmerer S, et al. Correlation between the carbon isotope discrimination in leaf starch and sugars of C3 plants and the ratio of intercellular and atmospheric partial pressures of carbon dioxide[J]. Plant Physiology, 1988, 88:1418-1424.
    [20] Marino B, McElroy M. Isotopic composition of atmospheric CO2 inferred from carbon in C4 plant cellulose[J]. Nature, 1991, 349:127-131.
    [21] O'Leary M. Carbon isotopes in photosynthesis[J]. Bio-Science, 1988, 38:328-336.
    [22] Van Bergen P, Poole I. Stable carbon isotopes of wood:a clue to palaeoclimate[J]. Palaeogeogr. Palaeoclimat. Palaeoecol., 2002, 182:31-45.
    [23] Charman D. The effects of acetylation on fossil Pinus pollen and Sphagnum spores discovered during routine pollen analysis[J]. Rev. Palaeobot. Palynol., 1992, 72:159-164.
    [24] Loader N, Hemming D. Preparation of pollen for stable carbon isotope analyses[J]. Chemical Geology, 2000, 165:339-344.
    [25] Descolas-Gros C, Scholzel C. Stable isotope ratios of carbon and nitrogen in pollen grains in order to characterize plant functional groups and photosynthetic pathway types[J]. New Phytologist, 2007, 176:390-401.
    [26] Nelson D, Hu F, Michener R. Stable carbon isotope composition of Poaceae pollen:an assessment for reconstructing C3 and C4 grass abundance[J]. The Holocene, 2006, 16:819-825.
    [27] Nelson D, Hu F, Mikucki, J, et al. Carbon-isotopic analysis of individual pollen grains from C3 and C4 grasses using a spooling-wire microcombustion interface[J]. Geochimica et Cosmochimica Acta, 2007, 71:4005-4014.
  • [1] 谢世文, 王宇辰, 舒誉, 吴宇翔, 刘冬青, 王菲.  珠一坳陷湖盆古环境恢复与优质烃源岩发育模式 . 海洋地质与第四纪地质, 2022, 42(1): 1-11. doi: 10.16562/j.cnki.0256-1492.2021081001
    [2] 孔丽茹, 罗敏, 陈多福.  新西兰Hikurangi俯冲带沉积物成岩作用示踪研究:来自孔隙流体Sr同位素证据 . 海洋地质与第四纪地质, 2021, 41(6): 1-9. doi: 10.16562/j.cnki.0256-1492.2021071202
    [3] 刘德政, 夏非.  江苏中部海岸晚第四纪沉积物的粒度与磁化率特征及其古环境意义 . 海洋地质与第四纪地质, 2021, 41(5): 210-220. doi: 10.16562/j.cnki.0256-1492.2021051901
  • 加载中
计量
  • 文章访问数:  707
  • HTML全文浏览量:  99
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-02-28
  • 修回日期:  2009-03-21

孢粉稳定碳同位素研究进展

doi: 10.3724/SP.J.1140.2009.03141
    作者简介:

    边叶萍(1983-),女,博士生,从事海洋地质学研究,E-mail:ping981201@163.com

基金项目:

国家自然科学基金项目(40621063,40771072)

国家重点基础研究发展规划项目(2007CB815900)

  • 中图分类号: P597

摘要: 由于植物的光合作用途径不同,C3和C4植物的δ13C值有明显不同的分布范围,这可以用来研究环境的变化。花粉的碳同位素分析结果显示其δ13C值与植物的δ13C值变化规律一致,也能很好地反映植物的光合作用途径,进而间接反映其所处的气候环境条件。相比于植物体,化石花粉颗粒组成成分较单一,而其生成时间短,因而其碳同位素或许能较好地反映植物开花期时的环境条件,如雨水、大气CO2等的性质,为更精确的环境重建提供可能。初步的研究结果也显示花粉的δ13C值与开花期的温度存在线性关系。高精度结果的取得依赖于实验技术和仪器设备的改进,研究表明传统孢粉的醋酸酐处理过程中存在碳同位素污染,采用浓H2SO4浸泡可达到相同的去除纤维素的目的而避免污染。另外,通过对质谱仪的改进——装配旋转镍丝等进样系统(SWiM-IRMS),使实验所需的测试量大大减少,对单粒花粉进行测定也已经成为可能,但实验的精度还待进一步提高。

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回