留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天然气水合物的上界面——硫酸盐还原-甲烷厌氧氧化界面

栾锡武

栾锡武. 天然气水合物的上界面——硫酸盐还原-甲烷厌氧氧化界面[J]. 海洋地质与第四纪地质, 2009, 29(2): 91-102. doi: 10.3724/SP.J.1140.2009.02091
引用本文: 栾锡武. 天然气水合物的上界面——硫酸盐还原-甲烷厌氧氧化界面[J]. 海洋地质与第四纪地质, 2009, 29(2): 91-102. doi: 10.3724/SP.J.1140.2009.02091
LUAN Xiwu. SULFATE-METHANE INTERFACE: THE UPPER BOUNDARY OF GAS HYDRATE ZONE[J]. Marine Geology & Quaternary Geology, 2009, 29(2): 91-102. doi: 10.3724/SP.J.1140.2009.02091
Citation: LUAN Xiwu. SULFATE-METHANE INTERFACE: THE UPPER BOUNDARY OF GAS HYDRATE ZONE[J]. Marine Geology & Quaternary Geology, 2009, 29(2): 91-102. doi: 10.3724/SP.J.1140.2009.02091

天然气水合物的上界面——硫酸盐还原-甲烷厌氧氧化界面


doi: 10.3724/SP.J.1140.2009.02091
详细信息
    作者简介:

    栾锡武(1966-),男,责任研究员,博士,主要从事海洋地球物理调查研究,E-mail:xluan@ms.qdio.ac.cn

  • 基金项目:

    国家自然科学基金项目(40776032)

    中国科学院创新工程重要方向项目(KZCX2-YW-211-01)

    "973"项目(2007CB411702)

  • 中图分类号: P744.4

SULFATE-METHANE INTERFACE: THE UPPER BOUNDARY OF GAS HYDRATE ZONE

More Information
  • 摘要: 定义了海域天然气水合物成矿带的上界面。指出在地球深部存在最原始的、从根本上不依靠光合作用来生存的生命系统。根据对ODP岩心样品中微生物数量的统计,海底以下沉积层中的生物数量可能占据全球原核生物总量的70%,其生物总碳量和地球表面所有植物的碳总量相当。地球内部如此巨大的生物总量应该在地壳中的气体分布等方面起着重要作用。甲烷在地壳层中广泛存在,并主要是微生物成因的。微生物产甲烷的途径主要有两个,一是二氧化碳还原,另一个是醋酸盐发酵。相应地,参与产甲烷的微生物菌群主要是产甲烷菌和食醋酸菌。甲烷在沉积层中的厌氧氧化是一个不争的事实。该过程发生在海底以下一个非常局限的区带,称为硫酸盐还原-甲烷厌氧氧化区带。通常,这个区带很窄,仅为一个面,因此,硫酸盐还原-甲烷厌氧氧化区带又称硫酸盐还原-甲烷厌氧氧化界面。这是一个基本的生物地球化学界面,在功能上它起到屏蔽甲烷向海底和大气逸散的作用,是一个巨大的甲烷汇。甲烷的厌氧氧化同样是一个由微生物介导的过程,参与此过程的微生物主要是食甲烷古菌和硫酸盐还原菌。硫酸盐还原-甲烷厌氧氧化界面在海洋沉积层中一般深可达海底以下上百米,浅可至海底。此界面为天然气水合物的上界面,该界面以上没有甲烷水合物存在。
  • [1] Fraday M. On the Condendation of Several Gases into Liquids[M]. Phil. Trans., 1823:106-453.
    [2] Kvenvolden K A. Gas hydrates geological perspective and global change[J]. Reviews of Geophysics, 1993, 31:173-187.
    [3] 张光学,黄永样,陈邦彦.海域天然气水合物地震学[M].北京:海洋出版社,2003.[ZHANG Guangxue, HUANG Yongyang, CHEN Bangyan. Natural Hydrate Seismology of Sea Areas[M]. Beijing:China Ocean Press, 2003.]
    [4] Lonsdale P.Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers[J].Deep Sea Research, 1977,24(9):857-858.
    [5] Stevens T O,McKinley J P.Lithoautotrophic microbial ecosystems in deep basalt Aquifers[J].Science,1995,270(5235):450-455,DOI:10.1126/science.270.5235.450
    [6] Kasting J F,Siefert J L.Life and the evolution of Earth's atmosphere[J].Science,2002,296(5570):1066-1068.
    [7] 党宏月,宋林生,李铁刚,等.海底深部生物圈微生物的研究进展[J].地球科学进展,2005,20(12):1306-1313.

    [DANG Hongyue, SONG Linsheng, LI Tiegang, et al. Progress in researches on biosphere microorganisms deep in the oceans[J]. Advances in Earth Science, 2005, 20(12):1306-1313.]
    [8] D'Hondt S,Rutherford S,Spivack A J.Metabolic activity of subsurface life in deep sea sediments[J].Science,2002,295(5562):2067-2070.
    [9] Parkes R J,Cragg B A,Bale S J.Deep bacterial biosphere in Pacific Ocean sediments[J].Nature,1994,371:410-413.
    [10] Parkes R J, Cragg B A, Wellsbury P.Recent studies on bacterial populations and processes in subseafloor sediments:A review[J]. Hydrogeological Journal, 2000, 8(1):11-28.
    [11] Smith D C,Spivack A J,Fisk M R.Tracer-based estimates of drilling induced microbial contamination of deep sea crust[J].Geomicrobiological Journal,2000,17:207-219.
    [12] Kotelnikova S. Microbial production and oxidation of methane in deep subsurface[J]. Earth Science Reviews, 2002, 58:367-395.
    [13] Kashefi K,Lovley D R.Extending the upper temperature limit for life[J].Science,2003,301(5635):934.
    [14] 朱毅杰,于开平,周祖翼.科学大洋钻探与深部生物圈[J].海洋地质动态,2003,19(9):13-16

    ,26.[ZHU Yijie, YU Kaiping, ZHOU Zuyi. Oceanic drilling and deep biosphere[J]. Marine Geology Letters, 2003, 19(9):13-16, 26.]
    [15] Whitman W B,Coleman D C,Wiebe W J.Procaryotes:the unseen majority[C].Proc. Natl. Acad. Sci. USA,1998,95:6578-6583.
    [16] Gold T.The origin of methane in the crust of the Earth[C]//The Future of Energy Gases.Washington:United States Government Printing Office,1993:57-81.
    [17] Sherwood L B,Frape SK,Fritz P,et al.Evidence for bacterially generated hydrocarbon gas in Canadian shield and Fennoscandian shield rocks[J]. Geochim. Cosmochim. Acta,1993,57:5073-5085.
    [18] Pedersen K.Micribial life in deep granitic rock[J]. FEMS Microbiol. Rev.,1997,20:399-414.
    [19] Kotelnikova S,Pedersen K.Evidence for methanogenic archaea and homoacetogenic bacteria in deep granitic rock aquifers[J]. FEMS Microbiol. Rev.,1997,20:327-339.
    [20] Apps AA,Van de Kamp P C.Energy gases of a "biogenic" origin in the earth's crust[C]//The Future of Energy Gases.Washington:United States Government Printing Office,1993:81-132.
    [21] Christiansen T R,Cox P.Response of methane emission from arctic tundra to climatic change:results from a model stimulation[J].Tellus(Ser. B),1995,47B:301-309.
    [22] Cicerone R J,Oremland R S.Biogeochemical aspects of atospheric methane[J]. Global Biochem,1998,2:299-327.
    [23] Rice D D."Biogenic" gas:controls, habitats, and resource potential[C]//The Future of Energy Gases.Washington:United States Government Printing Office,1993:583-606.
    [24] Albert D B, Martens C S,Alperin M J.Biogeochemical processes controlling methane in gassy coastal sediments:Part 2. Groundwater flow control of acoustic turbidity in Eckernförde Bay Sediments[J]. Cont. Shelf Res., 1998,18:1771-1793.
    [25] Okyar M,Ediger V.Seismic evidence of shallow gas in the sediment on the shelf off Trabzon, southeastern Black Sea[J]. Cont. Shelf Res.,1999,19:575-587.
    [26] Grigoriev M,Utting J.Sedimentology, palynostratigraphy, palynofacies and thermal maturity of Upper Permian rocks of Kolguyev Island, Barents Sea, Russia[J]. Bulletin of Canadian Petroleum Geology,1998,46:1-11.
    [27] Claypool G E,Kaplan I R.The origin and distribution of methane in marine sediments[C]//Natural Gases in Marine Sediments.New York:Plenum,1974:99-139.
    [28] Boone D R, Whitman W B,Rouviere P.Diversity and taxonomy of methanogens[C]//Methanogenesis.London:Chapman & Hall,1993:35-81.
    [29] Horita J,Berndt M E.A "biogenic" methane formation and isotopic fractionation under hydrothermal conditions[J].Science,1999,285:1055-1057.
    [30] Tissot B P,Welte D H.Petroleum formation and occurrence; a new approach to oil and gas exploration[M].Berlin:Springer-Verlag,1978:521.
    [31] Scott A R.Hydrogeologic factors affecting gas content distribution in coal beds[J].International Journal of Coal Geology,2002,50:363-387.
    [32] 蒋有录,查明.石油天然气地质与勘探[M].北京:石油工业出版社,2006:423.[JIANG Youlu, ZHA Ming. Petroleum Gas Geology and Exploration[M]. Beijing:Petroleum Industry Press, 2006:423.]
    [33] Welhan J A,Craig H.Methane and hydrogen in East Pacific Rise hydrothermal fluids[J].Geophys. Res.,Lett.,1979,6:829-831.
    [34] Flöden T,Söderberg P.Shallow gas trap and gas migrations in crystalline bedrock areas offshore Sweden[J]. Baltica,1994,8:50-56.
    [35]
    [36] Rosenfeld W M,Silverman S R.Carbon isotope fractionation in bacterial production of methane[J].Science,1959,130:1658-1659.
    [37] Sackett W M.Carbon and hydrogen isotope effects during the thermocatalytic production of hydrocarbons in laboratory simulation experiments[J]. Geochim. Cosmochim. Acta.,1978,42:571-580.
    [38] Clark J F, Washburn L, Hornafius J S, et al. Dissolved hydrocarbon flux from natural marine seeps to the Southern California Bight[J]. Journal of Geophysical Research, 2000, 105:11509-11522.
    [39] 栾锡武,秦蕴珊.冲绳海槽宫古段西部槽底海底气泉的发现[J].科学通报,2005,50(8):802-810.

    [LUAN Xiwu, QIN Yunshan. Discovery of gas seepage in the trough bottom in the west of Miyako section of the Okinawa Trough[J]. Chinese Science Bulletin, 2005, 50(8):802-810.]
    [40] Kulm L D, Suess E,Moore J C, et al.Oregon subduction zone:venting, fauna, and carbonates[J].Science,1986,231:561-566.
    [41] Suess E, Carson B, Ritger S, et al.Biological communities at vent sites along the subduction zones off Oregon[M]//The Hydrothermal vents of the eastern Pacific:An overview.Bull. Biol. Soc. Wash., 1985,6:475-484.
    [42] Ivanov M V, Lein A Y,Gal'chenko V F.The global methane cycle in the oceans[J]. Geochem. Int., 1993,30(2):114-124.
    [43] Ussler Ⅲ W, Paull C K. Rates of anaerobic oxidation of methane and authigenic carbonate mineralization in methane-rich deep-sea sediments inferred from models and geochemical profiles[J].Earth and Planetary Science Letters, 2008,266:271-287.
    [44] Bayon G, Pierre C, Etoubleau J,et al.Sr/Ca and Mg/Ca ratios in Niger Delta sediments:Implications for authigenic carbonate genesis in cold seep environments[J]. Marine Geology, 2007, 241:93-109.
    [45] Boetius A, Ravenschlag K, Schubert C J,et al.A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature,2000,407,623-626.
    [46] Reeburgh W S.Methane consumption in Cariaco Trench sediments[J]. Earth Planet. Sci. Lett.,1976,28:337-344.
    [47] Rodriguez N M, Paull C K, Borowski W S.Zonation of authigenic carbonates within gas hydrate-bearing sedimentary sections on the Blake Rige:offshore southeastern North America[C]. Proc. ODP Sci. Results, 2000,164:301-313.
    [48] 栾锡武,赵克斌,Obzhirov A, 等.鄂霍次克海浅表层天然气水合物的勘查识别和基本特征[J].中国科学D辑,2008,38(1):99-107.

    [LUAN Xiwu, ZHAO Kebin, Obzhirov A, et al. Recognition and basic characteristics of surface gas hydrate in the Okhotsk Sea[J]. Science in China (Series D), 2008, 38(1):99-107.]
    [49] Brey T,Mackensen A.Stable isotopes prove shell growth bands in the Antarctic bivalve Laternula elliptica to be formed annually[J].Polar Biology,1997,17(5):465-468.
    [50] Alperin M J,Reeburgh W S,Whiticar M J.Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation[J]. Global Biochem.,1988,2(1):279-288.
    [51] Borowski W S, Paull C K,Ussler I W.Carbon cycling within the upper methanogenic zone of continental rise sediments:an example from the methane-rich sediments overlying the Blake Ridge gas hydrate deposits[J]. Mar. Chem.,1997,57:299-311.
    [52] Hoehler T M, Alperin M J, Albert D B, et al.Field and laboratory studies of methane oxidation in an anoxic marine sediments:evidence for methanogen-sulphate reducer consortium[J]. Global Biochem,1994,8(4):451-463.
    [53] 闵航,谭玉龙,吴伟祥,等.一个厌氧甲烷氧化菌菌株的分离、纯化和特征研究[J].浙江大学学报:农业与生命科学版,2002,28(6):619-624.

    [MIN Hang, TAN Yulong, WU Weixiang, et al. Separation, purification and characteristics of an anaerobic methane bacterial strain[J]. Journal of Zhejiang University, 2002, 28(6):619-624.]
    [54] 高爱国,陈皓文,林学政.加拿大海盆与楚科奇海柱状沉积物中硫酸盐还原菌的分布状况[J].环境科学学报,2008,28(5):1014-1020.

    [GAO Aiguo, CHEN Haowen, LIN Xuezheng. Distribution of sulfate reducing bacteria in columnar sediments from Canadian basin and Chukchi Sea[J]. Journal of Environmental Sciences, 2008, 28(5):1014-1020.]
    [55] Michaelis W, Seifert R, Nauhas K,et al.Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane[J]. Science,2002,297:1013-1015.
    [56] Reeburgh W S.Oceanic methane biogeochemistry[J]. Chem. Rev.,2007,107:486-513.
    [57] Kruger M, Treude T, Wolters H, et al.Microbial methane turnover in different marine habitats[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2005,227:6-17.
    [58] Parkes R J, Cragg B A, Banning N, et al.Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark)[J]. Environmental Microbiology,2007,9:1146-1161.
    [59] Archer D.Methane hydrate stability and athropogenic climate change[J]. Biogeosciences Discussions,2007,4:993-1057.
    [60] Hanson R S,Hanson T E.Methanotrophic bacteria[J]. Microbiol. Rev.,1996,60(2):439-471.
    [61] Wang P,Prell W L,Blum P.Proceeding of the Ocean Drilling Program,Initial Reports 184[C].Taxes:College Station,2002,doi:10.2973/odp.proc.ir.184.2000
    [62] Borowski W S,Hoehler T M,Alperin M J.Significance of anaerobic methane oxidation in methane-rich sediments overlying the Blake Ridge gas hydrates[C].Proc.ODP Sci.Res.,2000,164:87-99.
    [63] 蒋少涌,杨涛,薛紫晨, 等.南海北部海区海底沉积物中孔隙水的Cl-和SO42-浓度异常特征及其对天然气水合物的指示意义[J].现代地质,2005,19(1):45-54.

    [JIANG Shaoyong, YANG Tao, XUE Zichen, et al. Anomaly of Cl- and SO42- concentration in pore water of seafloor sediments in the north of the South China Sea and indicator of gas hydrate[J]. Geosciences, 2005, 19(1):45-54.]
    [64] 吴自军,周怀阳,彭晓彤,等.甲烷厌氧氧化作用:来自珠江口淇澳岛海岸带沉积物间隙水的地球化学证据[J].科学通报,2006,51(17):2052-2059.

    [WU Zijun, ZHOU Huaiyang, PENG Xiaotong, et al. Methane anaerobic oxidation:geochemical evidence from pore water of coastal sediments in the Qi'ao Island of the Pearl River Estuary[J]. Chinese Science Bulletin, 2006, 51(17):2052-2059.]
    [65] Borowski W S,Paull C K,Ussler I W.Global and local variations of interstitial sulfate gradients in deep-water,continental margin sediments:sensitivity to underling methane and gas hydrates[J].Marine Geo1ogy,1999,159:131-154.
    [66] 方银霞,初凤友.硫酸盐-甲烷界面与甲烷通量及下伏天然气水合物赋存的关系[J].海洋学研究,2007,25(1):1-9.

    [FANG Yinxia, CHU Fengyou. Relationship of sulfate-methane interface and methane flux and the underlying gas hydrate[J]. Journal of Marine Sciences, 2007, 25(1):1-9.]
  • [1] 吕泰衡, 孙治雷, 耿威, 曹红, 张喜林, 张现荣, 徐翠玲, 徐昊, 翟滨, 张栋, 周渝程, 曹又文, 李鑫海.  海底冷泉区沉积物-水界面甲烷通量原位观测研究进展 . 海洋地质与第四纪地质, 2023, 43(4): 167-180. doi: 10.16562/j.cnki.0256-1492.2022081901
    [2] 陈烨, 孙治雷, 吴能友, 刘昌岭, 徐翠玲, 辛友志, 曹红, 耿威, 张喜林, 翟滨, 孙运宝, 李晶, 张栋, 闫大伟, 吕泰衡.  海洋沉积物中甲烷代谢微生物的研究进展 . 海洋地质与第四纪地质, 2022, 42(6): 82-92. doi: 10.16562/j.cnki.0256-1492.2022021801
    [3] 区相文, 邬黛黛, 谢瑞, 吴能友, 刘丽华.  南海北部神狐海域沉积物Fe-P-S元素地球化学特征及对甲烷渗漏的指示 . 海洋地质与第四纪地质, 2022, 42(1): 96-110. doi: 10.16562/j.cnki.0256-1492.2021080501
    [4] 李晶, 刘昌岭, 吴能友, 贺行良, 孟庆国, 许晓晴, 陈烨.  海洋环境中甲烷好氧氧化过程的研究进展 . 海洋地质与第四纪地质, 2021, 41(5): 67-76. doi: 10.16562/j.cnki.0256-1492.2020112302
    [5] 辛友志, 孙治雷, 王红梅, 陈烨, 徐翠玲, 耿威, 曹红, 张喜林, 张现荣, 李鑫, 闫大伟, 吴能友.  海洋沉积物中金属依赖型甲烷厌氧氧化作用研究进展及展望 . 海洋地质与第四纪地质, 2021, 41(5): 58-66. doi: 10.16562/j.cnki.0256-1492.2020122801
    [6] 李晶, 刘昌岭, 吴能友, 贺行良, 许晓晴, 陈烨, 孟庆国.  海洋生境的甲烷好氧氧化作用对氧浓度的响应特征 . 海洋地质与第四纪地质, 2021, 41(3): 44-53. doi: 10.16562/j.cnki.0256-1492.2021011902
    [7] 徐翠玲, 孙治雷, 吴能友, 赵广涛, 耿威, 曹红, 张现荣, 张喜林, 翟滨, 李鑫.  海底泥火山的甲烷迁移与转化及其对海洋碳输入的影响 . 海洋地质与第四纪地质, 2020, 40(6): 1-13. doi: 10.16562/j.cnki.0256-1492.2020050801
    [8] 汤加丽, 曹运诚, 陈多福.  大洋蛇纹岩化无机成因甲烷水合物稳定带底界模拟 . 海洋地质与第四纪地质, 2020, 40(4): 107-115. doi: 10.16562/j.cnki.0256-1492.2019081701
    [9] 胡廷苍, 张艳平, 胡钰, 罗敏, 陈多福.  南海神狐海域水合物发育区浅表层沉积物甲烷周转定量模拟 . 海洋地质与第四纪地质, 2020, 40(3): 99-108. doi: 10.16562/j.cnki.0256-1492.2019042401
    [10] 贺行良, 谭丽菊, 段晓勇, 印萍, 谢永清, 杨磊, 董超, 王江涛.  杭州湾沉积物中硫酸盐—甲烷转换带内的碳循环 . 海洋地质与第四纪地质, 2020, 40(3): 51-60. doi: 10.16562/j.cnki.0256-1492.2020021401
    [11] 张亭亭, 梁前勇, 赵静, 肖曦, 董一飞, 郭斌斌, 钟超, 吴学敏, 杨林.  真光层海水过饱和甲烷的来源及机制探讨 . 海洋地质与第四纪地质, 2020, 40(1): 50-59. doi: 10.16562/j.cnki.0256-1492.2018083101
    [12] 孙致学, 朱旭晨, 刘垒, 何楚翘, 都巾文.  联合深层地热甲烷水合物开采方法及可行性评价 . 海洋地质与第四纪地质, 2019, 39(2): 146-156. doi: 10.16562/j.cnki.0256-1492.2018120402
    [13] 尉建功, 杨胜雄, 梁金强, 陆敬安, 刘胜旋, 张伟.  海洋钻探对甲烷渗漏的影响:以南海北部天然气水合物钻探GMGS2-16站位为例 . 海洋地质与第四纪地质, 2018, 38(5): 63-70. doi: 10.16562/j.cnki.0256-1492.2018.05.006
    [14] 李晶, 贺行良, 刘昌岭, 孟庆国, 宁伏龙, 陈宇峰.  海底多组分水合物分解气好氧氧化实验研究 . 海洋地质与第四纪地质, 2017, 37(5): 204-216. doi: 10.16562/j.cnki.0256-1492.2017.05.021
    [15] 张辉, 杨睿, 匡增桂, 黄丽, 阎贫.  海底沉积物中天然气水合物形成过程数值模拟:以深部流体向上供给甲烷为背景 . 海洋地质与第四纪地质, 2017, 37(1): 107-116. doi: 10.16562/j.cnki.0256-1492.2017.01.013
    [16] 吴雪停, 刘丽华, Matthias Haeckel, 吴能友.  南海北部深海浅层沉积物中甲烷生物地球化学过程数值模拟研究 . 海洋地质与第四纪地质, 2016, 36(3): 81-90. doi: 10.16562/j.cnki.0256-1492.2016.03.008
    [17] 李清, 王家生, 蔡峰, 梁杰, 胡高伟, 孙治雷, 邵和宾.  自生碳酸盐岩与底栖有孔虫碳同位素特征对多幕次甲烷事件的耦合响应——以IODP 311航次1328和1329站位为例 . 海洋地质与第四纪地质, 2015, 35(5): 37-46. doi: 10.16562/j.cnki.0256-1492.2015.05.005
    [18] 陆红锋, 刘坚, 陈芳, 程思海, 廖志良.  南海东北部硫酸盐还原-甲烷厌氧氧化界面——海底强烈甲烷渗溢的记录 . 海洋地质与第四纪地质, 2012, 32(1): 93-98. doi: 10.3724/SP.J.1140.2012.01093
    [19] 毕海波, 马立杰, 黄海军, 杜廷芹, 孔梅.  台西南盆地天然气水合物甲烷量估算 . 海洋地质与第四纪地质, 2010, 30(4): 179-186. doi: 10.3724/SP.J.1140.2010.04179
    [20] 葛倩, 初凤友, 方银霞, 孟宪伟.  天然气水合物释放甲烷对晚第四纪气候影响的古环境记录 . 海洋地质与第四纪地质, 2010, 30(1): 87-94. doi: 10.3724/SP.J.1140.2010.01087
  • 加载中
计量
  • 文章访问数:  1550
  • HTML全文浏览量:  171
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-01-04
  • 修回日期:  2009-02-08

天然气水合物的上界面——硫酸盐还原-甲烷厌氧氧化界面

doi: 10.3724/SP.J.1140.2009.02091
    作者简介:

    栾锡武(1966-),男,责任研究员,博士,主要从事海洋地球物理调查研究,E-mail:xluan@ms.qdio.ac.cn

基金项目:

国家自然科学基金项目(40776032)

中国科学院创新工程重要方向项目(KZCX2-YW-211-01)

"973"项目(2007CB411702)

  • 中图分类号: P744.4

摘要: 定义了海域天然气水合物成矿带的上界面。指出在地球深部存在最原始的、从根本上不依靠光合作用来生存的生命系统。根据对ODP岩心样品中微生物数量的统计,海底以下沉积层中的生物数量可能占据全球原核生物总量的70%,其生物总碳量和地球表面所有植物的碳总量相当。地球内部如此巨大的生物总量应该在地壳中的气体分布等方面起着重要作用。甲烷在地壳层中广泛存在,并主要是微生物成因的。微生物产甲烷的途径主要有两个,一是二氧化碳还原,另一个是醋酸盐发酵。相应地,参与产甲烷的微生物菌群主要是产甲烷菌和食醋酸菌。甲烷在沉积层中的厌氧氧化是一个不争的事实。该过程发生在海底以下一个非常局限的区带,称为硫酸盐还原-甲烷厌氧氧化区带。通常,这个区带很窄,仅为一个面,因此,硫酸盐还原-甲烷厌氧氧化区带又称硫酸盐还原-甲烷厌氧氧化界面。这是一个基本的生物地球化学界面,在功能上它起到屏蔽甲烷向海底和大气逸散的作用,是一个巨大的甲烷汇。甲烷的厌氧氧化同样是一个由微生物介导的过程,参与此过程的微生物主要是食甲烷古菌和硫酸盐还原菌。硫酸盐还原-甲烷厌氧氧化界面在海洋沉积层中一般深可达海底以下上百米,浅可至海底。此界面为天然气水合物的上界面,该界面以上没有甲烷水合物存在。

English Abstract

参考文献 (66)

目录

    /

    返回文章
    返回