留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

日本海西部大陆坡自生碳酸盐的特征与成因

徐兆凯 崔镇勇 林东日 李铁刚 李安春

徐兆凯, 崔镇勇, 林东日, 李铁刚, 李安春. 日本海西部大陆坡自生碳酸盐的特征与成因[J]. 海洋地质与第四纪地质, 2009, 29(2): 41-47. doi: 10.3724/SP.J.1140.2009.02041
引用本文: 徐兆凯, 崔镇勇, 林东日, 李铁刚, 李安春. 日本海西部大陆坡自生碳酸盐的特征与成因[J]. 海洋地质与第四纪地质, 2009, 29(2): 41-47. doi: 10.3724/SP.J.1140.2009.02041
XU Zhaokai, CHOI Jinyong, LIM Dhongil, LI Tiegang, LI Anchun. CHARACTER AND ORIGIN OF AUTHIGENIC CARBONATES IN THE WESTERN CONTINENTAL SLOPE OF THE EAST JAPAN SEA[J]. Marine Geology & Quaternary Geology, 2009, 29(2): 41-47. doi: 10.3724/SP.J.1140.2009.02041
Citation: XU Zhaokai, CHOI Jinyong, LIM Dhongil, LI Tiegang, LI Anchun. CHARACTER AND ORIGIN OF AUTHIGENIC CARBONATES IN THE WESTERN CONTINENTAL SLOPE OF THE EAST JAPAN SEA[J]. Marine Geology & Quaternary Geology, 2009, 29(2): 41-47. doi: 10.3724/SP.J.1140.2009.02041

日本海西部大陆坡自生碳酸盐的特征与成因


doi: 10.3724/SP.J.1140.2009.02041
详细信息
    作者简介:

    徐兆凯(1978-),男,博士后,主要从事海洋地质学研究,E-mail:zhaokaixu@126.com

  • 基金项目:

    国家重点基础研究发展规划项目(2007CB815903)

    韩国海洋研究院研究项目(PM50101)

    中国科学院知识创新工程重要方向性项目(KZCX2-YW-211)

    国家自然科学基金重点项目(90411014)

    国家自然科学基金项目(40576032,40506016)

  • 中图分类号: P736.3

CHARACTER AND ORIGIN OF AUTHIGENIC CARBONATES IN THE WESTERN CONTINENTAL SLOPE OF THE EAST JAPAN SEA

More Information
  • 摘要: 对日本海西部大陆坡沉积物柱状样中的自生碳酸盐样品进行了X射线衍射、扫描电镜、地球化学和碳氧同位素组成的系统研究。X射线衍射和扫描电镜分析结果表明,碳酸盐主要组成矿物为颗粒状自生高镁方解石微晶,放射状自生文石微晶仅在一个层位出现。结合碳酸盐的地球化学组成,认为研究区碳酸盐来自于富Ca2+、Mg2+和HCO3-流体的沉淀。中度亏损的13C (-33.85‰~-39.53‰)表明碳来自于甲烷的厌氧氧化,同时,这也是研究区海底存在甲烷冷泉的重要证据。重氧同位素比值(5.28‰~5.31‰)则指示着富18O流体来源,而该流体应源于天然气水合物的分解。综上可知,研究区碳酸盐来自于研究区甲烷冷泉上升流的沉淀,指示着海底更深处天然气水合物的存在与分解。
  • [1] Ritger S, Carson B, Suess E. Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin[J]. Geological Society of America Bulletin, 1987, 98:147-156.
    [2] Paull C K, Chanton J P, Neumann A C, et al. Indicators of methane-derived carbonates and chemosynthetic organic carbon deposits:examples from the Florida escarpment[J]. Palaios, 1992, 7:361-375.
    [3] Bohrmann G, Meinert J, Suess E, et al. Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability[J]. Geology, 1998, 26:647-650.
    [4] Aloisi G, Pierre C, Rouchy J M, et al. Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation[J]. Earth and Planetary Science Letters, 2000, 184:321-338.
    [5] Naehr T H, Rodriguez N M, Bohrmann G, et al. Methane-derived authigenic carbonates associated with gas hydrate decomposition and fluid venting above the Blake Ridge Diapir[C]//Proceedings of the Ocean Drilling Program, Scientific Results, 164. College Station, TX (Ocean Drilling Program), 2000:285-300.
    [6] Greinert J, Bohrmann G, Suess E. Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge:Classification, distribution, and origin of authigenic lithologies[C]//Natural Gas Hydrates:Occurrence, Distribution, and Detection. Washington, DC:American Geophysical Union, 2001:99-114.
    [7] Luff R, Wallmann K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin:Numerical modeling and mass balances[J]. Geochimica et Cosmochimica Acta, 2003, 67:3403-3421.
    [8] 陆红锋,刘坚,陈芳,等.南海台西南区碳酸盐岩矿物学和稳定同位素组成特征——天然气水合物存在的主要证据之一[J].地学前缘,2005,12(3):268-276.

    [LU Hongfeng, LIU Jian, CHEN Fang, et al. Mineralogy and stable isotopic composition of authigenic carbonates in bottom sediments in the offshore area of southwest Taiwan, South China Sea:Evidence for gas hydrate occurrence[J]. Earth Science Frontiers, 2005, 12(3):268-276.]
    [9] Chen Z, Yan W, Chen M H, et al. Discovery of seep carbonate nodules as new evidence for gas venting on the northern continental slope of South China Sea[J]. Chinese Science Bulletin, 2006, 51:1228-1237.
    [10] Bayon G, Pierre C, Etoubleau J, et al. Sr/Ca and Mg/Ca ratios in Niger Delta sediments:Implications for authigenic carbonate genesis in cold seep environments[J]. Marine Geology, 2007, 241:93-109.
    [11] Peckmann J, Reimer A, Luth U, et al. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea[J]. Marine Geology, 2001, 177:129-150.
    [12] Rodriguez N M, Paull C K, Borowski W S. Zonation of authigenic carbonates within gas hydrate-bearing sedimentary sections on the Blake Ridge:Offshore southeastern North America[C]//Proceedings of the Ocean Drilling Program, Scientific Results, 164. College Station, TX (Ocean Drilling Program), 2000:301-313.
    [13] Matsumoto R, Okuda Y, Aoyama C, et al. Methane plumes over a marine gas hydrate system in the eastern margin of the Sea of Japan[C]//Joint Meeting Earth and Planetary Science. Tokyo, 2005.
    [14] Greinert J, Bollwerk S M, Derkachev A, et al. Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotsk:precipitation processes at cold seep sites[J]. Earth and Planetary Science Letters, 2002, 203:165-180.
    [15] Cook H E, Johnson P D, Matti J C, et al. Methods of sample preparation and X-ray diffraction data analysis, X-ray mineralogy laboratory[C]//Initial Reports of the DSDP XXVⅢ. Washington DC:U.S. Govt. Printing Office, 1975:997-1007.
    [16] Druckman Y. Subrecent manganese-bearing stromatolites along shorelines of the Dead Sea in Phanerozoic Stromatolites[C]//Phanerozoic Stromatolites. Berlin:Springer-Verlag, 1981:197-208.
    [17] Chfetz H S, Folk R L. Travertines:Depositional morphology and the bacterially constructed constituents[J]. Journal of Sedimentary Petrology, 1984, 54:289-316.
    [18] Roberts H H, Aharon P, Carney R, et al. Seafloor responses to hydrocarbon seeps, Louisiana continental slope[J]. Geo-Marine Letters, 1990, 10:232-243.
    [19] Ginsburg G, Soloviev V, Matveeva T, et al. Sediment grain-size control on gas hydrate presence, sites 994, 995, and 997[C]//Proceedings of the Ocean Drilling Program, Scientific Results, 164. College Station, TX (Ocean Drilling Program), 2000:237-245.
    [20] Takeuchi R, Machiyama H, Matsumoto R. Methane seep, chemosynthetic communities, and carbonate crusts on the Kuroshima Knoll, offshore Ryukyu islands[C]//Proceedings of the Fourth International Conference on Gas Hydrate. Yokohama, 2002:97-101.
    [21] Chen Y F, Matsumoto R, Paull C K, et al. Methane-derived authigenic carbonates from the northern Gulf of Mexico-MD02 Cruise[J]. Journal of Geochemical Exploration, 2007, 95:1-15.
    [22] Naehr T H, Eichhubl P, Orphan V J, et al. Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments:A comparative study[J]. Deep-Sea Research, 2007, 54:1268-1291.
    [23] Lumsden D N, Chimahusky J S. Relationship between dolomite nonstoichiometry and carbonate facies parameters[C]//Concepts and Models of Dolomitizaion. SEPM Special Publication, 1980, 28:123-137.
    [24] Dickson J A D. Transformation of echinoid Mg calcite skeletons by heating[J]. Geochimica et Cosmochimica Acta, 2001, 65:443-454.
    [25] Burton E A, Walter L M. Relative precipitation rates of aragonite and Mg calcite from sea water:Temperature or carbonate ion control[J]. Geology, 1987, 15:111-114.
    [26] Burton E A. Controls on marine carbonate cement mineralogy:review and reassessment[J]. Chemical Geology, 1993, 105:163-179.
    [27] Luff R, Greinert J, Wallmann K, et al. Simulation of long-term feedbacks from authigenic carbonate crust formation at cold vent sites[J]. Chemical Geology, 2005, 216:157-174.
    [28] 赵一阳,鄢明才.中国浅海沉积物地球化学[M].北京:科学出版社,1994.[ZHAO Yiyang, YAN Mingcai. Geochemistry of Sediments of the China Shelf Sea[M].Beijing:Science Press, 1994.]
    [29] Lee T H, Hyun J H, Mok J S, et al. Organic carbon accumulation and sulfate reduction rates in slope and basin sediments of the Ulleung Basin, East/Japan Sea[J]. Geo-Marine Letters, 2008, 28:153-159.
  • [1] 刘峰, 黄苏卫, 杨鹏程, 张传运.  西湖凹陷Y构造花港组气藏特征及成藏主控因素 . 海洋地质与第四纪地质, 2021, 41(6): 1-9. doi: 10.16562/j.cnki.0256-1492.2021080401
    [2] 孔丽茹, 罗敏, 陈多福.  新西兰Hikurangi俯冲带沉积物成岩作用示踪研究:来自孔隙流体Sr同位素证据 . 海洋地质与第四纪地质, 2021, 41(5): 1-9.
    [3] 马晓理, 刘丽华, 徐行, 金光荣, 魏雪芹, 翟梦月.  南海南部浅表层柱状沉积物孔隙水地球化学特征对甲烷渗漏活动的指示 . 海洋地质与第四纪地质, 2021, 41(5): 1-14. doi: 10.16562/j.cnki.0256-1492.2020123101
    [4] 孙国洪, 田丽艳, 李小虎, 张汉羽, 陈凌轩, 刘红玲.  西南印度洋中脊岩石地球化学特征及其岩浆作用研究 . 海洋地质与第四纪地质, 2021, 41(5): 1-13. doi: 10.16562/j.cnki.0256-1492.2021021701
    [5] 肖倩文, 冯秀丽, 苗晓明.  神狐海域SH37岩心浊流沉积及其物源分析 . 海洋地质与第四纪地质, 2021, 41(5): 1-11. doi: 10.16562/j.cnki.0256-1492.2021011901
    [6] 赵金环, 刘昌岭, 邹长春, 陈强, 孟庆国, 刘洋, 卜庆涛.  基于ERT技术的含水合物沉积物可视化探测模拟实验 . 海洋地质与第四纪地质, 2021, 41(): 1-7.
    [7] 范佳慧, 窦衍光, 赵京涛, 李军, 邹亮, 蔡峰, 陈晓辉, 李清.  东海外陆坡−冲绳海槽水体剖面地球化学特征与指示意义 . 海洋地质与第四纪地质, 2021, 41(): 1-15.
    [8] 刘佳辉, 曲扬, 李伟强, 魏广祎, 孙倩元, 凌洪飞, 陈天宇.  西太平洋铁锰结壳中两类不同成因磷酸盐的元素特征、形成机制及指示意义 . 海洋地质与第四纪地质, 2021, 41(): 1-9.
    [9] 刘家岐, 兰晓东.  中太平洋莱恩海山富钴结壳元素地球化学特征及成因探讨 . 海洋地质与第四纪地质, 2021, 41(): 1-11.
    [10] 雷雁翔, 何磊, 王玉敏, 张朋朋, 张斌, 胡蕾, 吴治国, 叶思源.  渤海湾西岸晚更新世以来的沉积环境演化及碳埋藏评价 . 海洋地质与第四纪地质, 2021, (): 1-12. doi: 10.16562/j.cnki.0256-1492.2021020101
    [11] 罗顺开, 周怀阳, 赵国庆, 袁伟.  加瓜海脊铁锰结壳的年龄及其定年方法适用性比较 . 海洋地质与第四纪地质, , (): -. doi: 10.16562/j.cnki.0256-1492.2021070502
  • 加载中
计量
  • 文章访问数:  620
  • HTML全文浏览量:  50
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-11-14
  • 修回日期:  2008-12-28

日本海西部大陆坡自生碳酸盐的特征与成因

doi: 10.3724/SP.J.1140.2009.02041
    作者简介:

    徐兆凯(1978-),男,博士后,主要从事海洋地质学研究,E-mail:zhaokaixu@126.com

基金项目:

国家重点基础研究发展规划项目(2007CB815903)

韩国海洋研究院研究项目(PM50101)

中国科学院知识创新工程重要方向性项目(KZCX2-YW-211)

国家自然科学基金重点项目(90411014)

国家自然科学基金项目(40576032,40506016)

  • 中图分类号: P736.3

摘要: 对日本海西部大陆坡沉积物柱状样中的自生碳酸盐样品进行了X射线衍射、扫描电镜、地球化学和碳氧同位素组成的系统研究。X射线衍射和扫描电镜分析结果表明,碳酸盐主要组成矿物为颗粒状自生高镁方解石微晶,放射状自生文石微晶仅在一个层位出现。结合碳酸盐的地球化学组成,认为研究区碳酸盐来自于富Ca2+、Mg2+和HCO3-流体的沉淀。中度亏损的13C (-33.85‰~-39.53‰)表明碳来自于甲烷的厌氧氧化,同时,这也是研究区海底存在甲烷冷泉的重要证据。重氧同位素比值(5.28‰~5.31‰)则指示着富18O流体来源,而该流体应源于天然气水合物的分解。综上可知,研究区碳酸盐来自于研究区甲烷冷泉上升流的沉淀,指示着海底更深处天然气水合物的存在与分解。

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回