留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

马里亚纳弧前Conical蛇纹岩泥火山顶自生沉积物特征及其对渗漏流体的指示

佟宏鹏 胡海明 陈琳莹 陈多福

佟宏鹏,胡海明,陈琳莹,等. 马里亚纳弧前Conical蛇纹岩泥火山顶自生沉积物特征及其对渗漏流体的指示[J]. 海洋地质与第四纪地质,2022,42(6): 1-10. doi: 10.16562/j.cnki.0256-1492.2022051101
引用本文: 佟宏鹏,胡海明,陈琳莹,等. 马里亚纳弧前Conical蛇纹岩泥火山顶自生沉积物特征及其对渗漏流体的指示[J]. 海洋地质与第四纪地质,2022,42(6): 1-10. doi: 10.16562/j.cnki.0256-1492.2022051101
TONG Hongpeng,HU Haiming,CHEN Linying,et al. Constrains of seepage fluids based on the characteristics of authigenic deposition from Conical serpentinite mud volcano in the Mariana forearc[J]. Marine Geology & Quaternary Geology,2022,42(6):1-10. doi: 10.16562/j.cnki.0256-1492.2022051101
Citation: TONG Hongpeng,HU Haiming,CHEN Linying,et al. Constrains of seepage fluids based on the characteristics of authigenic deposition from Conical serpentinite mud volcano in the Mariana forearc[J]. Marine Geology & Quaternary Geology,2022,42(6):1-10. doi: 10.16562/j.cnki.0256-1492.2022051101

马里亚纳弧前Conical蛇纹岩泥火山顶自生沉积物特征及其对渗漏流体的指示


doi: 10.16562/j.cnki.0256-1492.2022051101
详细信息
    作者简介:

    佟宏鹏(1985—),女,博士,副研究员,主要从事海底流体活动沉积记录研究,E-mail:hptong@shou.edu.cn

  • 基金项目:  国家自然科学基金“马里亚纳弧前蛇纹岩泥火山烟囱状自生沉积的成因及深源蛇纹石化流体渗漏活动记录” (41776080),马里亚纳弧前海底蛇纹岩泥火山无机成因甲烷形成水合物的条件及潜力分析(41776050)
  • 中图分类号: P736.4

Constrains of seepage fluids based on the characteristics of authigenic deposition from Conical serpentinite mud volcano in the Mariana forearc

More Information
  • 摘要: 马里亚纳弧前蛇纹岩泥火山顶部海底发育由低温碱性流体渗漏形成的自生沉积物,记录了渗漏流体特征,对俯冲带的物质循环研究有重要意义。但目前对复杂矿物组成的自生沉积物及其所指示的渗漏流体信息仍不清楚。对采自马里亚纳弧前Conical蛇纹岩泥火山的自生沉积物进行了岩石学、矿物学及主量和微量元素分析。结果表明,Conical蛇纹岩泥火山自生沉积物呈疏松多孔状,极易碎,碎块主要呈薄片状和球粒状。薄片状碎块呈白色,主要由针状文石和棱柱状方解石组成,CaO含量较高(49.3%~53.3%),MgO含量较低(2.3%~4.5%)。球粒状碎块呈黄色或白色,为无定形镁硅酸盐,MgO含量较高 (25.5%~29.1%),CaO 含量较低(0.5%~2.9%)。碳酸盐岩碎块的总稀土含量(ΣREE)为227.2~4 136.6 ng/g;无定形镁硅酸盐碎块的ΣREE为115.4~364.9 ng/g,均显示轻微重稀土富集的平坦型配分模式。自生沉积物的稀土配分模式显示,除两个稀土含量相对较高的碳酸盐岩样品外,渗漏流体的贡献高于90%,说明两类样品均形成于较强的渗漏环境,并且碳酸盐及镁硅酸盐可能分别形成于“低硅型”和“高硅型”不同的流体活跃期。
  • 图  1  马里亚纳弧前Conical蛇纹岩泥火山位置图

    b图引自文献[7]。

    Figure  1.  Location of the Conical serpentine mud volcano in Mariana forearc

    Illustration figure b cited after reference [7].

    图  2  Conical蛇纹岩泥火山自生沉积物手标本

    a. 具有不规则型残余流体通道的疏松多孔自生沉积物,箭头指示残余流体通道;b. 薄片状碎块;c. 黄色球粒状碎块;d白色球粒状碎块。

    Figure  2.  Authigenic deposition from Conical serpentine mud volcano

    a. Loose porous authigenic deposition with irregular residual fluid path marker by the arrow; b. lamellar fragment; c. yellow spherical fragment; d. white spherical fragment.

    图  3  Conical蛇纹岩泥火山自生沉积物显微结构特征

    a. 薄片状碎块发育针状文石的显微薄片照片(正交偏光)及b扫描电镜照片;c. 薄片状碎块中棱柱状方解石与针状文石伴生发育,碳酸盐矿物与镁硅酸盐矿物间孔隙明显,能谱分析显示1、2和3分别为文石,镁硅酸盐和方解石;d. 球粒状碎块由块状及边缘的球状(箭头)无定形镁硅酸盐组成(单偏光);e—f. 为球状无定形镁硅酸盐扫描电镜照片,能谱分析结果显示主要元素组成为Si、O、Mg。红色小圈为能谱测试点。

    Figure  3.  The microstructure features of authigenic deposition from Conical serpentinite mud volcano

    a. Thin section photo of lamellar fragments showing acicular aragonite (polarized light); b. Photo showing acicular aragonite under scanning electron microscope (SEM); c. SEM photo showing prismatic calcite associated with acicular aragonite, but separated with irregular magnesium silicate by obvious porosity; the energy dispersive spectrometer (EDS) results indicate that 1, 2 and 3 are aragonite, magnesium silicate and calcite, respectively; d. Thin section photo showing spherical fragments are composed of massive parts and spherular parts at edges (single polarized light); e-f. SEM photos of amorphous magnesium silicates showing spherular structure; EDS results show that spherular fractures are composed of Si, O, Mg elements.

    图  4  Conical蛇纹岩泥火山自生沉积物部分主量元素含量图

    Figure  4.  Part of the major element contents in authigenic deposition from Conical serpentine mud volcano

    图  5  Conical蛇纹岩泥火山自生沉积物及马里亚纳弧前蛇纹岩泥火山渗漏流体澳大利亚后太古代页岩标准化稀土配分模式图

    海水与渗漏流体数据来自文献[14]。

    Figure  5.  Rare earth element patterns of authigenic deposition from Conical serpentinite mud volcano and of seepage fluids from Marianas forearc serpentinite mud volcanoes standardized by Post-Archean Australian Shale

    Data of seepage fluids and seawater after reference [14].

    图  6  渗漏流体与海水混合流体的澳大利亚后太古代页岩标准化稀土配分模式(a)及Eu/Eu*值与拟合海水贡献比例(b)

    a中0%代表南Chamorro渗漏流体,b中曲线根据海水与南Chamorro渗漏流体定量混合后与其对应的Eu/Eu*值拟合;样品中海水贡献比例根据混合流体曲线对应拟合函数计算,不在曲线上的点默认海水贡献为0。

    Figure  6.  The rare earth partitioning patterns of mixed fluids of seepage fluids and seawater standardized by Post-Archean Australian Shale (a) and Eu/Eu* values V.S. modeled seawater contribution ratios (b)

    a. 0% represents the REE pattern of the seepage fluid from South Chamorro serpentinite mud volcano; b.The curve is deduced according to the Eu/Eu* values of mixed fluids of seawater and the seepage fluid from South Chamorro serpentinite mud volcano; The proportion of seawater contribution in the sample is calculated according to the corresponding fitting function of the mixed fluid curve, The seawater ratios of the points with Eu/Eu* values beyond the curve were taken as 0.

    表  1  Conical蛇纹岩泥火山自生沉积物主量元素特征

    Table  1.   Characteristics of major elements in authigenic deposition from Conical serpentine mud volcano

    %  
    样品编号碎块类型MgOCaONa2OAl2O3P2O5K2OFe2O3-T
    h1薄片状2.353.31.10.020.020.010.010 9
    h2薄片状3.850.11.20.110.030.020.073 6
    h3薄片状4.549.31.30.000.030.020.0030
    h4薄片状3.449.71.10.010.020.010.006 3
    h5薄片状2.552.81.20.220.030.020.053 0
    h6薄片状2.350.91.10.270.060.020.130 2
    h7混合碎块8.639.31.30.020.030.050.011 8
    h8混合碎块18.918.21.80.060.030.100.025 5
    h9混合碎块11.633.91.40.010.020.060.003 0
    h10混合碎块7.841.11.40.010.030.040.006 8
    h11混合碎块22.511.22.10.020.030.110.008 0
    h12混合碎块8.040.61.40.010.030.040.003 3
    h13球粒状28.10.72.00.010.020.140.013 0
    h14球粒状27.22.12.10.000.030.130.006 7
    h15球粒状28.60.72.20.000.020.130.001 1
    h16球粒状28.10.72.20.000.020.130.001 5
    h17球粒状27.90.52.30.010.020.130.002 2
    h18球粒状27.70.92.60.000.030.140.000 2
    h19球粒状27.00.82.50.000.020.130.002 7
    h20球粒状25.52.92.20.000.030.130.002 3
    h21球粒状29.10.52.50.010.020.140.002 3
    h22球粒状27.02.22.40.000.030.130.003 4
      注:主量元素分析结果未包含碳和硅元素含量,以及部分氧元素含量。
    下载: 导出CSV

    表  2  Conical蛇纹岩泥火山自生沉积物稀土元素含量及特征

    Table  2.   Contents and characteristics of REE in authigenic deposition of Conical serpentinite mud volcano

    ng/g  
    样品编号LaCePrNdSmEuGdTbDyYHoErTmYbLuΣREECe/Ce*Eu/Eu*
    h140.5155.87.389.78.810.05.83.19.3125.03.09.30.46.21.4350.62.075.40
    h289.1168.929.4121.614.016.737.46.328.6371.710.326.42.329.83.0583.70.752.36
    h351.997.76.536.29.25.52.01.47.299.02.93.70.32.80.3227.21.178.00
    h451.0147.415.666.64.613.912.31.911.8118.43.27.08.51.1344.91.195.33
    h5848.4161.5121.1516.984.922.689.412.9107.91 201.324.067.314.0105.318.42 194.80.111.17
    h61 620.9547.2245.71 020.1174.945.2127.216.7125.71 079.926.770.516.285.214.64 136.60.201.48
    h747.791.59.237.49.07.312.02.022.3160.13.27.81.49.82.1262.71.003.22
    h855.8127.520.082.330.312.938.66.556.0461.013.527.15.933.35.2514.80.861.88
    h916.969.13.620.68.010.111.91.05.689.02.24.50.40.91.9156.72.064.88
    h1035.067.88.631.02.07.15.62.811.0114.33.17.50.410.81.5194.30.905.96
    h1154.8124.68.048.319.411.913.64.214.1120.75.37.812.41.4325.71.344.56
    h1249.286.05.542.115.18.424.71.811.1104.64.16.04.10.8258.81.131.96
    h1355.7142.56.154.411.612.417.84.416.0319.66.316.01.818.41.3364.91.673.71
    h1432.677.25.323.16.44.16.01.19.980.04.37.40.52.72.5183.21.333.47
    h1521.950.92.525.14.83.62.51.611.4139.53.68.06.11.3143.31.495.50
    h169.870.81.017.06.60.30.758.82.13.90.51.61.2115.44.7837.14
    h1757.081.89.042.02.99.18.22.18.6158.33.46.30.412.11.8244.70.825.29
    h188.5105.63.28.13.19.58.21.78.0109.11.63.70.15.00.7167.04.577.01
    h198.397.94.38.30.314.061.82.95.22.60.6144.511.323.36
    h2016.858.14.14.01.04.68.01.05.1121.12.97.32.28.93.8127.91.613.61
    h2148.8135.26.467.39.55.59.90.65.3126.12.67.60.12.51.2302.61.692.46
    h2210.077.61.76.00.97.34.00.69.874.22.55.50.84.40.3131.54.3010.67
      Ce/Ce*=2CeN/(LaN+PrN),Pr/Pr*=2PrN/(CeN+NdN),Eu/Eu*=EuN/(0.33NdN+0.67GdN),ΣREE不包括Y。“−”表示未检出。
    下载: 导出CSV
  • [1] Fryer P. Serpentinite mud volcanism: observations, processes, and implications [J]. Annual Review of Marine Science, 2012, 4(1): 345-373. doi: 10.1146/annurev-marine-120710-100922
    [2] Frery E, Fryer P, Kurz W, et al. Episodicity of structural flow in an active subduction system, new insights from mud volcano's carbonate veins – Scientific Ocean drilling expedition IODP 366 [J]. Marine Geology, 2021, 434(3): 106431.
    [3] Mottl M J, Wheat C G, Fryer P, et al. Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate [J]. Geochimica et Cosmochimica Acta, 2004, 68(23): 4915-4933. doi: 10.1016/j.gca.2004.05.037
    [4] Haggerty J. Evidence from fluid seeps atop serpentine seamounts in the Mariana Forearc: clues for emplacement of the seamounts and their relationship to Forearc Tectonics [J]. Marine Geology, 1991, 102(1-4): 293-309. doi: 10.1016/0025-3227(91)90013-T
    [5] Fryer P, Wheat C G, Williams T, et al. Mariana serpentinite mud volcanism exhumes subducted seamount materials: implications for the origin of life [J]. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 2020, 378(2165): 20180425. doi: 10.1098/rsta.2018.0425
    [6] Parkinson I J, Pearce J A. Peridotites from the Izu-Bonin-Mariana forearc (ODP leg 125): Evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting [J]. Journal of Petrology, 1998, 39(9): 1577-1618. doi: 10.1093/petroj/39.9.1577
    [7] Savov I P, Ryan J G, D'antonio M, et al. Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: Implications for the elemental recycling at subduction zones [J]. Geochemistry, Geophysics, Geosystems, 2005, 6(4): 1-24.
    [8] Fryer P, Ambos E L, Hussong D M. Origin and emplacement of Mariana forearc seamounts [J]. Geology, 1985, 13(11): 774-777. doi: 10.1130/0091-7613(1985)13<774:OAEOMF>2.0.CO;2
    [9] Haggerty J A. Petrology and Geochemistry of Neocene Sedimentary Rocks from Mariana Forearc Seamounts: Implications for Emplacement of the Seamounts [M]. Washington DC American Geophysical Union Geophysical Monograph Series, 1987, 175-185.
    [10] Savov I P, Ryan J G, D'antonio M, et al. Shallow slab fluid release across and along the Mariana arc-basin system: Insights from geochemistry of serpentinized peridotites from the Mariana fore arc [J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B9).
    [11] Haggerty J, Fisher J. Short-Chain Organic Acids in Interstitial Waters from Mariana and Bonin Forearc Serpentines: Leg 125 [J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1992: 125.
    [12] Fryer P, Wheat C G, Mottl M J. Mariana blueschist mud volcanism: Implications for conditions within the subduction zone [J]. Geology, 1999, 27(2): 103-106. doi: 10.1130/0091-7613(1999)027<0103:MBMVIF>2.3.CO;2
    [13] Mottl M J, Komor S C, Fryer P, et al. Deep-slab fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling Program Leg 195 [J]. Geochemistry Geophysics Geosystems, 2003, 4(11): 1-14.
    [14] Hulme S M, Wheat C G, Fryer P, et al. Pore water chemistry of the Mariana serpentinite mud volcanoes: A window to the seismogenic zone [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(1): Q01X09.
    [15] Tran T H, Kato K, Wada H, et al. Processes involved in calcite and aragonite precipitation during carbonate chimney formation on Conical Seamount, Mariana Forearc: Evidence from geochemistry and carbon, oxygen, and strontium isotopes [J]. Journal of Geochemical Exploration, 2014, 137: 55-64. doi: 10.1016/j.gexplo.2013.11.013
    [16] 佟宏鹏, 姚凯, 陈琳莹, 等. 马里亚纳弧前Quaker蛇纹岩泥火山自生烟囱生长模式[J]. 海洋地质与第四纪地质, 2021, 41(06):15-26 doi: 10.16562/j.cnki.0256-1492.2021062501

    TONG Hongpeng, YAO Kai, CHEN Linying, et al. Formation model of authigenic chimneys on the Quaker serpentinite mud volcano in the Mariana forearc [J]. Marine Geology & Quaternary Geology, 2021, 41(06): 15-26. doi: 10.16562/j.cnki.0256-1492.2021062501
    [17] Fryer P, Saboda K L, Johnson L E, et al. Conical Seamount: SeaMARC II, Alvin submersible, and seismic reflection studies [M]. //Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the Ocean Drilling Program Initial Reports. College Station, TX: Ocean Drilling Program, 1990: 69-80.
    [18] Yamanaka T, Mizota C, Satake H, et al. Stable isotope evidence for a putative endosymbiont-based lithotrophic bathymodiolus sp. mussel community atop a serpentine seamount [J]. Geomicrobiology Journal, 2003, 20(3): 185-197. doi: 10.1080/01490450303876
    [19] Gharib J, J. Clastic metabasites and authigenic minerals within serpentinite protrusions from the Mariana forearc: Implications for subforearc subduction processes [D]. Ph. D. Dissertation. Honolulu: University of Hawaii, 2006.
    [20] Mottl M J. Pore waters from serpentinite seamounts in the Mariana and Izu-Bonin forearcs, Leg 125: evidence for volatiles from the subducting slab. [C]//Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the Ocean Drilling Program Scientific Results. College Station, TX: Ocean Drilling Program, 1992: 373-385.
    [21] Fryer P, Mottl M, Johnson L, et al. Serpentine bodies in the forearcs of western pacific convergent margins: origin and associated fluids [J]. Active Margins and marginal basins of the Western Pacific, 1995: 259-279.
    [22] Charlou J L, Donval J P, Fouquet Y, et al. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14'N, MAR) [J]. Chemical Geology, 2002, 191(4): 345-359. doi: 10.1016/S0009-2541(02)00134-1
    [23] Mccollom T. M. Laboratory Simulations of Abiotic Hydrocarbon Formation in Earth's Deep Subsurface [J]. Reviews in Mineralogy & Geochemistry, 2013, 75(1): 467-494.
    [24] Mccollom T M, Seewald J S. A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine [J]. Geochimica Et Cosmochimica Acta, 2001, 65(21): 3769-3778. doi: 10.1016/S0016-7037(01)00655-X
    [25] Proskurowski G, Lilley M D, Seewald J S, et al. Abiogenic Hydrocarbon Production at Lost City Hydrothermal Field [J]. Science, 2008, 319(5863): 604-607. doi: 10.1126/science.1151194
    [26] 丁兴, 刘志锋, 黄瑞芳, 等. 大洋俯冲带的水岩作用——蛇纹石化[J]. 工程研究-跨学科视野中的工程, 2016, 8(3):268

    DING Xing, LIU Zhifeng, HUANG Ruifang, et al. Water-Rock Interaction in Oceanic Subduction Zone: Serpentinization [J]. Journal of Engineering Studies, 2016, 8(3): 268.
    [27] Bebout G E. The impact of subduction-zone metamorphism on mantle-ocean chemical cycling [J]. Chemical Geology, 1995, 126(2): 191-218. doi: 10.1016/0009-2541(95)00118-5
    [28] Wheat C G, Seewald J S, Takai K. Fluid transport and reaction processes within a serpentinite mud volcano: South Chamorro Seamount [J]. Geochimica et Cosmochimica Acta, 2020, 269: 413-428. doi: 10.1016/j.gca.2019.10.037
    [29] 冯俊熙, 罗敏, 胡钰, 等. 海底蛇纹岩化伴生的碳酸盐岩研究进展[J]. 矿物岩石地球化学通报, 2016, 35(4):789-799 doi: 10.3969/j.issn.1007-2802.2016.04.019

    FENG Junxi, LUO Min, HU Yu, et al. Progress of the Research on Authigenic Carbonates Associated with Oceanic Serpentinization [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(4): 789-799. doi: 10.3969/j.issn.1007-2802.2016.04.019
    [30] Albers E, Shervais J, Hansen C, et al. Shallow depth, substantial change: fluid-metasomatism causes major compositional modifications of subducted volcanics (Mariana forearc) [J]. Frontiers in Earth Science, 2021, 10: 826312.
    [31] Alt J C, Shanks W C. Stable isotope compositions of serpentinite seamounts in the Mariana forearc: Serpentinization processes, fluid sources and sulfur metasomatism [J]. Earth and Planetary Science Letters, 2006, 242(3): 272-285.
    [32] Fleet A J. Hydrothermal and hydrogenous ferro-manganese deposits: Do they form a continuum? The rare earth element evidence [M]. Springer US, 1983, 12: 535–555.
    [33] Wheat C G, Fryer P, Fisher A T, et al. Borehole observations of fluid flow from South Chamorro Seamount, an active serpentinite mud volcano in the Mariana forearc [J]. Earth and Planetary Science Letters, 2008, 267(3-4): 401-409. doi: 10.1016/j.jpgl.2007.11.057
  • [1] 张振虎, 姚政权, 胡利民, Anatolii Astakhov, 邹建军, 刘焱光, 王昆山, 杨刚, 陈志华, 夏逸, 李秋玲, 冯晗, 石学法.  北极东西伯利亚陆架表层沉积物汞的分布特征及其意义 . 海洋地质与第四纪地质, 2022, 43(): 1-12. doi: 10.16562/j.cnki.0256-1492.2022071801
    [2] 密蓓蓓, 张勇, 梅西, 王忠蕾, 窦衍光.  南黄海表层沉积物稀土元素分布特征及其物源指示意义 . 海洋地质与第四纪地质, 2022, 42(6): 93-103. doi: 10.16562/j.cnki.0256-1492.2022072901
    [3] 宋维宇, 李超, 孟祥君, 黄威, 赵京涛, 陆凯, 徐磊, 胡邦琦, 虞义勇, 孙建伟, 李阳, 周吉祥, 胡刚, 原晓军.  九州-帕劳海脊南段共生多金属结核与富钴结壳地球化学特征及其资源意义 . 海洋地质与第四纪地质, 2022, 42(5): 149-157. doi: 10.16562/j.cnki.0256-1492.2022061701
    [4] 王忠蕾, 陆凯, 孙军, 张勇, 朱晓青, 胡刚, 何梦颖, 黄湘通, 密蓓蓓.  南黄海中部泥质区沉积物碎屑锆石U-Pb年龄物源判别 . 海洋地质与第四纪地质, 2022, 42(5): 70-82. doi: 10.16562/j.cnki.0256-1492.2022062402
    [5] 何雁兵, 雷永昌, 邱欣卫, 肖张波, 贾连凯.  元素地球化学在新区古环境重建中的应用 . 海洋地质与第四纪地质, 2022, 42(4): 159-170. doi: 10.16562/j.cnki.0256-1492.2022010901
    [6] 宋子君, 孟凡祎, 李维鼎, 陈琳莹, 罗敏.  马里亚纳海沟沉积物物源示踪和沉积环境分析 . 海洋地质与第四纪地质, 2022, 42(4): 84-95. doi: 10.16562/j.cnki.0256-1492.2022031801
    [7] 李国刚, 李云海, 布如源, 季有俊, 李薏新, 赵晓, 李超, 段琳娜.  晚更新世以来南极罗斯海陆坡沉积物岩芯常量元素地球化学特征及其古环境意义 . 海洋地质与第四纪地质, 2022, 42(4): 1-11. doi: 10.16562/j.cnki.0256-1492.2022040201
    [8] 刘荣波, 袁晓东, 林哲远, 仇建东, 胡日军, 高军锋, 刘龙龙, 张胜江.  莱州湾晚第四纪以来沉积物元素地球化学特征及来源 . 海洋地质与第四纪地质, 2022, 42(3): 100-110. doi: 10.16562/j.cnki.0256-1492.2022012301
    [9] 高晶晶, 刘季花, 张辉, 闫仕娟, 汪虹敏, 崔菁菁, 何连花.  西太平洋采薇海山和徐福海山富钴结壳稀土元素地球化学特征及来源 . 海洋地质与第四纪地质, 2022, 42(3): 87-99. doi: 10.16562/j.cnki.0256-1492.2021071302
    [10] 李学杰, 廖志良, 田成静, 钟和贤, 张江勇.  南海表层沉积物火山玻璃分布特征与源区分析 . 海洋地质与第四纪地质, 2022, 42(3): 1-8. doi: 10.16562/j.cnki.0256-1492.2021092801
    [11] 齐文菁, 李小艳, 范德江, 张辉, 殷征欣, 刘升发.  印度洋东经90°海岭现代沉积物稀土元素组成及其物源示踪意义 . 海洋地质与第四纪地质, 2022, 42(2): 92-100. doi: 10.16562/j.cnki.0256-1492.2021050701
    [12] 刘家岐, 兰晓东.  中太平洋莱恩海山富钴结壳元素地球化学特征及成因 . 海洋地质与第四纪地质, 2022, 42(2): 81-91. doi: 10.16562/j.cnki.0256-1492.2021041901
    [13] 夏志颖, 冉莉华, MartinG Wiesner, 梁宇钊, 任健, 李冬玲.  1991年皮纳图博火山灰沉降物对南海海洋环境及硅藻生长的影响 . 海洋地质与第四纪地质, 2022, 42(2): 28-35. doi: 10.16562/j.cnki.0256-1492.2021051402
    [14] 于哲, 邓义楠, 陈晨, 曹珺, 方允鑫, 蒋雪筱, 黄毅.  海洋沉积物微量元素地球化学特征对天然气水合物勘探的指示意义 . 海洋地质与第四纪地质, 2022, 42(1): 111-122. doi: 10.16562/j.cnki.0256-1492.2021040101
    [15] 区相文, 邬黛黛, 谢瑞, 吴能友, 刘丽华.  南海北部神狐海域沉积物Fe-P-S元素地球化学特征及对甲烷渗漏的指示 . 海洋地质与第四纪地质, 2022, 42(1): 96-110. doi: 10.16562/j.cnki.0256-1492.2021080501
    [16] 张永威, 田旭, 徐方建, 陈波, 叶友权, 范德江.  7.8 kaBP以来海南岛东南陆架陆源碎屑来源及其环境响应 . 海洋地质与第四纪地质, 2022, 42(): 1-10. doi: 10.16562/j.cnki.0256-1492.2022073101
    [17] 孔丽茹, 罗敏, 陈多福.  新西兰Hikurangi俯冲带沉积物成岩作用示踪研究:来自孔隙流体Sr同位素证据 . 海洋地质与第四纪地质, 2021, 41(6): 115-123. doi: 10.16562/j.cnki.0256-1492.2021071202
    [18] 佟宏鹏, 姚凯, 陈琳莹, 胡海明, 崔彩英, 陈多福.  马里亚纳弧前Quaker蛇纹岩泥火山自生烟囱生长模式 . 海洋地质与第四纪地质, 2021, 41(6): 15-26. doi: 10.16562/j.cnki.0256-1492.2021062501
    [19] 马晓理, 刘丽华, 徐行, 金光荣, 魏雪芹, 翟梦月.  南海南部浅表层柱状沉积物孔隙水地球化学特征对甲烷渗漏活动的指示 . 海洋地质与第四纪地质, 2021, 41(5): 112-125. doi: 10.16562/j.cnki.0256-1492.2020123101
    [20] 刘昌岭, 孙运宝.  海洋天然气水合物储层特性及其资源量评价方法 . 海洋地质与第四纪地质, 2021, 41(5): 44-57. doi: 10.16562/j.cnki.0256-1492.2021082401
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  298
  • HTML全文浏览量:  54
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-11
  • 修回日期:  2022-05-31
  • 刊出日期:  2022-12-28

马里亚纳弧前Conical蛇纹岩泥火山顶自生沉积物特征及其对渗漏流体的指示

doi: 10.16562/j.cnki.0256-1492.2022051101
    作者简介:

    佟宏鹏(1985—),女,博士,副研究员,主要从事海底流体活动沉积记录研究,E-mail:hptong@shou.edu.cn

基金项目:  国家自然科学基金“马里亚纳弧前蛇纹岩泥火山烟囱状自生沉积的成因及深源蛇纹石化流体渗漏活动记录” (41776080),马里亚纳弧前海底蛇纹岩泥火山无机成因甲烷形成水合物的条件及潜力分析(41776050)
  • 中图分类号: P736.4

摘要: 马里亚纳弧前蛇纹岩泥火山顶部海底发育由低温碱性流体渗漏形成的自生沉积物,记录了渗漏流体特征,对俯冲带的物质循环研究有重要意义。但目前对复杂矿物组成的自生沉积物及其所指示的渗漏流体信息仍不清楚。对采自马里亚纳弧前Conical蛇纹岩泥火山的自生沉积物进行了岩石学、矿物学及主量和微量元素分析。结果表明,Conical蛇纹岩泥火山自生沉积物呈疏松多孔状,极易碎,碎块主要呈薄片状和球粒状。薄片状碎块呈白色,主要由针状文石和棱柱状方解石组成,CaO含量较高(49.3%~53.3%),MgO含量较低(2.3%~4.5%)。球粒状碎块呈黄色或白色,为无定形镁硅酸盐,MgO含量较高 (25.5%~29.1%),CaO 含量较低(0.5%~2.9%)。碳酸盐岩碎块的总稀土含量(ΣREE)为227.2~4 136.6 ng/g;无定形镁硅酸盐碎块的ΣREE为115.4~364.9 ng/g,均显示轻微重稀土富集的平坦型配分模式。自生沉积物的稀土配分模式显示,除两个稀土含量相对较高的碳酸盐岩样品外,渗漏流体的贡献高于90%,说明两类样品均形成于较强的渗漏环境,并且碳酸盐及镁硅酸盐可能分别形成于“低硅型”和“高硅型”不同的流体活跃期。

English Abstract

  • 马里亚纳弧前发育目前全球已知的、唯一仍在活跃的蛇纹岩泥火山群,马里亚纳俯冲带属于非增生型板块汇聚边缘,蛇纹岩泥火山作用喷发的物质未经历弧前增生楔的强烈改造作用,是示踪俯冲带深部过程的绝佳载体[1-4],因此,蛇纹岩泥火山自被发现以来受到科学界的持续关注[1-2,5-10]。大型蛇纹岩泥火山喷发活动停止或者间歇期,泥火山顶部可发育低温、强碱性流体渗漏;渗漏流体性质受泥火山与海沟距离控制,与泥火山之下不同俯冲深度所发生的地球化学过程有关[11-14]。渗漏流体上升到海底附近,在泥火山顶部发育烟囱状、手指状以及结壳状等自生沉积物,其矿物成分也受泥火山与海沟距离控制[1,14-15],说明蛇纹岩泥火山顶的自生沉积物记录了渗漏流体活动,甚至记录了泥火山之下与俯冲作用有关的地球化学过程的信息。

    马里亚纳弧前蛇纹岩泥火山顶发育的流体渗漏成因的自生沉积物几乎不含碎屑物质[4,15-16]。在矿物组成上,与海沟较近的泥火山顶部发育的自生沉积物主要由水镁石组成;与海沟较远的泥火山顶部发育的自生沉积物主要由碳酸盐矿物组成,偶尔也发育硅酸盐矿物[4,15,17]。目前研究主要集中于南Chamorro、Conical及Quaker蛇纹岩泥火山发育的自生碳酸盐岩[4,12,15-16]。蛇纹岩泥火山顶的自生碳酸盐岩一般以较低的δ13C值及较高的δ18O值为特征,指示渗漏流体具有较重的氧及较轻碳同位素组成,有学者认为这种较轻的碳同位素组成可能与无机成因甲烷的缺氧氧化作用有关[4,13,15,18-19],较重的氧同位素组成与俯冲带的板片源流体的演化有关[4,15]。自生碳酸盐岩的87Sr/86Sr值一般低于海水值,指示渗漏流体具有贫放射成因锶的特征[4,15,20]。未见关于这些自生碳酸盐岩稀土元素等微量元素特征的研究。Conical蛇纹岩泥火山是目前唯一报道发育硅酸盐质烟囱状自生沉积物的蛇纹岩泥火山,其成分主要为一种罕见的含水无定形富镁硅酸盐[17],但只有岩石学和微观形貌的报道[4,15],未见关于该硅酸盐矿物地球化学特征的研究。这些自生沉积物元素地球化学研究的缺失可能与早期研究未对自生沉积物的研究意义给予足够重视,以及样品匮乏有关,但地球化学研究的缺失直接影响对渗漏流体的示踪。

    因此,本文对马里亚纳弧前Conical蛇纹岩泥火山顶发育的自生沉积物开展研究,在岩石学、矿物学及主量元素分析基础上,结合稀土元素分析,对比不同类型自生沉积物及通过渗漏流体与海水两端元混合模型模拟的稀土元素特征间的差异,揭示Conical蛇纹岩泥火山自生沉积物所记录的渗漏流体信息。

    • 马里亚纳弧前是指马里亚纳海沟和岛弧之间的狭长地带(图1a),由向西北俯冲的太平洋板块和上覆的菲律宾板块形成。马里亚纳弧前蛇纹岩泥火山主要由未固结的粉砂质、泥质蛇纹石胶结块状及砾状蛇纹岩或蛇纹石化超基性岩和变质岩等组成[1,5-7,21]。在马里亚纳俯冲带,太平洋洋壳自海沟处向下俯冲,随着俯冲深度的增加,温度和压力逐渐增加,俯冲板片逐渐发生压实、脱水等过程,产生的流体与上盘地幔楔橄榄岩发生蛇纹石化[22-26],在拉伸构造背景下,蛇纹岩化的地幔楔沿弧前深断裂上升,喷发至海底形成蛇纹岩泥火山[1,8-9,27-29]。此类蛇纹岩泥火山主要呈串珠状分布于马里亚纳弧前12°~20°N区间,距离海沟轴线30~100 km宽的狭长弧前范围内,其直径约10~30 km、高度约0.5~2 km[1,8,13-14,30]

      图  1  马里亚纳弧前Conical蛇纹岩泥火山位置图

      Figure 1.  Location of the Conical serpentine mud volcano in Mariana forearc

      Conical蛇纹岩泥火山位于马里亚纳弧前北部,19°32′N、146°40′E范围内(图1b),大致呈现圆锥形,底部直径约为20 km,高出正常海底1500 m,山顶水深约3 100 m[4,7,15,31]。距离海沟轴线约86 km,位于俯冲界面上方19 km,是距离海沟最远、对应俯冲深度最深的一座蛇纹岩泥火山,山顶或裂缝处发育活跃的流体渗漏活动[1,13-15,17]

    • 研究样品由2003年夏威夷大学组织的马里亚纳弧前航次(RI/OCE0002584)利用无人深潜器(ROV)Jason II,在第32次下潜期间从Conical蛇纹岩泥火山顶部采集,水深约3 100 m。样品在海底呈厚结壳状,覆盖并突出于蛇纹岩泥质沉积物之上。采集的Conical蛇纹岩泥火山自生沉积物用去离子水清洗后自然风干。样品呈疏松多孔状,中间发育不规则型的残余流体通道,通道周围发育黄色球粒状沉积物,远离通道白色沉积物含量增加(图2a)。样品极易碎,碎后样品呈黄或白色的不规则球粒状及小块状(图2b—c),以及含有针状矿物的薄片状(图2d)。使用牙钻或镊子分别对不同产状样品进行分类取样,并用玛瑙研钵研磨至200目用于元素地球化学分析。挑选典型样品制作光学薄片并进行扫描电镜观察。

      图  2  Conical蛇纹岩泥火山自生沉积物手标本

      Figure 2.  Authigenic deposition from Conical serpentine mud volcano

      岩石学和矿物学观察在上海海洋大学海洋沉积地球化学分析实验室完成,所用仪器为Olympusa偏光显微镜和库塞姆EM-30台式扫描电镜。主量及微量元素分析在中国科学院地球化学研究所完成,主量元素的分析使用700 Series ICP-OES,微量元素的分析使用Plasma Quant MS。由于Conical蛇纹岩泥火山的自生沉积物几乎不含碎屑物质,主量及微量元素分析采用全溶消解法。称量50 mg样品放入15 mL特氟龙杯,加入二次蒸馏的优纯级HF和HNO3各1 mL,185℃烘箱加热36小时;冷却后蒸干,加入4 mL去离子水、2 mL HNO3及1 mL内标(微量元素加入Rh内标,主量元素加入Cd内标)后上机测试。主量元素及稀土元素平均相对标准偏差优于5%。

    • Conical蛇纹岩泥火山自生沉积物主要由黄色或白色球粒状组分及白色薄片状组分构成,黄色球粒状组分主要集中在残余流体通道附近,几乎不含有碎屑沉积物(图3a)。样品极易碎,碎裂后的碎块宏观产状呈白色薄片状和黄色或白色球粒状(图2b—d)。薄层片状碎块的显微结构观察显示由针状文石和短柱状方解石组成(图3a—c),局部发育镁硅酸盐,碳酸盐矿物与镁硅酸盐矿物间孔隙明显(图3c),说明二者间可能存在沉积间断。黄色或白色球粒状样品由不同大小的不规则球状物质组成(图3d—f),单个球体直径约几微米到几百微米,表面光滑(图3e—f),能谱分析显示由Si、O和Mg组成(图3f)。Conical蛇纹岩泥火山以往的研究均显示自生碳酸盐岩烟囱及镁硅酸盐烟囱均含有无定形镁硅酸盐[4, 13, 15, 17],因此,球状集合体组成的黄色或白色球粒状沉积物主要成分为无定形的镁硅酸盐。

      图  3  Conical蛇纹岩泥火山自生沉积物显微结构特征

      Figure 3.  The microstructure features of authigenic deposition from Conical serpentinite mud volcano

    • Conical蛇纹岩泥火山自生沉积物主量元素分析结果(表1)显示,薄片状碎块CaO含量为49.3%~53.3%,MgO含量为2.3%~4.5%。球粒状碎块CaO含量为0.5%~2.9%,MgO含量为25.5%~29.1%。薄片状和球粒状碎块的混合样品CaO含量为11.2%~41.2%,MgO含量为7.8%~22.5%。样品的MgO含量与CaO含量显示了强烈负相关性,与Na2O和K2O含量显示了较好的正相关性(图4b、c)。TiO2和MnO含量均低于0.01%。

      表 1  Conical蛇纹岩泥火山自生沉积物主量元素特征

      Table 1.  Characteristics of major elements in authigenic deposition from Conical serpentine mud volcano

      %  
      样品编号碎块类型MgOCaONa2OAl2O3P2O5K2OFe2O3-T
      h1薄片状2.353.31.10.020.020.010.010 9
      h2薄片状3.850.11.20.110.030.020.073 6
      h3薄片状4.549.31.30.000.030.020.0030
      h4薄片状3.449.71.10.010.020.010.006 3
      h5薄片状2.552.81.20.220.030.020.053 0
      h6薄片状2.350.91.10.270.060.020.130 2
      h7混合碎块8.639.31.30.020.030.050.011 8
      h8混合碎块18.918.21.80.060.030.100.025 5
      h9混合碎块11.633.91.40.010.020.060.003 0
      h10混合碎块7.841.11.40.010.030.040.006 8
      h11混合碎块22.511.22.10.020.030.110.008 0
      h12混合碎块8.040.61.40.010.030.040.003 3
      h13球粒状28.10.72.00.010.020.140.013 0
      h14球粒状27.22.12.10.000.030.130.006 7
      h15球粒状28.60.72.20.000.020.130.001 1
      h16球粒状28.10.72.20.000.020.130.001 5
      h17球粒状27.90.52.30.010.020.130.002 2
      h18球粒状27.70.92.60.000.030.140.000 2
      h19球粒状27.00.82.50.000.020.130.002 7
      h20球粒状25.52.92.20.000.030.130.002 3
      h21球粒状29.10.52.50.010.020.140.002 3
      h22球粒状27.02.22.40.000.030.130.003 4
        注:主量元素分析结果未包含碳和硅元素含量,以及部分氧元素含量。

      图  4  Conical蛇纹岩泥火山自生沉积物部分主量元素含量图

      Figure 4.  Part of the major element contents in authigenic deposition from Conical serpentine mud volcano

    • Conical蛇纹岩泥火山自生沉积物均显示了较低的稀土元素(REE)含量(表2),且类薄片状碎块的总稀土含量(ΣREE为227.2~4 136.6 ng/g,平均值1 306.3 ng/g)略高于球粒状碎块的总稀土含量(ΣREE为115.4~3 64.9 ng/g,平均值192.5 ng/g)。薄片状和球粒状碎块的混合样品的稀土元素特征与薄片状碎块相似,具有相对高的总稀土含量(ΣREE含量为156.7~514.8 ng/g,平均值285.5 ng/g)。所有样品均显示了Eu正异常特征(薄片状碎块的Eu/Eu*为1.17~8.00,粒状碎块的Eu/Eu*为2.46~37.14,混合碎块的Eu/Eu*为1.88~5.96)。

      表 2  Conical蛇纹岩泥火山自生沉积物稀土元素含量及特征

      Table 2.  Contents and characteristics of REE in authigenic deposition of Conical serpentinite mud volcano

      ng/g  
      样品编号LaCePrNdSmEuGdTbDyYHoErTmYbLuΣREECe/Ce*Eu/Eu*
      h140.5155.87.389.78.810.05.83.19.3125.03.09.30.46.21.4350.62.075.40
      h289.1168.929.4121.614.016.737.46.328.6371.710.326.42.329.83.0583.70.752.36
      h351.997.76.536.29.25.52.01.47.299.02.93.70.32.80.3227.21.178.00
      h451.0147.415.666.64.613.912.31.911.8118.43.27.08.51.1344.91.195.33
      h5848.4161.5121.1516.984.922.689.412.9107.91 201.324.067.314.0105.318.42 194.80.111.17
      h61 620.9547.2245.71 020.1174.945.2127.216.7125.71 079.926.770.516.285.214.64 136.60.201.48
      h747.791.59.237.49.07.312.02.022.3160.13.27.81.49.82.1262.71.003.22
      h855.8127.520.082.330.312.938.66.556.0461.013.527.15.933.35.2514.80.861.88
      h916.969.13.620.68.010.111.91.05.689.02.24.50.40.91.9156.72.064.88
      h1035.067.88.631.02.07.15.62.811.0114.33.17.50.410.81.5194.30.905.96
      h1154.8124.68.048.319.411.913.64.214.1120.75.37.812.41.4325.71.344.56
      h1249.286.05.542.115.18.424.71.811.1104.64.16.04.10.8258.81.131.96
      h1355.7142.56.154.411.612.417.84.416.0319.66.316.01.818.41.3364.91.673.71
      h1432.677.25.323.16.44.16.01.19.980.04.37.40.52.72.5183.21.333.47
      h1521.950.92.525.14.83.62.51.611.4139.53.68.06.11.3143.31.495.50
      h169.870.81.017.06.60.30.758.82.13.90.51.61.2115.44.7837.14
      h1757.081.89.042.02.99.18.22.18.6158.33.46.30.412.11.8244.70.825.29
      h188.5105.63.28.13.19.58.21.78.0109.11.63.70.15.00.7167.04.577.01
      h198.397.94.38.30.314.061.82.95.22.60.6144.511.323.36
      h2016.858.14.14.01.04.68.01.05.1121.12.97.32.28.93.8127.91.613.61
      h2148.8135.26.467.39.55.59.90.65.3126.12.67.60.12.51.2302.61.692.46
      h2210.077.61.76.00.97.34.00.69.874.22.55.50.84.40.3131.54.3010.67
        Ce/Ce*=2CeN/(LaN+PrN),Pr/Pr*=2PrN/(CeN+NdN),Eu/Eu*=EuN/(0.33NdN+0.67GdN),ΣREE不包括Y。“−”表示未检出。
    • 马里亚纳弧前蛇纹岩泥火山渗漏流体的稀土含量较低,配分模式以轻稀土略微富集为特征[14],而Conical蛇纹岩泥火山自生沉积物显示了轻微的重稀土富集特征(图5),说明其形成过程中同时受到了渗漏流体和海水稀土元素组成的影响。Conical蛇纹岩泥火山自生沉积物中方解石和文石的形成被认为与碳酸盐矿物沉淀过程中海水与渗漏流体贡献比例差异有关[15]。但是,除碳酸盐矿物外,本文研究的Conical蛇纹岩泥火山自生沉积物中还发育较多黄色或白色球粒状无定形镁硅酸盐(图2),主要由镁和硅组成(图3f表1),自生沉积物样品镁含量与钠和钾含量具有非常好的正相关性(图4b、c),说明无定形镁硅酸盐中还含有少量钠和钾。

      图  5  Conical蛇纹岩泥火山自生沉积物及马里亚纳弧前蛇纹岩泥火山渗漏流体澳大利亚后太古代页岩标准化稀土配分模式图

      Figure 5.  Rare earth element patterns of authigenic deposition from Conical serpentinite mud volcano and of seepage fluids from Marianas forearc serpentinite mud volcanoes standardized by Post-Archean Australian Shale

      Fleet等[32]曾利用稀土元素混合模型对铁锰结核中不同成因组分进行了定量研究,我们把类似方法应用于马里亚纳弧前蛇纹岩泥火山自生沉积物,利用渗漏流体和海水的稀土元素组成建立两端元混合模型,获得不同比例混合后流体的稀土元素含量,并将其稀土配分模式与自生沉积物的稀土配分模式进行比较(图6a)。由于尚未有Conical蛇纹岩泥火山渗漏流体稀土元素含量的报道,本文选取与Conical蛇纹岩泥火山地质背景类似的南Chamorro蛇纹岩泥火山的渗漏流体的稀土元素组成作为参考端元值[14,33],海水端元的稀土元素含量根据蛇纹岩泥火山底层海水值[14]。与海水典型的重稀土元素富集特征不同,南Chamorro蛇纹岩泥火山的渗漏流体显示轻微轻稀土富集的平坦型稀土配分模式,以及显著Eu正异常的特征[14]。两端元混合模型显示,如果混合流体中海水比例超过了约10%(渗漏流体比例低于90%),混合流体的稀土配分模式就显示了类似海水配分模式的形态特征,即显著的重稀土富集,La正异常以及显著Ce负异常特征(图6a)。这是由于海水端元稀土含量(ΣREE为1.86×10−2 ng/g)显著高于渗漏流体端元(ΣREE为1.85×10−3 ng/g)[14]。但是,Conical蛇纹岩泥火山发育的大部分自生沉积物的稀土配分模式显示了与海水显著不同的特征(图5),说明这些自生沉积物沉淀于与海水稀土特征显著不同的流体环境中,且这种流体中的海水比例应低于10%,渗漏流体贡献应超过90%。因此,Conical蛇纹岩泥火山的大部分自生沉积物形成于较强的流体渗漏环境。

      图  6  渗漏流体与海水混合流体的澳大利亚后太古代页岩标准化稀土配分模式(a)及Eu/Eu*值与拟合海水贡献比例(b)

      Figure 6.  The rare earth partitioning patterns of mixed fluids of seepage fluids and seawater standardized by Post-Archean Australian Shale (a) and Eu/Eu* values V.S. modeled seawater contribution ratios (b)

      Conical蛇纹岩泥火山自生沉积物中绝大部分样品(除两个稀土含量相对较高样品外)均具有非常显著的Eu正异常特征(图5)。Eu正异常是南Chamorro蛇纹岩泥火山渗漏流体的典型特征[14]。尽管超过10%海水的混合流体就显示了重稀土富集的海水型特征,但是就Eu元素特征来说,在混合模型中,即使海水比例达20%,混合流体的稀土配分模式仍显示轻微的Eu正异常特征(图6a)。因此,Eu/Eu*值似乎更加适合用于进一步半定量估算形成Conical蛇纹岩泥火山形成自生沉积物样品海水与渗漏流体所占的比例。拟合结果显示,稀土含量最高的两个碳酸盐型样品具有最低的Eu/Eu*值(1.17与1.48),其形成流体中的海水所占比例最高(0.2与0.34,图6b),说明这两个样品形成过程中受海水影响更加显著。部分样品的Eu/Eu*值高于渗漏流体端元值取值范围(图6b),说明尽管南Chamorro蛇纹岩泥火山渗漏流体与Conical蛇纹岩泥火山渗漏流体均具有显著Eu正异常特征,但后者可能具有更高的Eu/Eu*值,这可能导致流体混合比例反演结果对海水比例的低估。尽管海水比例最高的样品出现在薄片状碳酸盐岩碎块样品中,但总体而言薄片状碳酸盐岩碎块、球粒状镁硅酸盐碎块和混合碎块样品的Eu/Eu*值及其拟合的海水比例并不存在类型间的系统性差异(图6b),说明薄片状碎块和球粒状碎块均形成于较强的渗漏环境,海水参与程度及渗漏强度并非是自生沉积物中碳酸盐和无定形镁硅酸盐矿物同时发育的原因。

    • 马里亚纳弧前Conical蛇纹岩泥火山自生沉积物主要由碳酸盐矿物和无定形镁硅酸盐组成,自生沉积物中的碳酸盐矿物常结合成薄片状,而无定形镁硅酸盐呈小球状,在宏观上基本可区分(图2),混合碎块样品可能是样品破碎时的物理混合。扫描电镜下观察也显示镁硅酸盐与碳酸盐矿物之间有明显的沉积间隔(图3c),说明碳酸盐矿物和无定型镁硅酸盐可能并非共沉淀。前人也曾报道在Conical蛇纹岩泥火山顶的碳酸盐烟囱晶洞中发育少量凝胶状镁硅酸盐,说明镁硅酸盐沉淀晚于碳酸盐,为不同期次流体作用的结果[9,17]。热力学上,碳酸盐矿物在碱性条件下稳定,而镁硅酸盐矿物在碱性条件下稳定性差,二者形成于不同的酸碱条件。这些特征说明,Conical蛇纹岩泥火山自生沉积物中碳酸盐矿物碎块和无定形镁硅酸盐碎块可能分别是两种不同性质流体的渗漏活动的产物。

      在Conical蛇纹岩泥火山顶碳酸盐烟囱状自生沉积物发育的邻近区域报道有烟囱状硅酸盐自生沉积物发育,且硅酸盐烟囱一般比碳酸盐岩烟囱更加粗大,成分与碳酸盐烟囱晶洞中的硅酸盐成分一致[17]。形成碳酸盐岩质烟囱的渗漏流体的碳酸盐碱度极高,可达海水值的20倍以上(52~69 meq/Kg)[13-14],其硅含量低于或者略高于底层海水值[13-14]。沉淀硅酸盐质烟囱的渗漏流体的pH值(9.28)也高于海水,但碱度(约6 meq/Kg)仅略高于海水值,其硅含量却高于底层海水数倍[4, 17],这说明Conical蛇纹岩泥火山顶发育“低硅型”和“高硅型”两种性质明显不同的渗漏流体。因此,基于本研究自生沉积物中薄片状碳酸盐碎块和球粒状硅酸盐碎块样品间显著的岩石学和矿物学差异,以及二者并非形成于同种渗漏流体、不同渗漏强度产物的特性,推测本研究中Conical蛇纹岩泥火山的薄片状碳酸盐样品应形成于“低硅型”渗漏流体活跃阶段,球粒状无定形镁硅酸盐样品应形成于“高硅型”渗漏流体活跃阶段,Conical蛇纹岩泥火山在同一渗漏点发育“低硅型”和“高硅型”两种渗漏流体的动态演化。

      在Conical蛇纹岩泥火山顶海底的不同位置已报道发育“低硅型”和“高硅型”两种流体的渗漏[13-14,17],但是关于同一个渗漏点发育“低硅型”和“高硅型”两种类型流体动态演化的机制目前尚不清楚。地震被认为是除蛇纹岩浮力与俯冲带深部超压以外,引起蛇纹岩泥火山间歇性喷发的重要原因[1],地震等脉冲事件是否可能为引起多种性质渗漏流体转换及动态演化的原因需要进一步深入研究。

    • 马里亚纳弧前Conical蛇纹岩泥火山自生沉积物由两种矿物组成,分别是白色薄片状碳酸盐矿物以及黄色或白色球粒状无定型镁硅酸盐。前者CaO含量较高,MgO含量较低,主要由针状文石和棱柱状方解石组成,后者MgO含量较高,CaO含量较低,微观下呈球状集合体。二者均形成于较强的渗漏环境,渗漏流体与海水稀土元素混合模型显示形成大部分自生沉积物的流体中的渗漏流体比例应高于90%,碳酸盐及无定形镁硅酸盐可能分别由“低硅型”和“高硅型”两种性质流体渗漏所引起。自生沉积物的这些特征说明,Conical蛇纹岩泥火山同一渗漏点可能发育“低硅型”和“高硅型”两种性质渗漏流体的动态演化,但诱发二种流体转换的机制有待进一步研究。

      致谢:感谢美国夏威夷大学Fryer P教授提供样品和采样信息,感谢审稿人提出的宝贵意见。

参考文献 (33)

目录

    /

    返回文章
    返回