留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

江苏中部海岸晚第四纪沉积物的粒度与磁化率特征及其古环境意义

刘德政 夏非

刘德政, 夏非. 江苏中部海岸晚第四纪沉积物的粒度与磁化率特征及其古环境意义[J]. 海洋地质与第四纪地质, 2021, 41(5): 210-220. doi: 10.16562/j.cnki.0256-1492.2021051901
引用本文: 刘德政, 夏非. 江苏中部海岸晚第四纪沉积物的粒度与磁化率特征及其古环境意义[J]. 海洋地质与第四纪地质, 2021, 41(5): 210-220. doi: 10.16562/j.cnki.0256-1492.2021051901
LIU Dezheng, XIA Fei. Characteristics of grain size and magnetic susceptibility of the Late Quaternary sediments from core 07SR01 in the middle Jiangsu coast and their paleoenvironmental significances[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 210-220. doi: 10.16562/j.cnki.0256-1492.2021051901
Citation: LIU Dezheng, XIA Fei. Characteristics of grain size and magnetic susceptibility of the Late Quaternary sediments from core 07SR01 in the middle Jiangsu coast and their paleoenvironmental significances[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 210-220. doi: 10.16562/j.cnki.0256-1492.2021051901

江苏中部海岸晚第四纪沉积物的粒度与磁化率特征及其古环境意义


doi: 10.16562/j.cnki.0256-1492.2021051901
详细信息
    作者简介:

    刘德政(1996—),男,硕士研究生,主要从事河海交互作用与沉积环境演化研究,E-mail:dezheng_liu@126.com

    通讯作者: 夏非(1985—),男,博士,讲师,主要从事河海交互作用与沉积环境演化研究,E-mail:njuxiafei1985@yahoo.com
  • 基金项目:  国家自然科学基金青年科学基金项目“辐射沙脊群西洋潮流通道的浅部沉积层序及其形成演化”(41901107);江苏省高等学校自然科学研究面上项目“辐射沙脊群东北翼浅层沉积结构南北分异研究”(18KJB170003);江苏第二师范学院引进高层次人才科研启动经费项目(919801)
  • 中图分类号: P736.2

Characteristics of grain size and magnetic susceptibility of the Late Quaternary sediments from core 07SR01 in the middle Jiangsu coast and their paleoenvironmental significances

More Information
  • 摘要: 对位于江苏中部海岸的07SR01钻孔沉积物进行了粒度和磁化率测量,分析了粒度与磁化率的变化特征及其两者间的相关关系,并结合北半球晚更新世气候与相对海面变化以及该孔年代框架和沉积相的研究认识,进一步揭示了研究区的古环境变化。研究表明,MIS 5晚期至MIS 3时期,江苏中部海岸先后经历了3个阶段的环境演化:① MIS 5晚期为较高海面、较强水动力的潮汐河口(边滩、河床)阶段(36.10~26.65 m),该阶段沉积物主要受古长江物源影响,粒度粗,分选性波动大(0.55~2.35),粒度频率分布曲线呈极正偏的窄峰(主峰位于3 Φ附近)且“拖细尾”,磁化率较高且波动小[(5.81~42.16)×10−8 m3·kg−1],与砂组分(<4 Φ)呈强正相关;② MIS 4-3时期为冷干转为暖湿、海面先下降后上升和较弱水动力的淡水与滨岸湖沼阶段(26.65~15.77 m),该阶段沉积物细,分选性稳定(1.51~3.03),粒度频率分布曲线呈正偏的宽峰(主峰位于4.75 Φ附近),磁化率低且稳定[(6.46~20.04)×10−8 m3·kg−1],主要与粗粉砂组分(4~5 Φ)呈弱正相关;③ MIS 3时期为较高海面、较强水动力的潮汐河口(分流河道)阶段(15.77~0 m),该阶段沉积物受MIS 3苏北古黄河的影响增强,粒度较粗,分选性波动大(0.94~2.82),粒度频率分布曲线呈极正偏的窄峰(主峰位于3.75 Φ附近)且“拖细尾”,磁化率较高且波动大[(10.21~57.25)×10−8 m3·kg−1],与砂和粗粉砂组分(<5 Φ)呈弱正相关。揭示海岸沉积物粒度和磁化率组合指标的古环境指示意义,将为进一步深入研究这一指示意义的形成机理提供必要的基础。
  • 图  1  南黄海辐射沙脊群西洋潮流通道及07SR01孔位置

    Figure  1.  The location of Xiyang tidal channel and core 07SR01 in the Radial Sand Ridge Field, South Yellow Sea

    图  2  07SR01孔沉积物综合柱状图[27, 34]

    Figure  2.  Integrated column of core 07SR01 sediments[27, 34]

    图  3  07SR01孔不同沉积相代表性样品的粒度频率分布曲线

    Figure  3.  Grain size frequency curves of representative samples of different sedimentary facies in core 07SR01

    图  4  07SR01孔潮汐河口分流河道相沉积层的典型沉积构造照片

    图中数字表示钻孔进尺深度(单位:cm)。

    Figure  4.  Photos of core 07SR01 showing typical sedimentary structures of distributary channel facies in tidal dominated estuary

    The numbers in the figure indicate the core drilling depth(unit: cm).

    表  1  07SR01孔沉积物粒度参数

    Table  1.   Grain size parameters of core 07SR01 sediments

    深度/m平均粒径/Φ分选系数偏态峰态样品数/个
    0~36.10(全岩心)最小值2.700.55−0.200.69229
    最大值6.663.030.642.52
    平均值4.761.710.261.14
    26.65~36.10(潮汐河口边滩、河床相)最小值2.700.550.020.7165
    最大值5.812.350.642.53
    平均值4.021.560.351.32
    21.67~26.65(淡水湖沼相)最小值2.831.51−0.120.7522
    最大值6.502.690.501.59
    平均值4.661.950.231.08
    20.50~21.67(洪泛平原相)最小值4.781.540.110.8811
    最大值6.241.940.481.42
    平均值5.481.710.321.09
    15.77~20.50(滨岸沼泽相)最小值4.141.65−0.150.7036
    最大值6.553.030.531.24
    平均值5.661.980.120.87
    0~15.77(潮汐河口分流河道相)最小值2.880.94−0.200.6995
    最大值6.662.820.451.68
    平均值4.861.650.251.14
    下载: 导出CSV

    表  2  07SR01孔沉积物粒度组分与磁化率的相关系数

    Table  2.   Correlation coefficients between grain size and magnetic susceptibility of core 07SR01 sediments

    岩心分段
    (深度/沉积相)
    粒度/Φ
    >86~85~64~5<4
    0~36.10 m−0.544−0.407−0.2070.1260.280
    26.65~36.10 m−0.600−0.514−0.633−0.8170.712
    15.77~26.65 m0.018−0.024−0.0250.145−0.030
    0~15.77 m−0.500−0.304−0.0870.1180.254
    潮汐河口边滩、河床相−0.600−0.514−0.633−0.8170.712
    淡水湖沼相0.0840.1410.1870.164−0.163
    洪泛平原相−0.935−0.690−0.0280.6200.581
    滨岸沼泽相−0.058−0.112−0.1770.0660.109
    潮汐河口分流河道相−0.500−0.304−0.0870.1180.254
    下载: 导出CSV
  • [1] Prins M A, Postma G, Weltje G J. Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Makran continental slope [J]. Marine Geology, 2000, 169(3-4): 351-371. doi: 10.1016/S0025-3227(00)00087-6
    [2] 舒强, 李才林, 赵志军, 等. 苏北盆地浅钻沉积物磁化率与粒度记录的末次冰消期以来的环境变化[J]. 沉积学报, 2009, 27(1):111-117

    SHU Qiang, LI Cailin, ZHAO Zhijun, et al. The records of mass susceptibility and grain size for climate changes in Subei basin during the last deglaciation [J]. Acta Sedimentologica Sinica, 2009, 27(1): 111-117.
    [3] 蔡廷禄, 贾建军, 汪亚平. 河口海岸和近海沉积物的粒度资料同化技术[J]. 海洋地质与第四纪地质, 2014, 34(1):185-193

    CAI Tinglu, JIA Jianjun, WANG Yaping. Techniques for particle size data standardization: an example form estuarine and coastal sediments [J]. Marine Geology & Quaternary Geology, 2014, 34(1): 185-193.
    [4] 邓程文, 张霞, 林春明, 等. 长江河口区末次冰期以来沉积物的粒度特征及水动力条件[J]. 海洋地质与第四纪地质, 2016, 36(6):185-198

    DENG Chengwen, ZHANG Xia, LIN Chunming, et al. Grain-size characteristics and hydrodynamic conditions of the Changjiang estuarine deposits since last glacial [J]. Marine Geology & Quaternary Geology, 2016, 36(6): 185-198.
    [5] 王中波, 杨守业, 张志珣, 等. 东海陆架中北部沉积物粒度特征及其沉积环境[J]. 海洋与湖沼, 2012, 43(6):1039-1049 doi: 10.11693/hyhz201206003003

    WANG Zhongbo, YANG Shouye, ZHANG Zhixun, et al. The grain size compositions of the surface sediments in the East China Sea: Indication for sedimentary environments [J]. Oceanologia et Limnologia Sinica, 2012, 43(6): 1039-1049. doi: 10.11693/hyhz201206003003
    [6] 丁大林, 张训华, 于俊杰, 等. 长江三角洲北翼后缘晚第四纪以来的沉积粒度特征及环境演化[J]. 海洋地质与第四纪地质, 2019, 39(4):34-45

    DING Dalin, ZHANG Xunhua, YU Junjie, et al. Sediment grain size distribution patterns of the late Quaternary on the back side of northern Yangtze River Delta and their environmental implications [J]. Marine Geology & Quaternary Geology, 2019, 39(4): 34-45.
    [7] 周连成, 李军, 高建华, 等. 长江口与舟山海域柱状沉积物粒度特征对比及其物源指示意义[J]. 海洋地质与第四纪地质, 2009, 29(5):21-27

    ZHOU Liancheng, LI Jun, GAO Jianhua, et al. Comparison of core sediment grain-size characteristics between Yangtze River estuary and Zhoushan Islands and its significance to sediment source analysis [J]. Marine Geology & Quaternary Geology, 2009, 29(5): 21-27.
    [8] 李红军, 刘月, 程岩, 等. 鸭绿江口沉积粒度特征及其对沉积环境演化的指示[J]. 海洋地质与第四纪地质, 2017, 37(3):58-66

    LI Hongjun, LIU Yue, CHENG Yan, et al. Characteristics of sediment grain size at Yalu River estuary and implications for depositional environment [J]. Marine Geology & Quaternary Geology, 2017, 37(3): 58-66.
    [9] 潘峰, 林春明, 李艳丽, 等. 钱塘江南岸SE2孔晚第四纪以来沉积物粒度特征及环境演化[J]. 古地理学报, 2011, 13(2):236-244 doi: 10.7605/gdlxb.2011.02.012

    PAN Feng, LIN Chunming, LI Yanli, et al. Sediments grain-size characteristics and environmental evolution of core SE2 in southern bank of Qiangtang River since the late Quaternary [J]. Journal of Palaeogeography, 2011, 13(2): 236-244. doi: 10.7605/gdlxb.2011.02.012
    [10] Thompson R, Oldfield F. Environmental Magnetism[M]. London: Allen & Unwin, 1986: 1-227.
    [11] Verosub K L, Roberts A P. Environmental magnetism: Past, present, and future [J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B2): 2175-2192. doi: 10.1029/94JB02713
    [12] 贾海林, 刘苍字, 张卫国, 等. 崇明岛CY孔沉积物的磁性特征及其环境意义[J]. 沉积学报, 2004, 22(1):117-123 doi: 10.3969/j.issn.1000-0550.2004.01.018

    JIA Hailin, LIU Cangzi, ZHANG Weiguo, et al. Magnetic properties of core CY from Chongming island, the Yangtze estuary and its environmental significance [J]. Acta Sedimentologica Sinica, 2004, 22(1): 117-123. doi: 10.3969/j.issn.1000-0550.2004.01.018
    [13] 张瑞虎, 谢建磊, 刘韬, 等. 长江口水下三角洲沉积物记录的古环境演化[J]. 海洋地质与第四纪地质, 2011, 31(1):1-10

    ZHANG Ruihu, XIE Jianlei, LIU Tao, et al. Palaeoenvironmental evolution of subaqueous Yangtze delta inferred from sedimentary records [J]. Marine Geology & Quaternary Geology, 2011, 31(1): 1-10.
    [14] 葛宗诗. 南黄海QC2孔磁化率研究[J]. 海洋地质与第四纪地质, 1996, 16(4):35-42

    GE Zongshi. Study on magnetic susceptibility on hole QC2 in the South Yellow Sea [J]. Marine Geology & Quaternary Geology, 1996, 16(4): 35-42.
    [15] 姚菁. 渤海南岸LZ908孔海陆交互相地层气候代用指标及沉积环境研究[D]. 中国科学院研究生院(海洋研究所)博士学位论文, 2014: 1-119.

    YAO Jing. Climatic indicators and sedimentary environment studies inferred from transgressive and regressive sediments of core LZ908, south Bohai Sea[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2014: 1-119.
    [16] Maher B A. Magnetic properties of some synthetic sub-micron magnetites [J]. Geophysical Journal International, 1988, 94(1): 83-96. doi: 10.1111/j.1365-246X.1988.tb03429.x
    [17] 王建, 刘泽纯, 姜文英, 等. 磁化率与粒度、矿物的关系及其古环境意义[J]. 地理学报, 1996, 51(2):155-163 doi: 10.3321/j.issn:0375-5444.1996.02.009

    WANG Jian, LIU Zechun, JIANG Wenying, et al. A relationship between susceptibility and grain-size and minerals, and their paleo-environmental implications [J]. Acta Geographica Sinica, 1996, 51(2): 155-163. doi: 10.3321/j.issn:0375-5444.1996.02.009
    [18] Wang L S, Hu S Y, Yu G, et al. Paleoenvironmental reconstruction of the radial sand ridge field in the South Yellow Sea (east China) since 45 ka using the sediment magnetic properties and granulometry [J]. Journal of Applied Geophysics, 2015, 122: 1-10. doi: 10.1016/j.jappgeo.2015.08.002
    [19] Zhou X, Sun L G, Huang W, et al. Relationship between magnetic susceptibility and grain size of sediments in the China Seas and its implications [J]. Continental Shelf Research, 2014, 72: 131-137. doi: 10.1016/j.csr.2013.07.011
    [20] 卫蕾华, 蒋汉朝, 何宏林, 等. 末次冰期山西洪洞高分辨率粒度和磁化率记录的H5事件及其气候演化意义[J]. 海洋地质与第四纪地质, 2018, 38(4):193-202

    WEI Leihua, JIANG Hanchao, HE Honglin, et al. Heinrich-5 Event revealed by high-resolution grain-size and magnetic susceptibility records and its significance of climate evolution in the last glacial at Hongtong, Shanxi, China [J]. Marine Geology & Quaternary Geology, 2018, 38(4): 193-202.
    [21] Hilton J. A simple model for the interpretation of magnetic records in lacustrine and ocean sediments [J]. Quaternary Research, 1987, 27(2): 160-166. doi: 10.1016/0033-5894(87)90074-3
    [22] 刘健, 朱日祥, 李绍全. 南黄海北部末次冰期棕黄色细粒沉积物的磁学特征及其地质意义[J]. 海洋地质与第四纪地质, 2002, 22(4):15-20

    LIU Jian, ZHU Rixiang, LI Shaoquan. Magnetic properties of the last glacial brown-yellow fine-grained sediment in the northern south Yellow Sea: implication for its origin [J]. Marine Geology & Quaternary Geology, 2002, 22(4): 15-20.
    [23] 刘健, 朱日祥, 李绍全, 等. 南黄海东南部冰后期泥质沉积物中磁性矿物的成岩变化及其对环境变化的响应[J]. 中国科学(D辑), 2003, 33(6):583-592 doi: 10.3321/j.issn:1006-9267.2003.06.013

    LIU Jian, ZHU Rixiang, LI Shaoquan, et al. Magnetic mineral diagenesis in the post-glacial muddy sediments from the southeastern South Yellow Sea: Response to marine environmental changes [J]. Science in China (Series D), 2003, 33(6): 583-592. doi: 10.3321/j.issn:1006-9267.2003.06.013
    [24] 刘庚, 韩喜彬, 陈燕萍, 等. 南黄海沉积物磁性特征及其对物源变化的指示——以南黄海中部泥质区YSC-10孔为例[J]. 沉积学报, 2021, 39(2):383-394

    LIU Geng, HAN Xibin, CHEN Yanping, et al. Magnetic characteristics of core YSC-10 sediments in the central Yellow Sea mud area and implications for provenance changes [J]. Acta Sedimentologica Sinica, 2021, 39(2): 383-394.
    [25] 夏非, 殷勇, 王强, 等. MIS 3晚期以来江苏中部海岸的层序地层[J]. 地质学报, 2012, 86(10):1696-1712 doi: 10.3969/j.issn.0001-5717.2012.10.009

    XIA Fei, YIN Yong, WANG Qiang, et al. Sequence stratigraphy of the central part of North Jiangsu coasts since late MIS 3, eastern China [J]. Acta Geologica Sinica, 2012, 86(10): 1696-1712. doi: 10.3969/j.issn.0001-5717.2012.10.009
    [26] Xia F, Zhang Y Z, Wang Q, et al. Evolution of sedimentary environments of the middle Jiangsu coast, South Yellow Sea since late MIS 3 [J]. Journal of Geographical Sciences, 2013, 23(5): 883-914. doi: 10.1007/s11442-013-1051-5
    [27] 夏非. 辐射沙脊群西洋潮流通道的浅部层序地层与沉积环境演化[D]. 南京大学博士学位论文, 2016: 1-187.

    XIA Fei. Shallow sequence stratigraphy and sedimentary evolution of the Xiyang tidal channel in the Radial Sand Ridge Field[D]. Doctor Dissertation of Nanjing University, 2016: 1-187.
    [28] 夏非, 张永战, 刘德政. 南黄海辐射沙脊群西洋潮流通道的浅部沉积层序及其形成演化再认识[J]. 海洋地质与第四纪地质, 2021, 41(4):13-26

    XIA Fei, ZHANG Yongzhan, LIU Dezheng. Rethinking on shallow sedimentary sequence and its evolution of the Xiyang tidal channel in the Radial Sand Ridge Field, South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2021, 41(4): 13-26.
    [29] 王颖. 南黄海辐射沙脊群环境与资源[M]. 北京: 海洋出版社, 2014: 1-291.

    WANG Ying. Environment and Resource of the Radial Sand Ridge Field in the South Yellow Sea[M]. Beijing: China Ocean Press, 2014: 1-291.
    [30] 王颖. 黄海陆架辐射沙脊群[M]. 北京: 中国环境科学出版社, 2002: 1-368.

    WANG Ying. Radiative Sandy Ridge Field on Continental Shelf of the Yellow Sea[M]. Beijing: China Environmental Science Press, 2002: 1-368.
    [31] 张刚, 杨轮凯, 闫玉茹, 等. 江苏盐城大丰港西洋深槽冲淤变化特征[J]. 地质学刊, 2016, 40(4):683-689 doi: 10.3969/j.issn.1674-3636.2016.04.683

    ZHANG Gang, YANG Lunkai, YAN Yuru, et al. Variation characteristics of siltation movement at the Xiyang deep groove of Dafeng port in Yancheng, Jiangsu province [J]. Journal of Geology, 2016, 40(4): 683-689. doi: 10.3969/j.issn.1674-3636.2016.04.683
    [32] 国家海洋局908专项办公室. 海洋底质调查技术规程[M]. 北京: 海洋出版社, 2006: 2−7, 33.

    908 Special Office of the State Oceanic Administration. Technical Regulations for Marine Sediment Survey[M]. Beijing: China Ocean Press, 2006: 2-7, 33.
    [33] Blott S J, Pye K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments [J]. Earth Surface Processes and Landforms, 2001, 26: 1237-1248. doi: 10.1002/esp.261
    [34] Waelbroeck C, Labeyrie L, Michel E, et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records [J]. Quaternary Science Reviews, 2002, 21(1-3): 295-305. doi: 10.1016/S0277-3791(01)00101-9
    [35] Hori K, Saito Y, Zhao Q H, et al. Sedimentary facies of the tide-dominated paleo-Changjiang (Yangtze) estuary during the last transgression [J]. Marine Geology, 2001, 177(3-4): 331-351. doi: 10.1016/S0025-3227(01)00165-7
    [36] Hori K, Saito Y, Zhao Q H, et al. Evolution of the coastal depositional systems of the Changjiang (Yangtze) River in response to late Pleistocene-Holocene sea-level changes [J]. Journal of Sedimentary Research, 2002, 72(6): 884-897. doi: 10.1306/052002720884
    [37] Fan D D. Open-coast tidal flats[M]//Davis R Jr, Dalrymple R. Principles of Tidal Sedimentology. Dordrecht: Springer, 2012: 187-229.
    [38] Fan D D, Tu J B, Shuai S, et al. Morphodynamics and sedimentary facies in a tidal-fluvial transition with tidal bores (the middle Qiantang Estuary, China)[M]//Tessier B, Reynaud J Y. Contributions to Modern and Ancient Tidal Sedimentology. London: John Wiley & Sons, Ltd, 2016: 75-92.
    [39] 孟庆勇, 李安春, 徐方建, 等. 东海内陆架EC2005孔沉积物磁化率与粒度组分的相关性研究[J]. 科技导报, 2009, 27(10):32-36 doi: 10.3321/j.issn:1000-7857.2009.10.006

    MENG Qingyong, LI Anchun, XU Fangjian, et al. Correlation between the grain size distribution and magnetic susceptibility of marine sediment core in the inner shelf of the East China Sea [J]. Science & Technology Review, 2009, 27(10): 32-36. doi: 10.3321/j.issn:1000-7857.2009.10.006
    [40] Yim W W S, Ivanovich M, Yu K F. Young age bias of radiocarbon dates in pre-Holocene marine deposits of Hong Kong and implications for Pleistocene stratigraphy [J]. Geo-Marine Letters, 1990, 10(3): 165-172. doi: 10.1007/BF02085932
    [41] Nian X M, Zhang W G, Wang Z H, et al. The chronology of a sediment core from incised valley of the Yangtze River delta: Comparative OSL and AMS 14C dating [J]. Marine Geology, 2018, 395: 320-330. doi: 10.1016/j.margeo.2017.11.008
    [42] 殷勇, 张宁. 南黄海辐射沙脊群西洋潮道晚更新世晚期以来沉积环境[J]. 古地理学报, 2010, 12(5):618-628 doi: 10.7605/gdlxb.2010.05.011

    YIN Yong, ZHANG Ning. Sedimentary environments of Xiyang tidal channel of radial tidal sand ridge system since the late period of Late Pleistocene in South Yellow Sea [J]. Journal of Palaeogeography, 2010, 12(5): 618-628. doi: 10.7605/gdlxb.2010.05.011
    [43] 顾兆峰, 张志珣. 南黄海西部浅部地层地震层序及其沉积特征[J]. 海洋地质与第四纪地质, 2009, 29(4):95-106

    GU Zhaofeng, ZHANG Zhixun. Shallow seismic stratigraphy and sedimentary character in the western South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2009, 29(4): 95-106.
    [44] 刘青松, 邓成龙. 磁化率及其环境意义[J]. 地球物理学报, 2009, 52(4):1041-1048 doi: 10.3969/j.issn.0001-5733.2009.04.021

    LIU Qingsong, DENG Chenglong. Magnetic susceptibility and its environmental significances [J]. Chinese Journal of Geophysics, 2009, 52(4): 1041-1048. doi: 10.3969/j.issn.0001-5733.2009.04.021
    [45] 赵井东, 施雅风, 王杰. 中国第四纪冰川演化序列与MIS对比研究的新进展[J]. 地理学报, 2011, 66(7):867-884 doi: 10.11821/xb201107001

    ZHAO Jingdong, SHI Yafeng, WANG Jie. Comparison between Quaternary glaciations in China and the Marine Oxygen Isotope Stage (MIS): An improved schema [J]. Acta Geographica Sinica, 2011, 66(7): 867-884. doi: 10.11821/xb201107001
    [46] 仇建东, 刘健, 白伟明. 深海氧同位素第3阶段古气候—海平面变化研究进展[J]. 海洋地质前沿, 2012, 28(11):12-16

    QIU Jiandong, LIU Jian, BAI Weiming. Progress of the studies of paleoclimate and sea level changes in the marine oxygen isotope stage 3 [J]. Marine Geology Frontiers, 2012, 28(11): 12-16.
    [47] 柯贤坤. 潮滩沉积物的粒度特征[J]. 海洋通报, 1988, 7(4):41-48

    KE Xiankun. Grain-size characteristics of tidal flat sediments [J]. Marine Science Bulletin, 1988, 7(4): 41-48.
    [48] 陈影影, 夏非, 张振克, 等. 苏北-南黄海西部第四纪长江埋藏古河道分布研究进展[J]. 海洋地质与第四纪地质, 2020, 40(4):40-54

    CHEN Yingying, XIA Fei, ZHANG Zhenke, et al. Research progress on distribution of Quaternary buried paleo-Yangtze River channels in the North Jiangsu-western South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2020, 40(4): 40-54.
    [49] 李萍, 陈刚. 长江三角洲晚更新世暗绿色硬粘土的早期成岩作用[J]. 石油与天然气地质, 1995, 16(4):313-318+401 doi: 10.11743/ogg19950403

    LI Ping, CHEN Gang. Early diagenesis of late Pleistocene dark-green stiff clay in the Yangzi River delta [J]. Oil & Gas Geology, 1995, 16(4): 313-318+401. doi: 10.11743/ogg19950403
    [50] Liu J, Saito Y, Kong X H, et al. Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea [J]. Marine Geology, 2010, 278(1-4): 54-76. doi: 10.1016/j.margeo.2010.09.003
  • [1] 谢世文, 王宇辰, 舒誉, 吴宇翔, 刘冬青, 王菲.  珠一坳陷湖盆古环境恢复与优质烃源岩发育模式 . 海洋地质与第四纪地质, 2022, 42(1): 1-11. doi: 10.16562/j.cnki.0256-1492.2021081001
    [2] 骆帅兵, 张莉, 徐国强, 王笑雪, 雷振宇, 帅庆伟.  基于地震岩相分析的北康盆地晚渐新世沉积体系构建 . 海洋地质与第四纪地质, 2022, 42(1): 1-12. doi: 10.16562/j.cnki.0256-1492.2021051001
    [3] 雷雁翔, 何磊, 王玉敏, 张朋朋, 张斌, 胡蕾, 吴治国, 叶思源.  渤海湾西岸晚更新世以来的沉积环境演化及碳埋藏评价 . 海洋地质与第四纪地质, 2021, 41(6): 194-205. doi: 10.16562/j.cnki.0256-1492.2021020101
    [4] 许明, 陈建文, 袁勇, 张银国, 梁杰, 李慧君, 王建强, 吴淑玉.  华南下扬子区早寒武世幕府山组沉积环境:来自于全岩地球化学的启示 . 海洋地质与第四纪地质, 2021, 41(6): 82-90. doi: 10.16562/j.cnki.0256-1492.2020101601
    [5] 李鑫, 曹红, 孙治雷, 耿威, 张喜林, 徐翠玲, 吴能友, 闫大伟, 秦双双, 张现荣, 翟滨, 王利波.  生物载体对海底冷泉-热液极端环境的地球化学记录 . 海洋地质与第四纪地质, 2021, 41(6): 42-52. doi: 10.16562/j.cnki.0256-1492.2020121401
    [6] 王伟, 汤世凯, 胡艳萍, 王红艳, 石洪源, 战超.  山东半岛南部丁字湾口外海底沉积物粒度时空变化及影响因素 . 海洋地质与第四纪地质, 2021, 41(6): 1-11. doi: 10.16562/j.cnki.0265-1492.2021050601
    [7] 《海洋地质与第四纪地质》创刊40周年优秀作者与优秀审稿专家名单 . 海洋地质与第四纪地质, 2021, 41(5): 231-232.
    [8] 张立雪, 陈爱清, 陈庆, 赖佩欣.  珠江口内伶仃洋晚第四纪黏土矿物组成特征及对源区气候变化的指示 . 海洋地质与第四纪地质, 2021, 41(5): 202-209. doi: 10.16562/j.cnki.0256-1492.2020121002
    [9] 孙国洪, 田丽艳, 李小虎, 张汉羽, 陈凌轩, 刘红玲.  西南印度洋中脊岩石地球化学特征及其岩浆作用研究 . 海洋地质与第四纪地质, 2021, 41(5): 126-138. doi: 10.16562/j.cnki.0256-1492.2021021701
    [10] 陈唯, 赵彦彦, 李三忠, 唐智能, 杨俊, 魏浩天, 吴佳庆, 朱俊江, 刘盛, 董涛, 张广璐, 杨丹丹, 孙国静.  南海北部陆坡神狐海域SH-CL38站位的粒度特征及沉积记录 . 海洋地质与第四纪地质, 2021, 41(5): 90-100. doi: 10.16562/j.cnki.0256-1492.2021011001
    [11] 李晶, 刘昌岭, 吴能友, 贺行良, 孟庆国, 许晓晴, 陈烨.  海洋环境中甲烷好氧氧化过程的研究进展 . 海洋地质与第四纪地质, 2021, 41(5): 67-76. doi: 10.16562/j.cnki.0256-1492.2020112302
    [12] 刘健, 段宗奇, 梅西, 刘青松, 张训华, 郭兴伟, 吴志强, 王红, 王飞飞, 陈彬, 张欣, 安郁辉.  南黄海中部隆起晚新近纪—第四纪沉积序列的地层划分与沉积演化 . 海洋地质与第四纪地质, 2021, 41(5): 25-43. doi: 10.16562/j.cnki.0256-1492.2021101701
    [13] 曾志刚, 张玉祥, 陈祖兴, 李晓辉, 齐海燕, 王晓媛, 陈帅, 殷学博.  西太平洋弧后盆地的热液系统及其岩浆环境研究 . 海洋地质与第四纪地质, 2021, 41(5): 12-24. doi: 10.16562/j.cnki.0256-1492.2021070101
    [14] 汪品先.  海洋地质与第四纪地质的结合 . 海洋地质与第四纪地质, 2021, 41(5): 1-2. doi: 10.16562/j.cnki.0256-1492.2021072601
    [15] 陈俊锦, 张经纬, 刘时桥, 陈万利, 秦永鹏, 吴时国.  中沙群岛海域表层沉积物粒度特征及其输运趋势 . 海洋地质与第四纪地质, 2021, 41(): 1-12. doi: 10.16562/j.cnki.0256-1492.2021090901
    [16] 罗顺开, 周怀阳, 赵国庆, 袁伟.  加瓜海脊铁锰结壳的年龄及其定年方法适用性比较 . 海洋地质与第四纪地质, , (): -. doi: 10.16562/j.cnki.0256-1492.2021070502
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  401
  • HTML全文浏览量:  126
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-19
  • 修回日期:  2021-07-04
  • 网络出版日期:  2021-08-16
  • 刊出日期:  2021-10-28

江苏中部海岸晚第四纪沉积物的粒度与磁化率特征及其古环境意义

doi: 10.16562/j.cnki.0256-1492.2021051901
    作者简介:

    刘德政(1996—),男,硕士研究生,主要从事河海交互作用与沉积环境演化研究,E-mail:dezheng_liu@126.com

    通讯作者: 夏非(1985—),男,博士,讲师,主要从事河海交互作用与沉积环境演化研究,E-mail:njuxiafei1985@yahoo.com
基金项目:  国家自然科学基金青年科学基金项目“辐射沙脊群西洋潮流通道的浅部沉积层序及其形成演化”(41901107);江苏省高等学校自然科学研究面上项目“辐射沙脊群东北翼浅层沉积结构南北分异研究”(18KJB170003);江苏第二师范学院引进高层次人才科研启动经费项目(919801)
  • 中图分类号: P736.2

摘要: 对位于江苏中部海岸的07SR01钻孔沉积物进行了粒度和磁化率测量,分析了粒度与磁化率的变化特征及其两者间的相关关系,并结合北半球晚更新世气候与相对海面变化以及该孔年代框架和沉积相的研究认识,进一步揭示了研究区的古环境变化。研究表明,MIS 5晚期至MIS 3时期,江苏中部海岸先后经历了3个阶段的环境演化:① MIS 5晚期为较高海面、较强水动力的潮汐河口(边滩、河床)阶段(36.10~26.65 m),该阶段沉积物主要受古长江物源影响,粒度粗,分选性波动大(0.55~2.35),粒度频率分布曲线呈极正偏的窄峰(主峰位于3 Φ附近)且“拖细尾”,磁化率较高且波动小[(5.81~42.16)×10−8 m3·kg−1],与砂组分(<4 Φ)呈强正相关;② MIS 4-3时期为冷干转为暖湿、海面先下降后上升和较弱水动力的淡水与滨岸湖沼阶段(26.65~15.77 m),该阶段沉积物细,分选性稳定(1.51~3.03),粒度频率分布曲线呈正偏的宽峰(主峰位于4.75 Φ附近),磁化率低且稳定[(6.46~20.04)×10−8 m3·kg−1],主要与粗粉砂组分(4~5 Φ)呈弱正相关;③ MIS 3时期为较高海面、较强水动力的潮汐河口(分流河道)阶段(15.77~0 m),该阶段沉积物受MIS 3苏北古黄河的影响增强,粒度较粗,分选性波动大(0.94~2.82),粒度频率分布曲线呈极正偏的窄峰(主峰位于3.75 Φ附近)且“拖细尾”,磁化率较高且波动大[(10.21~57.25)×10−8 m3·kg−1],与砂和粗粉砂组分(<5 Φ)呈弱正相关。揭示海岸沉积物粒度和磁化率组合指标的古环境指示意义,将为进一步深入研究这一指示意义的形成机理提供必要的基础。

English Abstract

  • 粒度作为沉积物最基本和最主要的物理特征,主要受搬运介质、沉积动力、物质来源等因素影响,对沉积环境的变化响应十分敏感,因此,沉积物粒度特征可作为判别沉积环境的重要物理标志和有效代用指标[1-4]。根据沉积物的粒度组成、参数及图解可以很好地揭示沉积物形成的环境[5-6]。在河口海岸地区,粒度作为指示古环境的重要参数,已得到广泛应用。例如,周连成等和李红军等分别对长江口和鸭绿江口多根柱状样沉积物粒度的分析和对比表明,沉积物粒度参数的变化与沉积动力有直接联系,粒度参数(分选性、偏态和峰态)变化较大反映较动荡的沉积环境,而变化较小则反映较稳定的沉积环境[7-8];邓程文等通过对长江口钻孔沉积物粒度特征与水动力关系的研究表明,水动力条件强、扰动较大的沉积环境往往沉积物粒度较粗,分选性变化较大,颗粒组分集中程度不稳定,峰形尖锐[4];同样,潘峰等利用钱塘江钻孔沉积物粒度资料进行了精细分析和对比,结果表明较强的水动力条件下粒度参数变化较大,粒径较粗,分选较差,峰态较窄[9]

    沉积物磁化率可以反映自然界中物质的磁性特征,可用作分析磁性矿物在时空上的变化规律及所代表的环境变化信息。而且,磁化率的测量具有快速简便、经济、可重复率高、不具破坏性和仪器便于携带等优点[10-11]。因此,磁化率迅速成为一种重要的环境代用指标,受到广泛的关注并集中应用于黄土、湖泊、深海等环境研究中[11],而在海陆交互作用和沉积环境复杂多变的河口海岸、三角洲地区则应用较晚,但也取得了不错的研究成果。例如,贾海林等和张瑞虎等发现河口钻孔沉积物磁化率在一定程度上可指示水动力的强弱,间接反映沉积环境的演变,磁化率高值指示水动力较强,低值指示水动力较弱[12-13];葛宗诗对南黄海钻孔沉积物磁化率的研究表明,磁化率的变化特征基本反映了气候环境的变化规律,即暖湿时期磁化率相对增加,寒冷时期磁化率相对降低[14];姚菁通过渤海南岸钻孔沉积物磁化率与海面变化的对比分析,发现磁化率高值对应高海面时期,磁化率低值对应低海面时期[15]

    同时,前人研究中还发现沉积物粒度与磁化率存在非常密切的相互关系,并对此进行过不少深入的探讨[16-20]。由于磁化率受多种因素(沉积动力、早期成岩作用、有机质含量等)影响,这些因素又直接或间接地受气候和环境条件影响[21-24],因此,在不同时空和环境下粒度和磁化率的相关性亦有差异,进一步探讨两者的相关性,在一定程度上将有助于认清磁化率的物理意义和变化过程,以及粒度和磁化率所蕴含的古环境信息,对揭示区域环境变化具有重要意义。江苏中部海岸自晚第四纪以来长期持续沉降,长江和黄河都曾以不同时空组合方式影响这一地区,因此该区对海面变化和海陆环境变迁反映十分敏感,是研究晚第四纪河海交互作用沉积的理想区域。本文利用江苏中部海岸07SR01钻孔,在前人对钻孔沉积相认识[25-27]的基础上,结合该孔年代框架的最新研究认识[28],重新判识沉积相和构建年代框架,且依据该孔沉积物的粒度和磁化率实验结果,分析粒度和磁化率的变化特征及相关关系,并进一步整合上述信息,着重探讨该孔粒度和磁化率组合的古环境指示意义,以此可深化对江苏中部海岸晚第四纪沉积环境演变的认识,还可为进一步深入研究这一古环境指示意义的形成机理提供必要的基础。

    • 位于江苏岸外、南黄海西侧内陆架的辐射沙脊群,介于苏北废黄河三角洲与长江口之间,南北长约200 km,东西宽约140 km,由70多条沙脊与潮流通道组成,大体上以弶港为顶点呈褶扇状向海辐散伸展,脊槽相间分布,水深为0~25 m,很少超过40 m,是现代海岸带与内陆架上的大型海底地貌组合体[29]。本文研究钻孔07SR01所在的西洋潮流通道位于辐射沙脊群北部,西侧是江苏中部的潮滩,东侧是辐射沙脊群最大的沙岛东沙及其北侧邻接的亮月沙,呈NNW-SSE方向延伸,宽约12~25 km,长约80 km,潮道内以小阴沙和瓢儿沙为界分为东、西两个通道(图1)。西洋的波浪作用不强,以风浪为主,全年的常浪向为偏N,强浪向为NE;受正规半日潮影响,西洋平均潮差约3.5 m,在南黄海旋转潮波系统控制下,以往复型强潮流为主,涨落潮流速都较大,但落潮流量大于涨潮流量,涨落潮转流时间很短,故不利于泥沙的扩散沉积,对维持深槽有利,最大水深近40 m[26, 29-30]。近年来,西洋潮流通道持续冲刷拓宽加深,十分有利于沿岸港口航道的稳定发展[31]

      图  1  南黄海辐射沙脊群西洋潮流通道及07SR01孔位置

      Figure 1.  The location of Xiyang tidal channel and core 07SR01 in the Radial Sand Ridge Field, South Yellow Sea

    • 本文研究的07SR01钻孔由南京大学于2007年12月在辐射沙脊群西洋西通道内钻取,孔径71 mm,地理坐标为33°15′50″N、120°53′46″E,实测水深22 m,孔深36.1 m,取心率达70%。岩心沿纵向剖开,一半用于存档保留,另一半作为工作心。粒度取样基本以10 cm为间隔,共获得229个样品。磁化率取样基本以20 cm为间隔,共获得104个样品。其中,粒度和磁化率各有90个样品在同一深度处取样。

    • 粒度测量在南京大学海岸与海岛开发教育部重点实验室完成,使用英国Malvern公司生产的Mastersizer 2000型激光粒度仪对样品进行测量,测量粒径范围为0.02~2000 μm,多次重复测量误差一般<2%。所有样品前处理和测试均按照国家海洋局908专项制定的《海洋底质调查技术规程》要求的方法与步骤进行[32],其中前处理阶段的每个样品均为2 g混合均匀样品。获得样品粒度分布数据后,根据Folk-Ward图解法计算公式,利用GRADISTAT粒度处理软件计算平均粒径、分选系数、偏态、峰态等4个粒度参数,并据此分级[33]

      磁化率测量在南京大学地表过程与环境实验室完成,样品经低温烘干(<40 ℃)、分散(不损伤自然颗粒)并均匀混合后,称取10 g左右装入磁化率测试盒内,然后使用英国Bartington公司生产的MS2型磁化率仪测量样品的低频磁化率(0.47 kHz),为了保证测量结果的准确性,每个样品均测量6次后取其平均值,最后将其换算成质量磁化率(本文所提到的磁化率均指质量磁化率)。

    • 07SR01孔沉积物的平均粒径为2.70~6.66 Φ,平均值为4.76 Φ;分选系数为0.55~3.03,平均值为1.71,分选较好到差,其中以分选性较差的样品占绝对优势;偏态值为−0.20~0.64,变化范围较宽,从负偏到极正偏等4个偏态等级都有,其中又以正偏和极正偏样品居多,平均值为0.26;峰态值为0.69~2.52,从宽到很窄等4个峰态等级都有,但绝大多数属于中等和窄,平均值为1.14(表1)。此外,根据Φ值标准做粒级分类(>8 Φ黏土、4~8 Φ粉砂和<4 Φ砂)[32],如图2所示全孔沉积物粒度组成以粉砂为主,含量为2.92%~84.31%,平均值为51.75%;黏土含量最少,范围为0~26.24%,平均值为8.25%;砂含量居于两者之间,变化范围很广,最高值为97.07%,最低值为1.73%,平均值为40.00%。值得注意的是,平均粒径Φ与砂含量表现为镜像对称变化趋势,而与粉砂含量表现为一致变化趋势,并且波峰波谷变化明显且连续,推测搬运砂和粉砂的动力有明显的变化。相比于粒度,磁化率变化并不强烈,可能反映了磁化率变化的受控因素和指示意义与粒度明显不同。

      表 1  07SR01孔沉积物粒度参数

      Table 1.  Grain size parameters of core 07SR01 sediments

      深度/m平均粒径/Φ分选系数偏态峰态样品数/个
      0~36.10(全岩心)最小值2.700.55−0.200.69229
      最大值6.663.030.642.52
      平均值4.761.710.261.14
      26.65~36.10(潮汐河口边滩、河床相)最小值2.700.550.020.7165
      最大值5.812.350.642.53
      平均值4.021.560.351.32
      21.67~26.65(淡水湖沼相)最小值2.831.51−0.120.7522
      最大值6.502.690.501.59
      平均值4.661.950.231.08
      20.50~21.67(洪泛平原相)最小值4.781.540.110.8811
      最大值6.241.940.481.42
      平均值5.481.710.321.09
      15.77~20.50(滨岸沼泽相)最小值4.141.65−0.150.7036
      最大值6.553.030.531.24
      平均值5.661.980.120.87
      0~15.77(潮汐河口分流河道相)最小值2.880.94−0.200.6995
      最大值6.662.820.451.68
      平均值4.861.650.251.14

      图  2  07SR01孔沉积物综合柱状图[27, 34]

      Figure 2.  Integrated column of core 07SR01 sediments[27, 34]

      07SR01孔沉积物磁化率的变化范围为(5.8~57.3)×10−8 m3·kg−1,平均值为27.0×10−8 m3·kg−1,具有明显的波峰波谷,与相关粒度组分含量曲线对应较好(图2)。磁化率变化曲线显示,26.65~36.10 m磁化率有几次较小幅度的波动,变化范围为(5.8~42.2)×10−8 m3·kg−1,平均值为27.3×10−8 m3·kg−1,与全孔平均值相近,总体呈波动下降趋势,在27.07 m处磁化率快速下降至5.8×10−8 m3·kg−1。15.77~26.65 m为全孔磁化率最低段,平均值为10.6×10−8 m3·kg−1,变化十分平稳,仅在21.61 m处有个微小波峰,变化范围为(6.4~22.1)×10−8 m3·kg−1,在15.92 m处磁化率骤增至22.1×10−8 m3·kg−1。0~15.77 m为全孔磁化率最高段,平均值为37.4×10−8 m3·kg−1,波动十分明显,变化范围为(10.2~57.3)×10-8 m3·kg−1,其顶部0.90~3.79 m处波动幅度最大。

      为分析07SR01孔沉积物磁化率与不同粒度组分含量间的关系,本文划分出黏土(>8 Φ)、细粉砂(6~8 Φ)、中粉砂(5~6 Φ)、粗粉砂(4~5 Φ)和砂(<4 Φ)等5个粒度组分,并计算了磁化率与粒度组分含量的相关系数(表2)。对于整个钻孔,磁化率与粗颗粒(粗粉砂和砂)组分呈正相关,明显与砂组分有更好的正相关性,说明磁性矿物主要赋存于粗颗粒物质中。根据磁化率变化特征可将钻孔分为3段(图2),其中下段(26.65~36.10 m)明显与砂组分呈正相关,中段(15.77~26.65 m)与粗粉砂组分呈正相关,上段(0~15.77 m)与整段相似,磁化率与粗颗粒(粗粉砂和砂)组分呈正相关。

      表 2  07SR01孔沉积物粒度组分与磁化率的相关系数

      Table 2.  Correlation coefficients between grain size and magnetic susceptibility of core 07SR01 sediments

      岩心分段
      (深度/沉积相)
      粒度/Φ
      >86~85~64~5<4
      0~36.10 m−0.544−0.407−0.2070.1260.280
      26.65~36.10 m−0.600−0.514−0.633−0.8170.712
      15.77~26.65 m0.018−0.024−0.0250.145−0.030
      0~15.77 m−0.500−0.304−0.0870.1180.254
      潮汐河口边滩、河床相−0.600−0.514−0.633−0.8170.712
      淡水湖沼相0.0840.1410.1870.164−0.163
      洪泛平原相−0.935−0.690−0.0280.6200.581
      滨岸沼泽相−0.058−0.112−0.1770.0660.109
      潮汐河口分流河道相−0.500−0.304−0.0870.1180.254
    • 夏非根据沉积物组分质地、颜色、沉积结构与构造、宏体和微体古生物等指标结果,对07SR01孔进行了详细的沉积相分析和划分[27]。本文在前人认识[27]的基础上,结合磁化率与粒度的垂向变化信息及河口三角洲钻孔沉积相分析的新近认识[35-38],重新审视07SR01孔沉积相的识别与划分,对其加以修正完善。除层段1以外,本文对其余层段(2~5)沉积相的认识均与前人[27]一致。层段1的沉积特征(详见文献[27])与邻近区域钻孔中识别出的典型潮汐河口分流河道相一致[35-38],而且分析发现该段沉积物磁化率和粒度的变化与河口区沉积动力有很好的对应关系(详见4.2节)。因此,修订后的07SR01孔沉积相序(图2)为:潮汐河口分流河道相(0~15.77 m)、滨岸沼泽相(15.77~20.50 m)、洪泛平原相(20.50~21.67 m)、淡水湖沼相(21.67~26.65 m)和潮汐河口边滩、河床相(26.65~36.10 m)。

      不同沉积相粒度参数和磁化率的变化特征及粒度频率分布曲线如图2-3表1所示,可以发现各参数及粒度频率分布曲线在不同沉积相中存在变化,差异明显。此外,不同区域和沉积环境下,磁化率具有不同的变化机制,与沉积物粒度也有不同的相关关系[39],因此,本文计算了07SR01孔不同沉积相磁化率和粒度的相关系数(表2)。不同沉积相中各参数和粒度频率分布曲线的变化特征及磁化率和粒度的相关性具体如下:

      图  3  07SR01孔不同沉积相代表性样品的粒度频率分布曲线

      Figure 3.  Grain size frequency curves of representative samples of different sedimentary facies in core 07SR01

      潮汐河口边滩、河床相(26.65~36.10 m):沉积物粒度较粗,以砂为主,平均粒径为2.70~5.81 Φ,平均值为4.02 Φ,为全钻孔最小值;分选性较好到差(0.55~2.35),平均值为1.56;偏态从近对称到极正偏(0.02~0.64),平均值为0.35,绝大多数样品呈极正偏;峰态表现为宽至很窄(0.71~2.53),平均值为1.32,属窄峰;频率分布曲线表现为极正偏的主峰突出,位于3 Φ附近,在6 Φ附近出现次峰或细尾;磁化率值较高,范围为(5.81~42.16)×10−8 m3·kg−1,平均值为27.06×10−8 m3·kg−1,明显与<4 Φ粒度组分呈强正相关(相关系数0.712)。

      淡水湖沼相(21.67~26.65 m):沉积物粒度变化大,砂含量减少,粉砂和黏土含量有所增加,平均粒径为2.83~6.50 Φ,平均值为4.66 Φ;分选性较差到差(1.51~2.69),平均值为1.95;偏态变化范围大,从负偏到极正偏(−0.12~0.50),平均值为0.23,绝大多数样品呈正偏;峰态表现为宽至很窄(0.75~1.59),平均值为1.08,属中等峰;频率分布曲线为正偏的单峰,主峰位于4.25 Φ附近;磁化率主要与>4 Φ粒度组分呈弱正相关(相关系数为0~0.2),这与沉积环境中粗颗粒组分减少有关。该层磁化率值在所有沉积相中最低,变化趋势也最平稳,范围为(8.79~11.08)×10−8 m3·kg−1,平均值为9.65×10−8 m3·kg−1

      洪泛平原相(20.50~21.67 m):沉积物粒度变细,以粉砂为主,砂含量减少,黏土和粉砂含量增加,平均粒径为4.78~6.24 Φ,平均值为5.48 Φ;分选性较差(1.54~1.94),平均值为1.71;偏态从近对称至极正偏(0.11~0.48),以正偏为主,平均值为0.32;峰态表现为宽至很窄(0.88~1.42),平均值为1.09,属中等峰;频率分布曲线为正偏的单峰,主峰位于4.75 Φ附近;磁化率变化范围为(6.46~19.39)×10−8 m3·kg−1,平均值为12.04×10−8 m3·kg−1,与<5 Φ粒度组分呈较强的正相关(相关系数在0.6左右)。

      滨岸沼泽相(15.77~20.50 m):沉积物仍以粉砂为主,砂含量减少,黏土和粉砂含量增加,平均粒径为4.14~6.55 Φ,平均值为5.66 Φ;分选性较差到差(1.65~3.03),平均值为1.98;偏态从负偏到极正偏(−0.15~0.53),以正偏为主,平均值为0.12;峰态表现为宽至窄(0.70~1.24),平均值为0.87,属宽峰;频率分布曲线为正偏的单峰,主峰位于4.75 Φ附近,且8 Φ附近具有明显的拐点;磁化率值较低,范围为(7.46~20.04)×10−8 m3·kg−1,平均值为10.79×10−8 m3·kg−1,主要与<5 Φ粒度组分呈弱正相关(相关系数在0.1左右)。

      潮汐河口分流河道相(0~15.77 m):沉积物粒度变粗,砂的含量增加,粉砂和黏土的含量有所下降,平均粒径为2.88~6.66 Φ,平均值为4.86 Φ;分选性中等到差(0.94~2.82),平均值为1.65;偏态从负偏到极正偏(−0.20~0.45),平均值为0.25;峰态表现为宽至很窄(0.69~1.68),平均值为1.14,属窄峰;频率分布曲线与层段5相似,主峰突出,位于3.75 Φ附近,在6.5 Φ附近出现次峰或细尾;磁化率值较高,平均值为37.15×10−8 m3·kg−1,波动范围为(10.21~57.25)×10−8 m3·kg−1,在所有沉积相中最大,与<5 Φ粒度组分呈弱正相关(相关系数为0.1~0.3)。

    • 07SR01孔的AMS14C测年结果普遍倒置混乱,一方面可能是在强劲的潮流沉积动力环境下,由侵蚀再堆积或受污染等原因所致[28],另一方面是绝大多数样品的测年结果>30 kaBP或超过测年上限,误差较大,故不宜直接采纳[40-41],因此,原先依据这些14C测年数据建立的07SR01孔年代标尺[25-27, 42]具有很大的不确定性。在辐射沙脊群潮道内,受潮流侵蚀影响,脊间沟槽全新世地层极薄,甚至被完全侵蚀而缺失[43]。最近,夏非等[28]对南黄海辐射沙脊群西洋潮流通道的浅部沉积层序及其形成演化的再认识表明,前人建立的07SR01孔年代标尺[25-27, 42]有误,将第二硬黏土层(应形成于MIS 4)误当成第一硬黏土层(形成于MIS 2),其主体应是晚更新世沉积,且第一硬黏土层多被潮流侵蚀而缺失。此外,07SR01孔磁化率的急剧变化与沉积环境的分界相对应,很好地指示了沉积阶段的转换。因此,基于研究区浅部沉积层序形成演化的最新研究认识和磁化率分析结果,新构建的07SR01孔沉积年代框架(图2)为:0~15.77 m(MIS 3时期)、15.77~26.65 m(MIS 4-3时期)、26.65~36.10 m(MIS 5晚期)。

    • 河海交互作用地区的沉积物粒度和磁化率的变化可以指示环境的变化[4-9, 12-15, 44],且以上分析显示07SR01孔沉积物粒度和磁化率对沉积环境变化有较好的响应,故结合北半球晚更新世气候与相对海面变化[34, 45-46]以及该孔年代框架和沉积相的研究认识,可以将MIS 5晚期至MIS 3的江苏中部海岸环境演化划分为以下3个阶段:

      阶段I(36.10~26.65 m,MIS 5晚期):沉积物粒径较粗,粒度组成以砂为主且含量很高,粉砂和黏土含量很低,分选性、偏态和峰态波动大,频率分布曲线呈现极正偏的窄峰和具有“拖细尾”现象,反映出较强的水动力条件和潮流作用[47],磁化率较高且波动明显,与磁性矿物主要富集在粗颗粒组分中有关,进一步指示了MIS 5暖期高海面背景下,较强水动力作用的潮汐河口边滩、河床环境。前人研究结果表明,长江沉积物粒度较粗、磁化率较高且磁性矿物主要富集在粗颗粒物质中[12-13, 19],而该阶段的沉积物粒度和磁化率特征与之相似,并且当时研究区位于古长江河口区[48],故推测该阶段研究区主要受古长江物源的影响。

      阶段II(26.65~15.77 m,MIS 4-3时期):根据沉积物磁化率和粒度的变化特征及沉积相信息,该阶段可再细分为阶段II1(26.65~20.50 m)和阶段II2(20.50~15.77 m)。阶段II1沉积物粒度组成细化,砂的含量急剧降低,粉砂含量急剧升高,黏土含量变化不明显,分选性波动变小,偏态由极正偏变为正偏,峰态变宽;磁化率保持在低水平且变化相当平稳,出现整个钻孔中的最低值,这与沉积环境中粗颗粒输入减少有关,说明该阶段较阶段I所处环境水动力条件有所减弱且趋于稳定,水位和气温出现下降,对应于MIS 4冷干气候和海面下降背景下的淡水湖沼和洪泛平原环境。阶段II2沉积物粒径继续变细,砂的含量继续减少,粉砂含量继续增加,黏土含量明显增加,分选性再次明显波动,正偏为主的双偏态特征反映了水动力条件增强背景下,沉积物组分出现粗细两类的交替沉积,频率分布曲线细粒端拐点明显,可能是沉积动力过程发生变化,受海水影响所致[4, 6]。此外,磁化率虽仍保持在低水平但开始波动,进一步说明阶段II2较阶段II1所处环境水动力条件有所增强,水位和气温有所上升,对应于MIS 4向MIS 3过渡、MIS 3海侵背景下的滨岸沼泽环境。总体而言,阶段II沉积物粒径变细,分选性稍变差但更稳定,偏态以正偏为主,峰态变宽,频率分布曲线表现为向细粒端移动的正偏宽峰,磁化率较低且稳定,均指示了以陆相和滨岸沼泽相为主的低能稳定、氧化和还原性都曾较强的低水位环境,对应冷干转为暖湿的气候条件下、海面先下降后上升的MIS 4-3时期。此外,该阶段曾长期滞水和处于还原环境,在对应层位还发现铁锰结核,这是早期成岩作用的标志之一[49],沉积物在还原条件下发生的早期成岩作用会导致磁性矿物的溶解和相变,并与沉积物有机质含量密切相关,有机质的分解会消耗水体中的溶解氧,形成还原环境,促使含铁矿物发生溶解,降低磁性矿物含量,从而导致磁化率较低[21-23],故推测该阶段磁化率较低可能与早期成岩作用有关。

      阶段III(15.77~0 m,MIS 3时期):相比于上一阶段,该阶段沉积物平均粒径增大,砂的含量迅速增加,粉砂和黏土的含量有所减少,分选性波动明显和变化范围变大,频率分布曲线表现为向粗粒端移动的极正偏窄峰且具有“拖细尾”现象,峰态变窄,磁化率迅速升高、波动频繁且幅度很大,反映了水位上升、河口多种强水动力交互作用的复杂性,在沉积构造上也表现为砂泥互层、特定型式的潮汐韵律层理(图4),对应着MIS 3弱暖期海面波动上升背景下的潮汐河口分流河道环境。此外,相比于同样磁化率高且波动的阶段I,该阶段粗颗粒物质输入减少(砂含量低于阶段I),且磁化率与粗颗粒组分的正相关性变弱,可能说明该阶段沉积物的来源相比于阶段I发生了变化。该时期长江向南迁移,逐渐远离研究区,向北输入物质有限,而黄河经苏北注入南黄海[43, 50],在沿岸流携带黄河物质南下的情况下,研究区受到MIS 3苏北古黄河的物源影响增强[27-28]

      图  4  07SR01孔潮汐河口分流河道相沉积层的典型沉积构造照片

      Figure 4.  Photos of core 07SR01 showing typical sedimentary structures of distributary channel facies in tidal dominated estuary

    • 07SR01孔沉积物粒度和磁化率对沉积环境变化有较好的响应,具有一定的环境指示作用,结合北半球晚更新世气候与海面变化以及该孔年代框架和沉积相的研究认识,可以将MIS 5晚期至MIS 3的江苏中部海岸环境演化划分为以下3个阶段:

      (1)MIS 5晚期较高海面、较强水动力的潮汐河口(边滩、河床)阶段(36.10~26.65 m),该阶段沉积物主要受古长江物源影响,粒度粗,分选性波动大(0.55~2.35),粒度频率分布曲线呈极正偏的窄峰(主峰位于3 Φ附近)且“拖细尾”,磁化率较高、波动小[(5.81~42.16)×10−8 m3·kg−1],并且与砂组分(<4 Φ)呈强正相关。

      (2)MIS 4-3时期冷干转为暖湿、海面先下降后上升和较弱水动力的淡水与滨岸湖沼阶段(26.65~15.77 m),该阶段沉积物细,分选性稳定(1.51~3.03),粒度频率分布曲线呈正偏的宽峰(主峰位于4.75 Φ附近),磁化率低且稳定[(6.46~20.04)×10−8 m3·kg−1],主要与粗粉砂组分(4~5 Φ)呈弱正相关。

      (3)MIS 3时期较高海面、较强水动力的潮汐河口(分流河道)阶段(15.77~0 m),该阶段沉积物受MIS 3苏北古黄河的影响增强,粒度较粗,分选性波动大(0.94~2.82),粒度频率分布曲线呈极正偏的窄峰(主峰位于3.75 Φ附近)且“拖细尾”,磁化率较高、波动大[(10.21~57.25)×10−8 m3·kg−1],并且与砂和粗粉砂组分(<5 Φ)呈弱正相关。

      致谢:南京大学黎刚博士、孙祝友博士和张宁硕士参加过钻孔野外采样和室内实验工作,审稿专家提出了许多富有建设性的修改意见,在此一并表示感谢!

参考文献 (50)

目录

    /

    返回文章
    返回