南海南部浅表层柱状沉积物孔隙水地球化学特征对甲烷渗漏活动的指示

马晓理, 刘丽华, 徐行, 金光荣, 魏雪芹, 翟梦月

马晓理, 刘丽华, 徐行, 金光荣, 魏雪芹, 翟梦月. 南海南部浅表层柱状沉积物孔隙水地球化学特征对甲烷渗漏活动的指示[J]. 海洋地质与第四纪地质, 2021, 41(5): 112-125. DOI: 10.16562/j.cnki.0256-1492.2020123101
引用本文: 马晓理, 刘丽华, 徐行, 金光荣, 魏雪芹, 翟梦月. 南海南部浅表层柱状沉积物孔隙水地球化学特征对甲烷渗漏活动的指示[J]. 海洋地质与第四纪地质, 2021, 41(5): 112-125. DOI: 10.16562/j.cnki.0256-1492.2020123101
MA Xiaoli, LIU Lihua, XU Xing, JIN Guangrong, WEI Xueqin, ZHAI Mengyue. Pore water geochemistry of shallow surface sediments in the southern South China Sea and its implications for methane seepage activities[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 112-125. DOI: 10.16562/j.cnki.0256-1492.2020123101
Citation: MA Xiaoli, LIU Lihua, XU Xing, JIN Guangrong, WEI Xueqin, ZHAI Mengyue. Pore water geochemistry of shallow surface sediments in the southern South China Sea and its implications for methane seepage activities[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 112-125. DOI: 10.16562/j.cnki.0256-1492.2020123101

南海南部浅表层柱状沉积物孔隙水地球化学特征对甲烷渗漏活动的指示

基金项目: 国家自然科学基金项目“南海北部台西南盆地浅层沉积物中自生碳酸盐岩形成动力学模拟研究”(41776071);“广东特支计划”本土创新创业团队项目“南海天然气水合物成藏模式和开采目标区优选”(2019BT02L278-01);2019年省级促进经济发展专项资金项目“水合物开采安全评价预测技术研究”(GDOE[2019]A41);广东省海洋科技协同创新中心项目(20180207)
详细信息
    作者简介:

    马晓理(1995—),女,硕士研究生,海洋地质专业,E-mail:maxl159@163.com

    通讯作者:

    刘丽华(1968—),女,研究员,从事海洋地质及地球化学研究,E-mail:liulh@ms.giec.ac.cn

  • 中图分类号: P736.4

Pore water geochemistry of shallow surface sediments in the southern South China Sea and its implications for methane seepage activities

  • 摘要: 海底沉积物孔隙水地球化学特征能快速响应甲烷渗漏活动及其生物地球化学过程,从而记录甲烷渗漏活动特征。对采自南海南部北康盆地的3个重力沉积柱状沉积物孔隙水样品(BH-H75、BH-H13Y和BH-H61)进行了甲烷浓度、溶解无机碳(DIC)和碳同位素(δ13CDIC)、阴离子(SO42−、Cl)以及主微量元素(Ca2+、Mg2+、Sr2+、Ba2+)等地球化学分析。(△DIC+△Ca2++△Mg2+)/△SO42−比率图解与δ13CDIC深度剖面特征揭示了有机质硫酸盐还原反应(OSR)和硫酸盐驱动-甲烷厌氧氧化反应(SD-AOM)在不同沉积柱中所占比例的不同,其中BH-H13Y沉积柱中OSR和SD-AOM共同存在;BH-H75沉积柱中OSR占主导;在BH-H61沉积柱中SD-AOM占主导,且其底部可能存在微生物产甲烷作用。硫酸盐浓度线性拟合关系指示BH-H13Y的硫酸盐-甲烷过渡带(SMTZ)的深度约为700 cmbsf。结合SO42−浓度、DIC浓度最大值和δ13CDIC最小值推测BH-H61的SMTZ深度约为480 cmbsf。BH-H61和BH-H13Y沉积柱中,较浅的SMTZ深度、上升的DIC浓度以及强烈负偏的δ13CDIC值指示研究区存在甲烷渗漏活动。此外,在BH-H61和BH-H13Y站位,硫酸盐浓度随深度降低的变化梯度在沉积柱下部较上部陡,指示向上迁移的甲烷通量在时间上逐渐增强。孔隙水中Ca2+、Mg2+、Sr2+浓度以及Mg/Ca、Sr/Ca比值变化特征指示研究区沉积物中可能有自生高镁方解石矿物生成;而BH-H61站位SMTZ界面以下,孔隙水中Ba2+浓度升高,指示了硫酸钡的溶解作用。
    Abstract: The geochemical characteristics of pore water in seabed sediments may quickly respond to the changes in the methane seepage and related biogeochemical processes. In this paper, methane, DIC and its carbon isotope value (δ13CDIC), anions (SO42−, Cl), major and trace elements (Ca2+, Mg2+, Sr2+, Ba2+) are analyzed for the pore water samples (BH-H75, BH-H13Y and BH-H61) collected from the Beikang Basin in the southern SCS. The (△DIC+△Ca2++△Mg2+)/△SO42− ratios and δ13CDIC show that organoclastic sulfate reduction (OSR) and sulfate-driven anaerobic oxidation of methane (SD-AOM) vary from different columns. For the column of BH-H13Y, OSR and SD-AOM occur together. However, OSR is dominant in column BH-H75, while SD-AOM dominates the BH-H61 column. There may be microbial methanogenesis at the deeper layer in the BH-H61 column. Based on the linear fitting sulfate concentrations, the sulfate-methane transition zone (SMTZ) of BH-H13Y is estimated to be about 700 cmbsf. According to SO42− concentrations, the maximum DIC concentration and the minimum δ13CDIC value, the SMTZ depth of BH-H61 is estimated at about 480 cmbsf. Sallower SMTZ depths, increasing DIC concentrations and highly negative δ13CDIC values recorded in BH-H61 and BH-H13Y columns suggest a remarkable methane seepage in the study aera. The gradients for sulfate concentrations of lower part of BH-H61 and BH-H13Y columns are steeper than that of the upper part, indicating that the methane flux upward migration increases with time. Features of Ca2+, Mg2+ and Sr2+ concentrations and Mg/Ca and Sr/Ca ratios in pore water indicate the possibility of the formation of high-Mg calcite. Below the SMTZ interface at BH-H61 column, Ba2+ concentrations increase with depth, indicating the barium sulfate dissolution occurs.
  • 随着大气中CO2浓度不断攀升,全球平均温度较1850—1900年间已升高近1.5℃,由此导致了极端气候频发、粮食产量减少、海平面上升等问题[1]。为了应对此类现象,全球各国陆续公布了碳中和目标。CO2捕集、利用和封存技术(Carbon Capture, Utilization and Storage简称CCUS),被认为是实现减排目标的关键技术[2-3]。其中,地质封存是实现CO2永久封存最有效的方式[4]。地质封存的主要场所是海底深部的咸水层或枯竭的油气藏,其中深部咸水层因其巨大的封存潜力以及不具备其他经济价值而被视为最理想的CO2地质封存场所[5-6],据统计,咸水层CO2封存潜力占总封存潜力的98%以上[4]。国外目前正在运行的比较成功的咸水层封存项目包括挪威北海的Sleipner项目、Snøhvit项目,加拿大的Gorgon项目等,其中Sleipner作为世界首个海上咸水层CO2封存示范项目,以运行时间长、封存量大的特点著称,并部署了各种封存监测手段。自1996年起开始注入,至今已封存超过2400万吨CO2,是研究CO2咸水层封存的示范案例[7-8]。在国内,鄂尔多斯盆地的神华咸水层封存项目正在持续运行,中国海油建设的中国首个海上咸水层CO2封存项目恩平15-1油田也已正式开始CO2注入,但目前这些项目仍未部署CO2监测。

    针对CO2注入后的运移和泄露状况的动态监测问题[9],地球物理被认为是一种有效的监测手段,用于确认地质封存的安全性、可靠性[10]。其中,与重力、测井、微地震等其他方法相比,四维地震在监测CO2体积和波及范围方面具有独特优势,经过先进方法[11-12]处理后能够提供随时间变化的地下动态[13]、高分辨率成像[14]。Huang等[15]对德国的咸水层CO2封存项目通过四维地震的振幅差异监测注入的CO2波及范围的变化,Chadwick和Noy[16]对Sleipner四维地震数据定性解释来匹配CO2羽流迁移的历史,Roach和White[17]使用了类似的方法来描述加拿大的Aquistore封存点的CO2羽流迁移,Fawad[18]为提高监测准确性利用四维地震和电磁测量相结合的方法来描绘CO2羽流。

    为了建立CO2在海底咸水层封存过程中四维地震属性对CO2饱和度变化的定量描述关系,提高监测CO2封存波及范围的准确性。本研究结合Sleipner咸水层CO2封存项目所采集的四维地震监测资料和测井资料,通过Gassmann流体替换方程和Xu-White模型建立不同CO2饱和度下的速度模型,应用井控地震属性分析技术研究CO2咸水层封存过程中CO2-盐水两相介质变化引起的各向异性地震响应特征,提取并分析对CO2饱和度变化敏感的地震属性。同时,对Sleipner采集的7次时延地震数据进行解释,提取沿层地震属性,监测CO2封存波及范围的时空变化。

    Sleipner是Equinor(原挪威国家石油公司)运营的一个重要天然气田,位于挪威北海。Sleipner CCS项目是其商业化的CCS站点,项目将Sleipner East气田的天然气生产过程中所产生的CO2压缩并通过约2.3 km的斜井注入高孔隙度Utsira咸水层,以防止CO2释放到大气中[19-21]图1)。自1996年9月15日开始,Sleipner平台通过注入15/9-A-16井开始注入CO2,注入点位于海平面以下1012 m的咸水层Utsira底部,距离储层顶部约200 m,注入射孔长度为38 m[8]。为了达到所需的井口压力,CO2需要先经过4个压缩阶段,在注入井井口CO2处于气液两相流动的相变阶段。最初几年的年注入率约为0.9 Mt,计划注入200年[22]。由于Sleipner East气田的天然气流量减少,后期略有下降,截至2010年,累计注入量和注入速度统计见图2

    图  1  Sleipner项目CO2封存点及Utsira地层注入示意图[21]
    Figure  1.  Schematic representation of the Sleipner project CO2 storage site and injection in the Utsira Formation[21]
    图  2  CO2日均注入体积及累计注入量
    Figure  2.  CO2 Average daily injection volume and cumulative injection

    迄今为止,Sleipner共进行了10次三维地震调查和4次重力调查,通过这些调查,深入研究了储层中CO2的运移行为。当CO2进入储层时,通常处于超临界状态,与初始的咸水层形成了强烈的声速对比,为地震监测提供了有利条件。Sleipner的地震监测分别于1994年(Base line)、1999年、2001年、2002年、2004年、2006年、2008年、2010年、2013年和2016年进行了重复三维拖曳地震勘测,其中1994年的地震监测获得了注入CO2之前的基线三维地震数据[23-24]

    Sleipner CO2封存地点位于Utsira砂层[25],这是一个深度约800~1100 m、厚度约200~300 m、面积约26000 km2的咸水层,南北长400多千米、东西长50~100 km[26],主要由中新世晚期至上新世早期的砂质单元和部分泥质储层组成[27]图3)。

    图  3  Utsira储层区域剖面[27]
    Figure  3.  WSW-ENE orientation of the Utsira reservoir regional profile [27]

    通过伽玛测井曲线以及强地震反射(图4)可以有效地识别Utsira储层中的砂泥岩。声速和密度分别在地层单元顶部和底部急剧下降和增加,构成了明显的阻抗差异,并引起强烈的清晰可识别的地震反射,根据15/9-13的测井曲线,对砂泥岩进行速度分析(图5),结果显示随着泥质含量的提高,声波速度整体呈上升的趋势,泥岩的速度整体要大于砂岩的速度。

    图  4  15/9-13井GR测井曲线图(a)及2010年Inline 187地震剖面(b)
    数据来自https://CO2datashare.org。
    Figure  4.  Well 15/9-13 GR logging profile (a), and the Inline 187 seismic profile in 2010 (b)
    Data from https://CO2datashare.org.
    图  5  15/9-13井砂泥岩速度分析图
    Figure  5.  Velocity analysis of Well 15/9-13 sand mudstone

    根据测井曲线和三维地震资料,将目标地层分为9个主要的砂层(图4),Utsira储层之上的Nordland页岩层厚度约200~300 m,构成主要的盖层,从测井曲线可以看出,在8层和9层之间还有一层比较厚、横向分布比较广泛的泥岩,厚度约为5 m(图4a)。储层中的薄泥岩层平均厚度为1~1.5 m,构成了储层砂层内重要的渗透性屏障,并对CO2在储层内的运移和圈闭产生影响。储层单元的含砂量一般为0.7~1.0,15/9-A-16井获得的不同深度Utsira储层岩芯样品的主要岩石和碎屑成分分析结果见表1

    表  1  15/9-A-16井不同深度岩芯样本主要岩石和碎屑成分百分比
    Table  1.  Percentage of major rock and debris compositions in core samples from Wells 15/9-16 at different depths
    碎屑含量/%
    850~860 m 890~900 m 10001010 m
    石英 50.7 66.7 76.7
    长石 7.3 3.7 2.7
    方解石 18 17 7.7
    页岩 4.3 1 4.7
    下载: 导出CSV 
    | 显示表格

    根据挪威国家石油公司数据,Sleipner地区在1038 m附近的地下温度测量值为37℃。地下温度梯度为33℃/km,因此,Sleipner地区Utsira储层的温度范围为储层顶部的28℃到储层底部的41℃[27],具体温度、压力以及CO2密度关系如图6所示。

    图  6  温度、压力、CO2密度随深度的变化曲线[27]
    Figure  6.  Variation curves of temperature, pressure, and CO2 density with depth[27]

    根据表1矿物成分以及Sleipner地区的实际地质条件、储层温度和压力状况得到岩石基质矿物成分和储层内流体的相关模量和密度。其中在储层条件下,盐水的体积模量为2.3 GPa[28],在储层温度和压力下,盐水的密度假设为1.03 g/cm3[29]。大部分CO2以超临界状态封存,考虑初始孔隙压力为8 MPa[30],储层温度范围为28℃(Utsira上部地层)至41℃(注入点附近),选择CO2参考密度为700 kg/m3[31]。CO2的体积模量变化范围为0.02~0.075 GPa[32],根据现场压力和温度条件,选择使用0.075 GPa的CO2体积模量[31],具体参量统计见表2

    表  2  储层中矿物成分和流体的弹性模量及密度
    Table  2.  Elastic modulus and density of mineral components and fluids in reservoirs
    体积模量/GPa 剪切模量/GPa 密度/(g/cm3)
    石英 37.00 44.00 2.65
    长石 37.50 15.00 2.70
    方解石 76.80 32.00 2.71
    盐水 2.30 0 1.03
    CO2 0.075 0 0.70
    下载: 导出CSV 
    | 显示表格

    Utsira储层主要是高孔隙度砂岩,通过岩芯样品的液体侵入测量和密度测井得出的孔隙度值范围为36.0%~40.1%,平均38.0%[27]。从15/9-A-16井的中子孔隙度测井曲线得到孔隙度为35%~39%,平均37%。Williams[33]对渗透率和电缆测井数据的重新评估认为东西方向渗透率约为1.975 μm2,南北方向渗透率高于东西方向,约为7.896 μm2

    从地震剖面可以看出,CO2通过几个相对高渗透性“烟囱”垂直向上运移,穿过储层及其地层内的泥岩[21]图7)。“烟囱1”和“烟囱3”对应于地层中微妙的不连续面,位于或接近储层顶部(图7a)。“烟囱1”在重复测量中特别突出(图7b),并且可以作为一个独特的垂直圆形反射,半径约为30 m,它被解释为CO2通过羽流向上运移的主要垂直管道[34]

    图  7  四维地震剖面对比显示3个可能的CO2羽流烟囱
    a:1994年基准地震剖面,b:2010年时移地震剖面。
    Figure  7.  Comparison of 4D seismic profiles showing three possible CO2 plume chimneys
    a: The 1994 reference seismic profile, b: 2010 time-shifted seismic profile.

    为了研究CO2封存过程中随CO2饱和度变化的四维地震响应特征,需通过测井数据建立不同CO2饱和度的正演模型,具体包括以下3个方面的内容:① 采用流体替换方法预测不同CO2饱和度条件下的纵波和横波速度;② 基于流体替换前后的速度和密度曲线构建水平层状模型,正演模拟得到自激自收地震记录;③ 通过对不同CO2饱和度下的地震记录提取相应的地震属性,分析对于CO2饱和度变化敏感的属性以用于地震资料解释和CO2波及范围监测。

    在进行CO2封存的过程中,CO2注入导致储层内原有流体被置换,同时岩石框架和饱和岩石体积模量等岩石物理参数发生改变[35]。通过分析CO2注入期间地震资料的变化,能够监测到不同阶段CO2分布状况。因此需要建立CO2饱和度与地震速度之间的关系,即对注入CO2后的地震速度进行估算。

    Sleipner咸水层CO2封存项目的储层为砂泥岩互层,因此本文采用Xu-White模型[36]求取纵横波速度。该模型是在Gassmann流体替换方程的基础之上,综合考虑了黏土影响和孔隙纵横比,结合Kuster-Toksoz模型[37]和差分有效介质(DEM)理论,提出的一种依据孔隙度和泥质含量来估算泥质砂岩纵波与横波速度的方法。其中纵横波速度计算公式如下:

    $$ \begin{array}{c}{V}_{\mathrm{P}}=\sqrt{\frac{{K}_{\mathrm{s}\mathrm{a}\mathrm{t}}+\dfrac{4}{3}{\mu }_{\mathrm{s}\mathrm{a}\mathrm{t}}}{\rho }}\end{array} $$ (1)
    $$ {V}_{\mathrm{S}}=\sqrt{\frac{{\mu }_{\mathrm{s}\mathrm{a}\mathrm{t}}}{\rho }} $$ (2)

    式(1)、(2)中,VS为横波速度,VP为纵波速度,Ksat为饱和岩石的体积模量,μsat为饱和岩石的剪切模量,ρ为饱和岩石密度。

    Xu-White速度模型的公式如下:

    $$ \phi ={\phi }_{\mathrm{s}}+{\phi }_{\mathrm{c}} $$ (3)
    $$ {\phi }_{\mathrm{s}}={f}_{\mathrm{s}}\frac{\phi }{1-\phi } $$ (4)
    $$ {\phi }_{\mathrm{c}}={f}_{\mathrm{c}}\frac{\phi }{1-\phi } $$ (5)
    $$\begin{split} K_{\mathrm{d}\mathrm{r}\mathrm{y}}-K_{\mathrm{m}\mathrm{a}}=\;&\frac{1}{3}\left(K_{\mathrm{f}}-K_{\mathrm{m}\mathrm{a}}\right)\frac{3K_{\mathrm{d}\mathrm{r}\mathrm{y}}+4K_{\mathrm{m}\mathrm{a}}}{3K_{\mathrm{m}\mathrm{a}}+4\mu_{\mathrm{m}\mathrm{a}}}\times\\&\sum_{l=s,c}^{ }\phi_lT_{iijj}\left(\alpha_l\right) \end{split}$$ (6)
    $$ \begin{split} & \mu_{\mathrm{d}\mathrm{r}\mathrm{y}}-\mu_{\mathrm{m}\mathrm{a}}=\frac{\mu_{\mathrm{f}}-\mu_{\mathrm{m}\mathrm{a}}}{5}\times \\ &\quad\frac{6\mu_{\mathrm{d}\mathrm{r}\mathrm{y}}\left(K_{\mathrm{m}\mathrm{a}}+2\mu_{\mathrm{m}\mathrm{a}}\right)+\mu_{\mathrm{m}\mathrm{a}}\left(9K_{\mathrm{m}\mathrm{a}}+8\mu_{\mathrm{m}\mathrm{a}}\right)}{5\mu_{\mathrm{m}\mathrm{a}}\left(3K_{\mathrm{m}\mathrm{a}}+4\mu_{\mathrm{m}\mathrm{a}}\right)} \times\\ &\quad\sum_{l=s,c}^{ }\phi_lF\left(\mathrm{\alpha}_l\right) \end{split} $$ (7)
    $$ F\left(\mathrm{\alpha }\right)={T}_{ijij}\left(\mathrm{\alpha }\right)-\frac{{T}_{iijj}\left(\mathrm{\alpha }\right)}{3} $$ (8)

    式中,ϕ为总孔隙度;ϕs为砂岩孔隙度;ϕc为泥岩孔隙度;fs为砂的体积分数;fc为黏土的体积分数;KdryKmaKf分别为干岩石体积模量、组成岩石的固体矿物基质的体积模量以及孔隙流体体积模量。μdryμmaμf分别为对应的剪切模量。F(α)、Tijij(α)为关于孔隙纵横比α的函数。公式(6)和(7)为Kuster-Toksoz方程。

    Xu-White模型将岩石视为砂质和泥质的复合体。其假定岩石骨架的泊松比大致为恒定值,强调了孔隙形态对地震波速的显著影响。通过引入孔隙的纵横比以刻画孔隙的几何特性,并将其与孔隙率、岩石基质的剪切及体积模量相结合,从而推导出干岩石体积模量Kdry与剪切模量μdry的简化表达式:

    $$ \begin{array}{c}{K}_{\mathrm{d}\mathrm{r}\mathrm{y}}={K}_{\mathrm{m}\mathrm{a}}(1-\phi {)}^{p}\end{array} $$ (9)
    $$ {\mu }_{\mathrm{d}\mathrm{r}\mathrm{y}}={\mu }_{\mathrm{m}\mathrm{a}}(1-\phi {)}^{q} $$ (10)

    式中,参数$ p $与$ q $的表达式分别为:

    $$ p=\frac{1}{3}\mathop\sum\nolimits _{l=\mathrm{1,2}}{f}_{l}{T}_{ij}\left({\mathrm{\alpha }}_{l}\right) $$ (11)
    $$ q=\frac{1}{5}\mathop\sum\nolimits _{l=\mathrm{1,2}} {f}_{l}{F}_{ij}\left({\mathrm{\alpha }}_{l}\right) $$ (12)

    同时,引入了Voigt-Reuss-Hill(VRH)[38-39]平均理论计算岩石基质模量,公式如下:

    $$ {M}_{\mathrm{V}\mathrm{R}\mathrm{H}}=\frac{{M}_{\mathrm{\nu }}+{M}_{\mathrm{R}}}{2} $$ (13)

    式中,MVRH为岩石基质的弹性模量;Mν为Voigt有效弹性模量;MR为Reuss等效弹性模量。

    引入Brie[40]经验模型计算不同CO2饱和度下的混合流体模量,公式为:

    $$ {K}_{\mathrm{f}}=\left({K}_{\mathrm{w}}-{K}_{\mathrm{g}}\right)\cdot {S}_{\mathrm{w}}^{e}+{K}_{\mathrm{g}} $$ (14)

    式中,Kf为混合流体的体积模量,Kw为液相体积模量,Kg为气相体积模量,Sw为液相饱和度,e为经验指数因子。

    基于上述模型编程计算得到储层在不同CO2饱和度状态下的速度曲线,图8分别对比了从0开始注入CO2,在储层CO2饱和度为0、20%、40%、60%、80%时的流体替换反射纵横波速度曲线。可以看出,随着储层CO2饱和度的提高,纵横波速度均持续下降,这是由于随CO2饱和度的增加,Xu-White模型计算得到的岩石体积模量Ksat和剪切模量μsat均减小,因此流体替换得到的速度减小。

    图  8  不同CO2饱和度的纵波(a)及横波(b)速度曲线对比
    Figure  8.  Comparison of primary wave velocity profiles (a) and shear wave velocity profiles (b) for different CO2 saturations

    图9对比了不同饱和度下的均方根速度,可以看出,随着CO2饱和度的升高,纵横波均方根均下降,注入CO2后到CO2饱和度为60%之前,横波速度下降幅度略小于纵波速度下降幅度,并且幅度随饱和度增加而减小,当CO2饱和度大于60%之后,横波速度减小的幅度将超过纵波速度。

    图  9  随CO2饱和度升高纵横波均方根速度变化趋势
    Figure  9.  Trend of root-mean-square velocity of longitudinal and transverse waves with increasing CO2 saturation

    基于不同CO2饱和度替换得到的速度和密度曲线建立水平层状模型。对其进行自激自收的地震正演模拟得到储层CO2饱和度分别为0、20%、40%、60%、80%的地震记录,如图10所示。对比发现,振幅变化最为明显,随CO2饱和度的增加,盖层振幅保持不变,储层振幅提高。在储盖层交界处,相位发生变化。

    图  10  不同CO2饱和度的地震记录
    Figure  10.  Seismic profiles with different CO2 saturations

    在不同饱和度的地震记录中沿剖面提取振幅、频率、相位、吸收衰减地震属性。

    (1) 均方根振幅属性

    其中均方根(RMS)振幅属性是计算振幅平方和的平方根,并将其除以特定时间窗内的样本数量。使用RMS振幅属性是为了突出显示异常的高振幅,包括负值和正值。RMS振幅属性是一个很好的声学对比指标,可以指示岩性和油气的变化[41-42],计算公式如下:

    $$ {A}_{\mathrm{R}\mathrm{M}\mathrm{S}}=\sqrt{\frac{1}{\mathrm{N}}\mathop\sum\nolimits _{i=1}^{\mathrm{N}} {a}_{i}^{2}} $$ (15)

    式中,N为采样点总数,ai为各采样点振幅值。

    图11a对比了不同CO2饱和度的均方根振幅属性,随着饱和度的增加,盖层均方根振幅值不变,储层均方根振幅值变大。通过将不同饱和度的均方根振幅属性做差(图11b)可以看出,开始注入时,振幅变化最明显,随着CO2饱和度增加,振幅增大的幅度减弱,饱和度越大振幅变化越不明显,但仍能看出变化趋势。

    图  11  不同CO2饱和度均方根振幅属性(a)及均方根振幅属性差(b)
    Figure  11.  RMS amplitude attributes (a) and difference in RMS amplitude attributes (b) for different CO2 saturations

    (2) 瞬时频率属性

    瞬时频率作为相位随时间变化率的量度,能够反映地层的岩性变化。受地层影响,其变化幅度较大,如当地震波穿过某些特殊的储层时,高频成分将会显著衰减,其中含油气储层经常引起高频衰减[41]。因此瞬时频率属性可反映地震波衰减特征,以此估计地层的周期性,其计算公式如下:

    $$ \omega \left(t\right)=\frac{\mathrm{d}\phi \left(t\right)}{\mathrm{d}t}$$ (16)

    图12a为不同CO2饱和度的瞬时频率属性,当注入CO2之后,储盖层的分界面处以及上下两侧频率发生变化,将不同饱和度的瞬时频率属性做差(图12b)可以发现,在储盖层交界处瞬时频率升高,在上下两侧瞬时频率降低,但随着CO2饱和度的增大,瞬时频率属性的变化敏感性减弱。饱和度60%以上,频率变化几乎为0。

    图  12  不同CO2饱和度瞬时频率属性(a)及瞬时频率属性差(b)
    Figure  12.  Instantaneous frequency attributes (a) and difference in instantaneous frequency attributes (a) for different CO2 saturations

    (3) 瞬时相位属性

    瞬时相位属性一般是用来反映同相轴的连续性,不考虑振幅强度,地震波穿越不同的地层会引起地震波的相位变化,因此通常是用来识别断层、尖灭点、河道等[43],计算公式如下:

    $$ \phi \left(t\right)={\mathrm{tan}}^{-1}\left[\frac{g\left(t\right)}{f\left(t\right)}\right] $$ (17)

    图13a对比了不同饱和度的相位属性,CO2注入前后几乎看不出变化。将不同饱和度的瞬时相位属性做差可以发现(图13b),当开始注入CO2时,在储层和盖层交界处出现相位变化,当CO2饱和度增大到40%以上时,瞬时相位属性基本未发生改变。

    图  13  不同CO2饱和度瞬时相位属性(a)及 瞬时相位属性差(b)
    Figure  13.  Instantaneous phase attributes (a) and the difference in instantaneous phase attributes (b) for different CO2 saturations

    (4) 瞬时Q值属性

    瞬时Q值属性也叫做瞬时品质因子,是一种吸收衰减属性,可通过低频振幅与高频振幅的比值得到。其主要用于描述地震波在介质中传播时的衰减特性。瞬时Q值越大,说明低频能量与高频能量的比值越大,高频的衰减越剧烈。流体饱和度的变化会影响介质的衰减特性,因此可以用来评估地层中的流体饱和度。

    图14a为不同饱和度CO2的瞬时Q值属性图。当CO2注入后,在储盖层交界处周围发生了较明显的衰减变化。将不同饱和度的瞬时Q值属性做差可以发现(图14b),注入CO2后,在储层周围出现正负相间的衰减变化,随CO2饱和度增长,衰减变化值变小,但仍具有敏感性。

    图  14  不同CO2饱和度瞬时Q值属性(a)及瞬时相位属性差(b)
    Figure  14.  Instantaneous Q attributes (a) and the difference in instantaneous phase attributes (b) for different CO2 saturations

    为了研究CO2羽流在平面以及垂向上的发育情况,沿着泥岩层反射分别解释了上(层9)、中(层5)、下(层1)3个层位(图15),网格间距为16×16,解释结果如图16所示。根据正演结果选择均方根振幅属性来描述CO2波及范围。沿解释层位,创建时窗并提取均方根振幅属性。图17显示,以中间层第5层1999年、2006年、2010年3次时延地震资料为例,图中绿色和黄色为振幅高值,蓝和紫色为振幅低值,通过同一层位几次不同时间的属性图对比可以明显看出整体CO2波及范围随着时间增长,此外,随CO2饱和度增加,均方根振幅值升高。周围储层的均方根振幅值为0.1左右,CO2饱和度最高值处振幅在2左右,CO2羽流波及前缘处振幅值大于0.5,对波及范围边界的识别效果较好,同时与地震正演结果相符。通过均方根振幅属性开展不同层位、不同时间的CO2波及范围对比,分上(第1)、中(第5)、下(第9层)3个层位提取2010—1999年6次四维地震数据的均方根振幅属性(图18),对比不同时间,上、中、下三层平面上CO2羽流的纵向扩散速度均大于横向扩散速度,整体均呈SSW-NNE方向展布。

    图  15  解释层位Xline 1164
    Figure  15.  Interpreting the Layer Xline 1164
    图  16  构造解释结果
    Figure  16.  Results of tectonic interpretation
    图  17  Sleipner咸水层封存第5层四维地震均方根振幅属性
    Figure  17.  4-D seismic RMS amplitude attributes for Layer 5 of the Sleipner saline aquifer storage
    图  18  挪威Sleipner咸水层封存项目CO2平面波及范围四维地震属性预测结果
    Figure  18.  Predicted 4D seismic attributes of CO2 planar spread range for the Sleipner saline aquifer storage project in Norway

    图18显示了位于注入点上方的第1层平面上的CO2波及范围,通过其随时间的变化可以看出,开始注入时CO2呈一个高饱和度的团状羽流,随着时间的推移,CO2持续注入,CO2在平面上不断扩散,并在2004年达到最大横向饱和度,这时储层中注入的CO2量为6.9 Mt,随后沿纵向继续扩散,整体纵向扩散大于横向,随CO2羽流扩散,中心的饱和度不断减小,表明CO2正在不断向上层砂岩运移。

    图18展示了中部第5层的CO2波及范围变化情况,在2008年时第5层达到了最大横向扩散,此时储层中注入的CO2量为10.2 Mt,在2010年注入12 Mt后整体饱和度达到最大,中心振幅小于两端,表明CO2在波及范围两端的构造高点处形成高饱和度积聚,中心通过高渗透率“烟囱”持续向上运移。对比发现,1999年时第1层和第5层的CO2波及范围大小相近,随后CO2波及范围在第5层的增长速度大于第1层的增长速度,最终的CO2波及范围第1层也大于第5层。

    图18同时显示了储层最顶部砂岩层第9层CO2波及范围变化情况,可以看出1999年已经有CO2羽流到达最顶层,这进一步证明了存在CO2高渗透率“烟囱”。2010年CO2波及范围达到最大,除主体羽流发育以外,CO2沿着右侧一条通道向北快速运移,到达一个构造高点后积聚,继续向不同的方向扩散,整体上东侧振幅高于西测,通道处振幅值最高,CO2到达第9层后,先是平面扩散,随后沿通道运移,并在通道中聚集使饱和度提高。第9层整体上CO2波及范围小于第5层而大于第1层。

    本文基于Sleipner咸水层CO2封存项目的测井资料、四维地震资料,开展了针对CO2海底咸水层封存的流体替换和地震正演模拟,以及CO2波及范围地震监测,得到如下认识:

    (1)均方根振幅属性对CO2饱和度变化最为敏感。随CO2饱和度的增加,饱和岩石的体积模量、体积密度、纵波速度和横波速度均有所下降。相反,地震记录中总体振幅升高,且随着CO2注入量的增加,振幅变化幅度减小。

    (2)利用均方根振幅属性对Sleipner海底咸水层CO2波及范围进行描述,在注入期间,CO2在层内主要沿SSW-NNE方向运移,并在构造高部位聚集。垂向上,CO2从注入点向上层运移,下层达到最大波及范围的时间早于上层。结合构造解释结果和储层物性发现,CO2在储层内的波及范围主要受各项异性渗透率和构造高低控制。由于井15/9-A-16缺少实测速度值,本文在速度预测中使用的是固定的孔隙纵横比的Xu-White模型,在今后的研究中,可以采用由实测速度进行矫正的岩石物理模型,提高速度预测精度。CO2在咸水层封存过程中会改变储层的孔隙度等储层参数,在今后岩石物理建模过程中,可以将CO2对储层孔渗条件的影响考虑在内,建立动态岩石物理模型。

  • 图  1   南海南部南沙海域北康盆地位置图[46]

    Figure  1.   Location of the Beikang basin in Nansha sea area of the southern South China Sea [46]

    图  2   研究区BH-H75、BH-H13Y、BH-H61站位沉积物孔隙水中阴离子组分、CH4、DIC及其δ13CDIC的深度剖面图

    Figure  2.   Depth profile of anion components, methane, DIC and δ13CDIC values in sediment pore water of BH-H75, BH-H13Y and BH-H61 sites

    图  3   研究区BH-H75、BH-H13Y和BH-H61沉积物孔隙水中部分碱土金属元素浓度(Ca2+、Mg2+、Sr2+、Ba2+)、Sr/Ca与Mg/Ca比值深度剖面图

    Figure  3.   Depth profiles of partial alkaline-earth metal elements (Ca2+, Mg2+, Sr2+, Ba2+) and Sr/Ca and Mg/Ca ratios of sediment pore water in BH-H75, BH-H13Y and BH-H61 sites

    图  4   孔隙水中硫酸盐的消耗量与DIC的产生量(Ca2+、Mg2+离子校正后)的相关关系图

    图中2∶1、1∶1的实线分别代表OSR和SD-AOM的贡献为100%,在这两个实线内,表示这两个过程均发生。其中1.5∶1实线表示OSR和AOM各占50%;1.25∶1和1.1∶1虚线表示SD-AOM的贡献分别占75%和90%,OSR仅占25%和10%。

    Figure  4.   Relationship between the consumption of sulfate and the production of DIC (After correction by Ca2+ and Mg2+ ions)

    The solid lines of 2∶1 and 1∶1 in the figure represent the 100% contribution of OSR and SD-AOM respectively. Within these two solid lines, It indicates both processes occur. The 1.5∶1 solid line indicates OSR and AOM account for 50% respectively;The dashed lines of 1.25∶1 and 1.1∶1 indicate the contribution of SD-AOM accounts for 75% and 90%, while OSR accounts for only 25% and 10%.

    图  5   BH-H13Y、BH-H61的硫酸盐浓度深度剖面图和SMTZ深度与甲烷通量

    Figure  5.   Depth profiles of sulfate concentrations, the depth of SMTZ and the methane flux in BH-H13Y and BH-H61 sites

    图  6   研究区孔隙水中Mg/Ca- Sr/Ca

    图中两条实线表示当孔隙水中形成文石或者髙镁方解石时,孔隙水相对于海水Mg/Ca和Sr/Ca的变化关系,灰色菱形为前人的数据[62],绿色菱形代表研究区3个沉积柱的数据。

    Figure  6.   The weight ratio of Mg/Ca vs. Sr/Ca in sediment pore water of the study area

    Two solid lines indicate the change relationship of pore water Mg/Ca and Sr/Ca with respect to that of seawater, when aragonite or high Mg-calcite is formed in sedimentary pore water. Grey diamonds in the figure are the previous data[62]. Green diamonds represent the data of the three sedimentary columns of the study area.

    表  1   南海南部北康盆地海域采集的3个沉积柱信息

    Table  1   Information of three sedimentary columns collected from the Beikang Basin in the southern SCS

    站位北纬东经水深/m岩心长度/cm海底温度/℃校准地温梯度/(K/km)
    BH-H756.8482°112.8052°1 6633972.82688.9
    BH-H13Y6.7107°111.4839°1 8674002.6187.2
    BH-H616.4809°111.7519°1 9385182.58536.1
    下载: 导出CSV

    表  2   BH-H75、BH-H13Y和BH-H61站位沉积物孔隙水中甲烷浓度、阴离子(SO42−、Cl)、主微量元素(Na+、K+、Ca2+、Mg2+、Sr2+、Ba2+)、DIC和δ13CDIC、Sr/Ca与Mg/Ca比值特征

    Table  2   Features of methane concentration, anions (SO42−、Cl), major trace elements (Na+、K+、Ca2+、Mg2+、Sr2+、Ba2+), DIC and δ13CDIC, Sr/Ca and Mg/Ca ratios of sediment pore water in BH-H75, BH-H13Y and BH-H61 sites

    站位取样深度/
    cmbsf
    CH4/
    mM
    SO42−/
    mM
    Cl/
    mM
    Na+/
    mM
    K+/
    mM
    Mg2+/
    mM
    Ca2+/
    mM
    Sr2+/
    μM
    Ba2+/
    μM
    DIC/
    mM
    δ13CDIC/
    Mg/CaSr/Ca
    BH-H75200.17626.99540.4443.312.4248.549.09110.020.7632.347−7.233.2380.0265
    400.20026.80531.5442.7512.4748.419.17112.070.5172.217−6.263.2020.0267
    600.17925.87529.6444.5712.6948.499.28107.030.5272.282−6.653.1670.0252
    800.16125.94534.5444.8112.8548.389.24109.980.4762.455−7.963.1740.0260
    1000.17226.22541.9445.5312.8948.368.89108.240.4732.593−6.733.2990.0266
    1200.16225.19536.1442.1911.6948.089.03140.370.6043.449−10.643.2280.0340
    1400.17024.81532.3443.8712.1748.139.18111.290.4673.309−9.443.1810.0265
    1600.24824.78541.5444.4412.348.249.01107.270.4533.657−10.323.2480.0260
    1800.18225.10554.8441.6612.0447.819.05105.170.4773.780−10.523.2030.0254
    2000.20424.21541.9446.0612.2848.39.16107.660.4624.059−10.903.1990.0257
    2200.20323.83543.1442.0912.0147.748.71105.590.5544.267−10.583.3250.0265
    2400.19423.06533.2443.1612.1847.69.24104.660.5224.072−10.753.1250.0248
    2600.25122.75536.6443.312.0647.598.53105.720.5194.355−11.653.3830.0271
    2800.20022.01531.7436.1312.0746.528.57102.990.6344.786−10.853.2920.0263
    3000.23121.81539.2441.4212.0446.98.42105.080.5725.251−12.303.3790.0273
    3200.24121.09541.7437.6611.8546.27.98102.240.5595.678−12.773.5100.0280
    3400.23020.21539.2446.3212.1946.868.11102.580.5915.856−12.633.5020.0276
    3600.25919.18537.5443.8612.0846.499.69102.430.5926.364−13.602.9110.0231
    3800.22718.50540.9448.8312.2946.617.9101.950.6317.210−13.783.5780.0282
    4000.25517.49535.6444.6112.0545.947.5698.680.7697.132−14.293.6850.0285
    BH-H13Y200.18227.09543.43457.4512.6749.89.52110.950.6952.524−10.903.1710.0255
    400.22326.65541.46457.7312.7649.639.58114.230.6302.461−8.373.1430.0261
    600.24926.47550.53454.4612.5549.239.46109.030.5432.892−10.273.1560.0252
    800.21325.77544.72447.6112.2648.679.13108.590.5201.942−11.843.2310.0260
    960.22325.52544.89456.7512.649.599.29108.430.4913.082−13.233.2370.0255
    1200.14825.21547.51455.2212.9649.459.11108.590.4732.766−14.233.2930.0261
    1400.15224.63543.91451.6512.5648.838.84106.810.4463.428−15.443.3500.0264
    1600.15824.47547.45451.4112.4848.949.02106.870.4363.769−16.123.2890.0259
    1800.18224.03545.01457.1812.4449.178.82108.910.4473.884−17.323.3800.0270
    1950.19224.25556.92452.6812.3148.788.62107.750.5433.998−17.943.4310.0273
    2200.17922.71543.81452.4912.3248.378.67104.890.4904.095−18.023.3840.0265
    2400.18422.29540.84451.2512.2248.068.94104.560.4614.686−19.493.2590.0256
    2600.24421.95546.77448.8712.0347.78.51103.900.4834.713−20.543.4010.0267
    2800.23021.15543.46449.3612.0147.188.39103.500.5084.991−21.723.4090.0270
    BH-H13Y3000.21520.11537.08447.421246.518.32102.630.5395.861−22.493.3910.0270
    3200.21219.46546.95453.521247.198.29103.310.6045.592−22.873.4530.0272
    3400.28318.10541.56449.2211.8546.318103.420.6456.344−25.373.5090.0282
    3600.23516.78535.98449.711.845.877.99102.000.6937.263−26.093.4840.0279
    3800.27615.59533.93444.8212.6645.197.5597.010.7547.374−26.963.6280.0281
    4000.26714.82547.52449.0711.5645.217.9299.010.8138.463−28.403.4620.0273
    BH-H61200.24725.84538.4454.113.0949.288.96104.350.5582.422−13.083.3350.0255
    400.26225.64551.9451.7713.1448.4210.6101.930.5232.766−15.332.7690.0210
    600.31624.42542.6453.0913.0148.488.01106.130.5433.096−17.093.6720.0290
    800.27323.65542.6451.8412.8148.168.34105.040.5273.491−19.053.5000.0275
    1000.25423.18541.5450.512.8747.647.59102.040.5523.332−19.523.8080.0294
    1200.24722.35536.0450.5712.1348.437.97102.090.5374.478−21.953.6850.0280
    1400.29221.72536.4453.8712.2848.428.05103.680.5685.051−22.733.6470.0282
    1600.25721.32540.5454.512.348.277.91106.740.6554.880−22.503.7020.0295
    1800.27520.74539.3456.8312.4748.137.72102.960.5875.396−25.103.7830.0292
    2000.26220.02535.9454.2212.6447.437.3103.110.6264.905−25.783.9410.0309
    2200.30019.41543.2447.6512.1246.837.4497.330.6555.036−24.803.8150.0286
    2400.28818.55534.6452.9412.1647.367.2598.690.7325.899−25.413.9600.0298
    2600.27918.16537.2449.7312.1246.777.42101.830.8176.140−25.813.8240.0300
    2800.24817.09534.3451.9211.9646.447.2493.980.8606.779−27.813.8880.0284
    3000.27616.54531.5453.2312.0546.116.82100.821.0237.145−27.274.0990.0323
    3200.21815.53538.8453.6411.9645.616.62100.991.2497.571−28.664.1750.0333
    3400.36814.45540.2446.2212.1244.366.4295.291.3678.152−29.024.1920.0325
    3600.21513.36540.2448.7811.8844.396.296.561.6578.880−30.164.3380.0340
    3800.25412.03533.6441.2911.7443.315.9393.731.9819.809−31.444.4310.0346
    4000.28211.03535.4445.4411.843.455.9991.602.2179.353−31.324.4000.0334
    4200.2389.69545.9449.5411.7243.15.4189.432.60011.214−32.334.8330.0362
    4400.2538.06548.1444.9611.842.155.0690.383.31711.688−31.805.0470.0390
    4600.2355.67539.8446.8411.8741.694.9287.554.43712.656−33.815.1340.0389
    4800.2612.90541.1443.611.7640.553.9586.946.04912.674−35.076.2210.0481
    5000.2841.13538.3440.8411.6940.243.2486.918.98013.449−25.597.5420.0587
    5200.2771.28530.7436.2612.0539.843.6483.049.31111.883−23.876.6470.0499
    下载: 导出CSV
  • [1]

    Dickens G R. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor [J]. Earth and Planetary Science Letters, 2003, 213(3-4): 169-183. doi: 10.1016/S0012-821X(03)00325-X

    [2]

    Luff R, Wallmann K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: Numerical modeling and mass balances [J]. Geochimica et Cosmochimica Acta, 2003, 67(18): 3403-3421. doi: 10.1016/S0016-7037(03)00127-3

    [3]

    Egger M, Riedinger N, Mogollón J M, et al. Global diffusive fluxes of methane in marine sediments [J]. Nature Geoscience, 2018, 11(6): 421-425. doi: 10.1038/s41561-018-0122-8

    [4]

    Joye S B, Boetius A, Orcutt B N, et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps [J]. Chemical Geology, 2004, 205(3-4): 219-238. doi: 10.1016/j.chemgeo.2003.12.019

    [5]

    Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v

    [6]

    Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane [J]. Nature, 2000, 407(6804): 623-626. doi: 10.1038/35036572

    [7]

    Beal E J, House C H, Orphan V J. Manganese- and iron-dependent marine methane oxidation [J]. Science, 2009, 325(5937): 184-187. doi: 10.1126/science.1169984

    [8]

    Ettwig K F, Butler M K, Le Paslier D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria [J]. Nature, 2010, 464(7288): 543-548. doi: 10.1038/nature08883

    [9]

    Borowski W S, Paull C K, Ussler W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates [J]. Marine Geology, 1999, 159(1-4): 131-154. doi: 10.1016/S0025-3227(99)00004-3

    [10]

    Torres M E, Wallmann K, Tréhu A M, et al. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon [J]. Earth and Planetary Science Letters, 2004, 226(1-2): 225-241. doi: 10.1016/j.jpgl.2004.07.029

    [11]

    Gay A, Lopez M, Ondreas H, et al. Seafloor facies related to upward methane flux within a Giant Pockmark of the Lower Congo Basin [J]. Marine Geology, 2006, 226(1-2): 81-95. doi: 10.1016/j.margeo.2005.09.011

    [12]

    Kastner M, Claypool G, Robertson G. Geochemical constraints on the origin of the pore fluids and gas hydrate distribution at Atwater Valley and Keathley Canyon, northern Gulf of Mexico [J]. Marine and Petroleum Geology, 2008, 25(9): 860-872. doi: 10.1016/j.marpetgeo.2008.01.022

    [13]

    Luo M, Chen L Y, Wang S H, et al. Pockmark activity inferred from pore water geochemistry in shallow sediments of the pockmark field in southwestern Xisha Uplift, northwestern South China Sea [J]. Marine and Petroleum Geology, 2013, 48: 247-259. doi: 10.1016/j.marpetgeo.2013.08.018

    [14]

    Hu Y, Feng D, Liang Q Y, et al. Impact of anaerobic oxidation of methane on the geochemical cycle of redox-sensitive elements at cold-seep sites of the northern South China Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 84-94. doi: 10.1016/j.dsr2.2015.06.012

    [15]

    Habicht K S, Canfield D E. Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments [J]. Geology, 2001, 29(6): 555-558. doi: 10.1130/0091-7613(2001)029<0555:IFBSRN>2.0.CO;2

    [16]

    Peketi A, Mazumdar A, Joshi R K, et al. Tracing the Paleo sulfate-methane transition zones and H2S seepage events in marine sediments: An application of C-S-Mo systematics [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(10): Q10007.

    [17]

    Sato H, Hayashi K I, Ogawa Y, et al. Geochemistry of deep sea sediments at cold seep sites in the Nankai Trough: Insights into the effect of anaerobic oxidation of methane [J]. Marine Geology, 2012, 323-325: 47-55. doi: 10.1016/j.margeo.2012.07.013

    [18]

    Schrag D P, Higgins J A, Macdonald F A, et al. Authigenic carbonate and the history of the global carbon cycle [J]. Science, 2013, 339(6119): 540-543. doi: 10.1126/science.1229578

    [19]

    Hu Y, Feng D, Peckmann J, et al. The impact of diffusive transport of methane on pore-water and sediment geochemistry constrained by authigenic enrichments of carbon, sulfur, and trace elements: A case study from the Shenhu area of the South China Sea [J]. Chemical Geology, 2020, 553: 119805. doi: 10.1016/j.chemgeo.2020.119805

    [20]

    Ye H, Yang T, Zhu G R, et al. Pore water geochemistry in shallow sediments from the northeastern continental slope of the South China sea [J]. Marine and Petroleum Geology, 2016, 75: 68-82. doi: 10.1016/j.marpetgeo.2016.03.010

    [21]

    Feng J X, Yang S X, Liang J Q, et al. Methane seepage inferred from the porewater geochemistry of shallow sediments in the Beikang Basin of the southern South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 77-86. doi: 10.1016/j.jseaes.2018.02.005

    [22]

    Xu C L, Wu N Y, Sun Z L, et al. Methane seepage inferred from pore water geochemistry in shallow sediments in the western slope of the Mid-Okinawa Trough [J]. Marine and Petroleum Geology, 2018, 98: 306-315. doi: 10.1016/j.marpetgeo.2018.08.021

    [23]

    Masuzawa T, Handa N, Kitagawa H, et al. Sulfate reduction using methane in sediments beneath a bathyal “cold seep” giant clam community off Hatsushima island, Sagami bay, Japan [J]. Earth and Planetary Science Letters, 1992, 110(1-4): 39-50. doi: 10.1016/0012-821X(92)90037-V

    [24]

    Chen Y, Ussler III W, Haflidason H, et al. Sources of methane inferred from pore-water δ13C of dissolved inorganic carbon in Pockmark G11, offshore Mid-Norway [J]. Chemical Geology, 2010, 275(3-4): 127-138. doi: 10.1016/j.chemgeo.2010.04.013

    [25]

    Snyder G T, Hiruta A, Matsumoto R, et al. Pore water profiles and authigenic mineralization in shallow marine sediments above the methane-charged system on Umitaka Spur, Japan Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(11-13): 1216-1239. doi: 10.1016/j.dsr2.2007.04.001

    [26]

    Kim J H, Park M H, Chun J H, et al. Molecular and isotopic signatures in sediments and gas hydrate of the central/southwestern Ulleung Basin: high alkalinity escape fuelled by biogenically sourced methane [J]. Geo-Marine Letters, 2011, 31(1): 37-49. doi: 10.1007/s00367-010-0214-y

    [27]

    Hong W L, Torres M E, Kim J H, et al. Carbon cycling within the sulfate-methane-transition-zone in marine sediments from the Ulleung Basin [J]. Biogeochemistry, 2013, 115(1-3): 129-148. doi: 10.1007/s10533-012-9824-y

    [28]

    Chatterjee S, Dickens G R, Bhatnagar G, et al. Pore water sulfate, alkalinity, and carbon isotope profiles in shallow sediment above marine gas hydrate systems: A numerical modeling perspective [J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B9): B09103.

    [29]

    Komada T, Burdige D J, Magen C, et al. Recycling of organic matter in the sediments of Santa Monica basin, California borderland [J]. Aquatic Geochemistry, 2016, 22(5-6): 593-618. doi: 10.1007/s10498-016-9308-0

    [30] 梁华催, 梁前勇, 胡钰, 等. 南海东沙海域浅表层柱状沉积物孔隙水地球化学特征及对冷泉流体活动的指示[J]. 地球化学, 2017, 46(4):333-344 doi: 10.3969/j.issn.0379-1726.2017.04.004

    LIANG Huacui, LIANG Qianyong, HU Yu, et al. Pore water geochemistry of shallow surface sediments in the Dongsha area of the South China Sea and its implications for the activities of cold seep fluids [J]. Geochimica, 2017, 46(4): 333-344. doi: 10.3969/j.issn.0379-1726.2017.04.004

    [31]

    Hu Y, Luo M, Chen L Y, et al. Methane source linked to gas hydrate system at hydrate drilling areas of the South China Sea: Porewater geochemistry and numerical model constraints [J]. Journal of Asian Earth Sciences, 2018, 168: 87-95. doi: 10.1016/j.jseaes.2018.04.028

    [32]

    Wu D D, Wu N Y, Zhang M, et al. Relationship of Sulfate-Methane Interface (SMI), methane flux and the underlying gas hydrate in Dongsha Area, Northern South China Sea [J]. Earth Science, 2013, 38(6): 1309-1320.

    [33]

    Liu H L, Yao Y J, Deng H. Geological and geophysical conditions for potential natural gas hydrate resources in southern South China Sea waters [J]. Journal of Earth Science, 2011, 22(6): 718-725. doi: 10.1007/s12583-011-0222-5

    [34] 魏伟, 张金华, 魏兴华, 等. 我国南海天然气水合物资源潜力分析[J]. 地球物理学进展, 2012, 27(6):2646-2655 doi: 10.6038/j.issn.1004-2903.2012.06.044

    WEI Wei, ZHANG Jinhua, WEI Xinghua, et al. Resource potential analysis of natural gas hydrate in South China Sea [J]. Progress in Geophysics, 2012, 27(6): 2646-2655. doi: 10.6038/j.issn.1004-2903.2012.06.044

    [35] 张厚和, 刘鹏, 廖宗宝, 等. 南沙海域北康盆地油气勘探潜力[J]. 中国石油勘探, 2017, 22(3):40-48 doi: 10.3969/j.issn.1672-7703.2017.03.005

    ZHANG Houhe, LIU Peng, LIAO Zongbao, et al. Oil and gas exploration potential in Beikang Basin, Nansha sea area [J]. China Petroleum Exploration, 2017, 22(3): 40-48. doi: 10.3969/j.issn.1672-7703.2017.03.005

    [36]

    Trung N N. The gas hydrate potential in the South China Sea [J]. Journal of Petroleum Science and Engineering, 2012, 88-89: 41-47. doi: 10.1016/j.petrol.2012.01.007

    [37] 苏新, 陈芳, 于兴河, 等. 南海陆坡中新世以来沉积物特性与气体水合物分布初探[J]. 现代地质, 2005, 19(1):1-13 doi: 10.3969/j.issn.1000-8527.2005.01.001

    SU Xin, CHEN Fang, YU Xinghe, et al. A pilot study on miocene through holocene sediments from the continental slope of the south china sea in correlation with possible distribution of gas hydrates [J]. Geoscience, 2005, 19(1): 1-13. doi: 10.3969/j.issn.1000-8527.2005.01.001

    [38]

    Chen Z, Yan W, Tang X Z, et al. Magnetic susceptibility in surface sediments in the southern South China Sea and its implication for sub-sea methane venting [J]. Journal of Earth Science, 2009, 20(1): 193-204. doi: 10.1007/s12583-009-0019-y

    [39] 张莉, 王嘹亮, 易海. 北康盆地的形成与演化[J]. 中国海上油气(地质), 2003, 17(4):245-248

    ZHANG Li, WANG Liaoliang, YI Hai. The formation and evolution of Beikang Basin [J]. China Offshore Oil and Gas (Geology), 2003, 17(4): 245-248.

    [40] 王嘹亮, 梁金强, 曾繁彩. 北康盆地新生代沉积特征[J]. 南海地质研究, 2000:58-72

    WANG Liaoliang, LIANG Jinqiang, ZENG Fancai. Cenozoic sedimentation of Beikang Basin [J]. Gresearch of Eological South China Sea, 2000: 58-72.

    [41] 刘振湖. 北康盆地古地热场与油气远景[J]. 海洋地质与第四纪地质, 2004, 24(2):79-84

    LIU Zhenhu. Paleogeothermal field and petroleum prospect of the Beikang Basin, South China Sea [J]. Marine Geology & Quaternary Geology, 2004, 24(2): 79-84.

    [42] 杨振, 张光学, 张莉, 等. 南海南部北康盆地生物礁的类型及油气勘探前景[J]. 中国地质, 2017, 44(3):428-438

    YANG Zhen, ZHANG Guangxue, ZHANG Li, et al. The style and hydrocarbon prospects of reefs in the Beikang Basin, southern South China Sea [J]. Geology in China, 2017, 44(3): 428-438.

    [43] 骆帅兵, 张莉, 周江羽, 等. 南海南部北康盆地烃源岩特征及发育模式探讨[J/OL]. 中国地质, 2020: 1-21. (2020-04-20). https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CAPJLAST&filename=DIZI20200417002&v=MDgzMjlOSE1xNDVDWk9zTll3OU16bVJuNmo1N1QzZmxxV00wQ0xMN1I3cWRadVpzRkMvbFY3M0tKVmc9SVNUUlo3RzRI.

    LUO Shuaibing, ZHANG Li, ZHOU Jiangyu, et al. Study on the characteristics and development patterns of source rocks in Beikang basin, South China Sea[J/OL]. Geology in China, 2020: 1-21. (2020-04-20). https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CAPJLAST&filename=DIZI20200417002&v=MDgzMjlOSE1xNDVDWk9zTll3OU16bVJuNmo1N1QzZmxxV00wQ0xMN1I3cWRadVpzRkMvbFY3M0tKVmc9SVNUUlo3RzRI.

    [44] 卢振权, 强祖基, 吴必豪. 利用卫星热红外遥感探测南海天然气水合物[J]. 地质学报, 2002, 76(1):101-106

    LU Zhenquan, QIANG Zuji, WU Bihao. Exploring gas hydrates by satellite-based thermal infrared remote sensing in the South China Sea [J]. Acta Geologica Sinica, 2002, 76(1): 101-106.

    [45] 王淑红, 宋海斌, 颜文, 等. 南海南部天然气水合物稳定带厚度及资源量估算[J]. 天然气工业, 2005, 25(8):24-27, 4 doi: 10.3321/j.issn:1000-0976.2005.08.008

    WANG Shuhong, SONG Haibin, YAN Wen, et al. Stable zone thickness and resource estimation of gas hydrate in southern South China Sea [J]. Natural Gas Industry, 2005, 25(8): 24-27, 4. doi: 10.3321/j.issn:1000-0976.2005.08.008

    [46] 赵中贤, 孙珍, 陈广浩, 等. 南沙海域新生代构造特征和沉降演化[J]. 地球科学—中国地质大学学报, 2011, 36(5):815-822

    ZHAO Zhongxian, SUN Zhen, CHEN Guanghao, et al. Cenozoic structural characteristics and subsidence evolution in NanSha [J]. Earth Science—Journal of China University of Geosciene, 2011, 36(5): 815-822.

    [47]

    Wang P, Prell W L, Blum P. Initial Reports, 184[C]//Proc. Ocean Drill. Prog. 2000.

    [48]

    Schulz H D. Quantification of early diagenesis: dissolved constituents in pore water and signals in the solid phase[M]//Schulz H D, Zabel M. (Marine Geochemistry. Berlin, Germany: Springer, 2006: 73-124.

    [49]

    Torres M E, Brumsack H J, Bohrmann G, et al. Barite fronts in continental margin sediments: A new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts [J]. Chemical Geology, 1996, 127(1-3): 125-139. doi: 10.1016/0009-2541(95)00090-9

    [50] 陈法锦, 陈建芳, 金海燕等. 南海表层沉积物与沉降颗粒物中有机碳的δ13C对比研究及其古环境再造意义[J]. 沉积学报, 2012, 30(2):340-345

    CHEN Fajin, CHEN Jianfang, JIN Haiyan, et al. Correlation of delta~(13) Corg in Surface Sediments with Sinking Particulate Matter in South China Sea and Implication for Reconstructing Paleo-environment [J]. Acta Sedimentologica Sinica, 2012, 30(2): 340-345.

    [51]

    Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane [J]. Chemical Geology, 1999, 161(1-3): 291-314. doi: 10.1016/S0009-2541(99)00092-3

    [52]

    Claypool G E, Kvenvolden K A. Methane and other hydrocarbon gases in marine sediment [J]. Annual Review of Earth and Planetary Sciences, 1983, 11: 299-327. doi: 10.1146/annurev.ea.11.050183.001503

    [53]

    Borowski W S, Paull C K, Ussler III W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate [J]. Geology, 1996, 24(7): 655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2

    [54]

    Dickens G R. Sulfate profiles and barium fronts in sediment on the Blake Ridge: Present and past methane fluxes through a large gas hydrate reservoir [J]. Geochimica et Cosmochimica Acta, 2001, 65(4): 529-543. doi: 10.1016/S0016-7037(00)00556-1

    [55]

    Ussler III W, Paull C K. Rates of anaerobic oxidation of methane and authigenic carbonate mineralization in methane-rich deep-sea sediments inferred from models and geochemical profiles [J]. Earth and Planetary Science Letters, 2008, 266(3-4): 271-287. doi: 10.1016/j.jpgl.2007.10.056

    [56]

    Berner U, Faber E. Hydrocarhon gases in surface sediments of the South China Sea[M]//Jin X L. Marine Geology and Geophysics of the South China Sea. Beijing: China Ocean Press, 1990: 199-21l.

    [57]

    Hensen C, Zabel M, Pfeifer K, et al. Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments [J]. Geochimica et Cosmochimica Acta, 2003, 67(14): 2631-2647. doi: 10.1016/S0016-7037(03)00199-6

    [58]

    Borowski W S. A review of methane and gas hydrates in the dynamic, stratified system of the Blake Ridge region, offshore southeastern North America [J]. Chemical Geology, 2004, 205(3-4): 311-346. doi: 10.1016/j.chemgeo.2003.12.022

    [59]

    Coffin R, Hamdan L, Plummer R, et al. Analysis of methane and sulfate flux in methane-charged sediments from the Mississippi Canyon, Gulf of Mexico [J]. Marine and Petroleum Geology, 2008, 25(9): 977-987. doi: 10.1016/j.marpetgeo.2008.01.014

    [60]

    Sun X L, Turchyn A V. Significant contribution of authigenic carbonate to marine carbon burial [J]. Nature Geoscience, 2014, 7(3): 201-204. doi: 10.1038/ngeo2070

    [61]

    Bayon G, Pierre C, Etoubleau J, et al. Sr/Ca and Mg/Ca ratios in Niger Delta sediments: Implications for authigenic carbonate genesis in cold seep environments [J]. Marine Geology, 2007, 241(1-4): 93-109. doi: 10.1016/j.margeo.2007.03.007

    [62]

    Nöthen K, Kasten S. Reconstructing changes in seep activity by means of pore water and solid phase Sr/Ca and Mg/Ca ratios in pockmark sediments of the Northern Congo Fan [J]. Marine Geology, 2011, 287(1-4): 1-13. doi: 10.1016/j.margeo.2011.06.008

    [63]

    Xu C L, Wu N Y, Sun Z L, et al. Assessing methane cycling in the seep sediments of the mid-Okinawa Trough: Insights from pore-water geochemistry and numerical modeling [J]. Ore Geology Reviews, 2021, 129: 103909. doi: 10.1016/j.oregeorev.2020.103909

    [64]

    Gonneea M E, Paytan A. Phase associations of barium in marine sediments [J]. Marine Chemistry, 2006, 100(1-2): 124-135. doi: 10.1016/j.marchem.2005.12.003

  • 期刊类型引用(1)

    1. 杨正先,魏树运,韩建波. 碳中和背景下我国“岸碳入海”发展前景及路径分析. 中国工程科学. 2025(02): 137-147 . 百度学术

    其他类型引用(0)

图(6)  /  表(2)
计量
  • 文章访问数:  2477
  • HTML全文浏览量:  642
  • PDF下载量:  92
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-12-30
  • 修回日期:  2021-03-06
  • 网络出版日期:  2021-05-12
  • 刊出日期:  2021-10-27

目录

/

返回文章
返回