留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微地貌特征的西太平洋菲律宾海海底稳定性评价

刘娅楠 贾超 胡邦琦 刘森 宋维宇 杨霄

刘娅楠,贾超,胡邦琦,等. 基于微地貌特征的西太平洋菲律宾海海底稳定性评价[J]. 海洋地质与第四纪地质,2022,42(1): 214-221. doi: 10.16562/j.cnki.0256-1492.2020121801
引用本文: 刘娅楠,贾超,胡邦琦,等. 基于微地貌特征的西太平洋菲律宾海海底稳定性评价[J]. 海洋地质与第四纪地质,2022,42(1): 214-221. doi: 10.16562/j.cnki.0256-1492.2020121801
LIU Yanan,JIA Chao,HU Bangqi,et al. Submarine stability evaluation of the Philippine Sea of the Western Pacific based on microgeomorphologic features[J]. Marine Geology & Quaternary Geology,2022,42(1):214-221. doi: 10.16562/j.cnki.0256-1492.2020121801
Citation: LIU Yanan,JIA Chao,HU Bangqi,et al. Submarine stability evaluation of the Philippine Sea of the Western Pacific based on microgeomorphologic features[J]. Marine Geology & Quaternary Geology,2022,42(1):214-221. doi: 10.16562/j.cnki.0256-1492.2020121801

基于微地貌特征的西太平洋菲律宾海海底稳定性评价


doi: 10.16562/j.cnki.0256-1492.2020121801
详细信息
    作者简介:

    刘娅楠(1997—),女,硕士研究生,主要从事海洋地质研究工作,E-mail:yanan_liu@mail.sdu.edu.cn

    通讯作者: 刘森(1989—),男,博士,助理研究员,主要从事海洋地质环境等研究工作,E-mail:sen_liu@sdu.edu.cn
  • 基金项目:  国家自然科学基金面上项目“菲律宾海盆底层水体性质对中更新世气候转型的响应机制”(41976192);中国地质调查局项目(DD20191010)联合资助
  • 中图分类号: P737.22

Submarine stability evaluation of the Philippine Sea of the Western Pacific based on microgeomorphologic features

More Information
  • 摘要: 随着海洋战略地位的逐步提高,深远海海底资源开发和海洋工程建设将面临巨大挑战,主要是受限于技术手段,高精度调查资料难以获取,无法全面准确地进行海底稳定性评价。针对这一问题,本文提出了基于微地貌特征的深远海海底稳定性评价方法。基于已有的研究工作,本文选取西太平洋菲律宾海中南部某区域为研究区,利用ArcGIS平台建立研究区DEM(Digital Elevation Model),提取宏、微观地貌因子,结合全球地震数据、研究区底质类型和潜在地质灾害分布特征,运用模糊数学方法评价研究区海底稳定性,并绘制海底稳定性区划图。结果显示,对区域3220个评价单元进行稳定性分析,可将研究区海底稳定性划分为5个等级,包括基本稳定、较稳定、中等稳定、较不稳定和不稳定。其中,稳定区主要集中在较为平坦的中北部,不稳定区多发育在九州-帕劳海岭、海山、山间盆地等大规模地貌单元发育区,分析揭示,研究区海底稳定性与微地貌特征密切相关。因此,本文提出的基于微地貌特征的海底稳定性评价方法,能够很好地服务于深远海海底稳定性评价。
  • 图  1  菲律宾海板块海底地形地貌与研究区位置图[22]

    底图数据来源于全球水深数据。

    Figure  1.  Seabed topography and geomorphology of the Philippine Sea plate and location of the study area [22]

    DEM are derived from global bathymetric data.

    图  2  评价方法的技术路线

    Figure  2.  The technical flowchart for evaluation methods

    图  3  海底稳定性区划图

    Figure  3.  Division map of submarine stability

    表  1  典型地貌因子概念及算法[25-26]

    Table  1.   Concept and algorithm of typical geomorphic factor [25-26]

    地形因子概念公式
    坡度描述地表单元陡缓程度,表示地面在某点的倾斜度tanα=△h/△dα—坡度,△h—高程差(m),△d—水平距离(m)
    地形起伏度区域最高点与最低点海拔高度的差值,反映地形起伏特征[25]RAi=ZimaxZiminRAi—地形起伏度(m),Zimax—区域内最大高程值(m),Zimin—区域内最小高程值(m)
    下载: 导出CSV

    表  2  海底稳定性评价指标体系

    Table  2.   Evaluation index system for seabed stability

    指标体系地震区划灾害地质微观地貌因子(坡度)宏观地貌因子(地形起伏度)底质类型
    1级地震动峰加速度值=0.05 g,相当于5级地震区海底火山0°~3°0~19 m基岩
    2级地震动峰加速度值=0.1 g,相当于6级地震区裂谷3°~7°19~45 m铁锰结壳
    3级地震动峰加速度值=0.15 g,相当于7级地震区海底滑坡7°~15°45~77 m含铁锰结核的远洋黏土
    4级地震动峰加速度值=0.2 g,相当于8级地震区陡坎15°~25°77~120 m远洋黏土
    5级地震动峰加速度值≥0.3 g,相当于9级地震区崩塌>25°>120 m硅藻软泥
    下载: 导出CSV

    表  3  海底稳定性评价指标隶属度值

    Table  3.   Membership value of evaluation index of seabed stability

    稳定性
    等级
    评价指标
    地震区划灾害地质微观地貌因子宏观地貌因子底质类型
    基本稳定1级1级1级1级1级
    v10.150.150.150.150.15
    较稳定2级2级2级2级2级
    v20.300.300.300.300.30
    中等稳定3级3级3级3级3级
    v30.550.550.550.550.55
    较不稳定4级4级4级4级4级
    v40.800.800.800.800.80
    不稳定5级5级5级5级5级
    v50.850.850.850.850.85
    下载: 导出CSV

    表  4  评价指标权重值

    Table  4.   The weight value of the evaluation index

    评价指标地震区划灾害地质微观地貌因子宏观地貌因子底质类型
    权重值0.08820.44120.22060.14710.1029
    下载: 导出CSV
  • [1] 陈连增, 雷波. 中国海洋科学技术发展70年[J]. 海洋学报, 2019, 41(10):3-22

    CHEN Lianzeng, LEI Bo. Marine science and technology development over the past 70 years in China [J]. Acta Oceanologica Sinica, 2019, 41(10): 3-22.
    [2] 夏真. 海洋地质学的军事战略意义[J]. 南海地质研究, 2010:83-90

    XIA Zhen. The significance of marine geology in military strategy [J]. Gresearch of Eological South China Sea, 2010: 83-90.
    [3] 汪品先. 大洋钻探与中国的海洋地质[J]. 海洋地质与第四纪地质, 2019, 39(1):7-14

    WANG Pinxian. Ocean drilling and marine geology in China [J]. Marine Geology & Quaternary Geology, 2019, 39(1): 7-14.
    [4] 杜军, 李培英, 李萍, 等. 基于海洋灾害地质评价基础上的我国近海海底稳定性区划[J]. 海洋学报, 2014, 36(5):124-129

    DU Jun, LI Peiying, LI Ping, et al. The seabed stability zonation based on the marine geohazards evaluation in China [J]. Acta Oceanologica Sinica, 2014, 36(5): 124-129.
    [5] 马秀冬, 李萍, 徐元芹, 等. 冲绳海槽中段海底灾害地质类型及海底稳定性评价[J]. 海洋科学进展, 2018, 36(1):79-87 doi: 10.3969/j.issn.1671-6647.2018.01.007

    MA Xiudong, LI Ping, XU Yuanqin, et al. Submarine geohazards types and seabed stability evaluation of the middle part of the Okinawa Trough [J]. Advances in Marine Science, 2018, 36(1): 79-87. doi: 10.3969/j.issn.1671-6647.2018.01.007
    [6] MacKillop K, Fenton G, Mosher D, et al. Assessing submarine slope stability through deterministic and probabilistic approaches: a case study on the west-central scotia slope [J]. Geosciences, 2019, 9(1): 18.
    [7] Bellwald B, Urlaub M, Hjelstuen B O, et al. NE Atlantic continental slope stability from a numerical modeling perspective [J]. Quaternary Science Reviews, 2019, 203: 248-265. doi: 10.1016/j.quascirev.2018.11.019
    [8] Ionov V Y, Kalinin E V, Fomenko I K, et al. Regional slope stability assessment along the Caucasian shelf of the Black Sea[M]//Krastel S, Behrmann J H, Völker D, et al. Submarine Mass Movements and Their Consequences: 6th International Symposium. Cham: Springer, 2014, 37: 201-212.
    [9] Dimakis P, Elverhøi A, Høeg K, et al. Submarine slope stability on high-latitude glaciated Svalbard–Barents Sea margin [J]. Marine Geology, 2000, 162(2-4): 303-316. doi: 10.1016/S0025-3227(99)00076-6
    [10] Ten Brink U S, Andrews B D, Miller N C. Seismicity and sedimentation rate effects on submarine slope stability [J]. Geology, 2018, 44(7): 563-566.
    [11] Lehner F K, Schöepfer M P J. Slope stability and exact solutions for cohesive critical Coulomb wedges from Mohr diagrams [J]. Journal of Structural Geology, 2018, 116: 234-240. doi: 10.1016/j.jsg.2018.04.021
    [12] 胡光海, 刘振夏, 房俊伟. 国内外海底斜坡稳定性研究概况[J]. 海洋科学进展, 2006, 24(1):130-136 doi: 10.3969/j.issn.1671-6647.2006.01.017

    HU Guanghai, LIU Zhenxia, FANG Junwei. A review of submarine slope stability studies at home and abroad [J]. Advances in Marine Science, 2006, 24(1): 130-136. doi: 10.3969/j.issn.1671-6647.2006.01.017
    [13] Guo X S, Zheng D F, Nian T K, et al. Large-scale seafloor stability evaluation of the northern continental slope of South China Sea [J]. Marine Georesources & Geotechnology, 2020, 38(7): 804-817.
    [14] 徐元芹, 李萍, 刘乐军, 等. 河北南堡-曹妃甸海域工程地质条件及海底稳定性评价[J]. 海洋学报, 2017, 39(5):103-114

    XU Yuanqin, LI Ping, LIU Lejun, et al. Engineering geological conditions and seabed stability assessment of Nanpu-Caofeidian, Hebei Province [J]. Acta Oceanologica Sinica, 2017, 39(5): 103-114.
    [15] 宋晓帅, 于开宁, 吴振, 等. 莱州湾海岸带工程地质环境质量分区[J]. 海洋地质与第四纪地质, 2019, 39(2):79-89

    SONG Xiaoshuai, YU Kaining, WU Zhen, et al. Engineering geological environment quality division of Laizhou Bay coastal zone [J]. Marine Geology & Quaternary Geology, 2019, 39(2): 79-89.
    [16] 李常珍, 李乃胜, 林美华. 菲律宾海的地势特征[J]. 海洋科学, 2000, 24(6):47 doi: 10.3969/j.issn.1000-3096.2000.06.014

    LI Changzhen, LI Naisheng, LIN Meihua. Terrain features of the Philippine Sea [J]. Marine Sciences, 2000, 24(6): 47. doi: 10.3969/j.issn.1000-3096.2000.06.014
    [17] Macpherson C G, Hall R. Tectonic setting of Eocene boninite magmatism in the Izu–Bonin–Mariana forearc [J]. Earth and Planetary Science Letters, 2001, 186(2): 215-230. doi: 10.1016/S0012-821X(01)00248-5
    [18] Takahashi N, Suyehiro K, Shinohara M. Implications from the seismic crustal structure of the northern Izu-Bonin arc [J]. The Island Arc, 1998, 7(3): 383-394. doi: 10.1111/j.1440-1738.1998.00197.x
    [19] Ark J O, Hori T, Kaneda Y. Seismotectonic implications of the Kyushu-Palau Ridge subducting beneath the westernmost Nankai Forearc [J]. Earth, Planets and Space, 2009, 61(8): 1013-1018. doi: 10.1186/BF03352951
    [20] Nishizawa A, Kaneda K, Katagiri Y, et al. Variation in crustal structure along the Kyushu-Palau Ridge at 15-21 N on the Philippine Sea plate based on seismic refraction profiles [J]. Earth, Planets and Space, 2007, 59(6): e17-e20. doi: 10.1186/BF03352711
    [21] Yamashita M, Tsuru T, Takahashi N, et al. Fault configuration produced by initial arc rifting in the Parece Vela Basin as deduced from seismic reflection data [J]. Island Arc, 2007, 16(3): 338-347. doi: 10.1111/j.1440-1738.2007.00594.x
    [22] 张斌, 李广雪, 黄继峰. 菲律宾海构造地貌特征[J]. 海洋地质与第四纪地质, 2014, 34(2):79-88

    ZHANG Bin, LI Guangxue, HUANG Jifeng. The tectonic geomorphology of the Philippine sea [J]. Marine Geology & Quaternary Geology, 2014, 34(2): 79-88.
    [23] 闫满存, 王光谦, 李保生, 等. 基于模糊数学的广东沿海陆地地质环境区划[J]. 地理学与国土研究, 2000, 16(4):41-48

    YAN Mancun, WANG Guangqian, LI Baosheng, et al. Land Geoenvironmental Regionalization of Guangdong Coast by Fuzzy [J]. Geography and Territorial Research, 2000, 16(4): 41-48.
    [24] 郭芳芳, 杨农, 孟晖, 等. 地形起伏度和坡度分析在区域滑坡灾害评价中的应用[J]. 中国地质, 2008, 35(1):131-143 doi: 10.3969/j.issn.1000-3657.2008.01.014

    GUO Fangfang, YANG Nong, MENG Hui, et al. Application of the relief amplitude and slope analysis to regional landslide hazard assessments [J]. Geology in China, 2008, 35(1): 131-143. doi: 10.3969/j.issn.1000-3657.2008.01.014
    [25] 兰燕, 王明华, 刘珊红, 等. 逐点内插法建立DEM的研究[J]. 测绘科学, 2009, 34(1):214-216 doi: 10.3771/j.issn.1009-2307.2009.01.077

    LAN Yan, WANG Minghua, LIU Shanhong, et al. Study on building DEM based on point-by-point interpolation algorithm [J]. Science of Surveying and Mapping, 2009, 34(1): 214-216. doi: 10.3771/j.issn.1009-2307.2009.01.077
    [26] 涂汉明, 刘振东. 中国地势起伏度最佳统计单元的求证[J]. 湖北大学学报:自然科学版, 1990, 12(3):266-271

    XU Hanming, LIU Zhendong. Demonstrating on optimum statistic unit of relief amplitude in China [J]. Journal of Hubei University (Natural Science), 1990, 12(3): 266-271.
    [27] 陈曦, 曾亚武, 刘伟, 等. 岩体基本质量分级模糊综合评价法研究[J]. 武汉大学学报: 工学版, 2019, 52(6):511-522

    CHEN Xi, ZENG Yawu, LIU Wei, et al. Research on classification of rock mass basic quality based on fuzzy comprehensive evaluation method [J]. Engineering Journal of Wuhan University, 2019, 52(6): 511-522.
    [28] 马林伟, 吴时国. 海底滑坡过程的分段模拟研究[C]//国家安全地球物理丛书(十五)——丝路环境与地球物理. 西安: 西安地图出版社, 2019: 65-69.

    MA Linwei, WU Shiguo. Subsection simulation of submarine landslide process[C]//National Security Geophysics Series (xv) - Silk Road Environment and Geophysics. Xi'an: Xi'an Map Publishing House, 2019: 65-69.
    [29] Whelan N T, Cohmen J M, Suhayda J N, et al. Acoustical penetration and shear strength in gas-charged sediment [J]. Marine Geotechnology, 1977, 2: 147-159. doi: 10.1080/10641197709379776
    [30] 马云, 李三忠, 夏真, 等. 南海北部神狐陆坡区灾害地质因素特征[J]. 地球科学—中国地质大学学报, 2014, 39(9):1364-1372

    MA Yun, LI Sanzhong, XIA Zhen, et al. Characteristics of hazardous geological factors on Shenhu continental slope in the Northern South China Sea [J]. Earth Science—Journal of China University of Geosciences, 2014, 39(9): 1364-1372.
    [31] Sultan N, Voisset M, Marsset B, et al. Potential role of compressional structures in generating submarine slope failures in the Niger Delta [J]. Marine Geology, 2006, 237(3-4): 169-190.
    [32] 许文锋, 车爱兰, 王治, 等. 地震荷载作用下海底滑坡特征及其机理[J]. 上海交通大学学报, 2011, 45(5):782-786

    XU Wenfeng, CHE Ailan, WANG Zhi, et al. Destruction characteristic of seabed landslide during earthquake motion and its mechanism [J]. Journal of Shanghai Jiaotong University, 2011, 45(5): 782-786.
    [33] Imbo Y, De Batist M, Canals M, et al. The Gebra Slide: a submarine slide on the trinity peninsula margin, Antarctica [J]. Marine Geology, 2003, 193(3-4): 235-252. doi: 10.1016/S0025-3227(02)00664-3
    [34] 朱友生. 南海北部陆架边缘区域地质灾害类型特征及分布规律[J]. 中国海上油气, 2017, 29(3):107-115

    ZHU Yousheng. Features and distribution pattern of the geological hazards in the northern continental shelf margins of South China Sea [J]. China Offshore Oil and Gas, 2017, 29(3): 107-115.
    [35] 谢先得, 朱照宇, 覃慕陶, 等. 广东沿海地质环境与地质灾害[M]. 广州: 广东科技出版社, 2003.

    XIE Xiande, ZHU Zhaoyu, QIN Mutao, et al. Geological Environment and Geological Hazards Along the Coast of Guangdong Province[M]. Guangzhou: Guangdong Science and Technology Press, 2003.
    [36] 杜军, 李培英, 魏巍, 等. 中国海岸带灾害地质稳定性区划[J]. 自然灾害学报, 2008, 17(4):1-6 doi: 10.3969/j.issn.1004-4574.2008.04.001

    DU Jun, LI Peiying, WEI Wei, et al. Stability zoning of hazard geology in coastal zone of China [J]. Journal of Natural Disasters, 2008, 17(4): 1-6. doi: 10.3969/j.issn.1004-4574.2008.04.001
    [37] 蔡鹤生, 周爱国, 唐朝晖. 地质环境质量评价中的专家-层次分析定权法[J]. 地球科学—中国地质大学学报, 1998, 23(3):299-302

    CAI Hesheng, ZHOU Aiguo, TANG Zhaohui. Expert-analytic hierarchy weighting process in geological environmental quality assessment [J]. Earth Science—Journal of China University of Geosciences, 1998, 23(3): 299-302.
  • [1] 李玲, 李磊, 闫华敏, 彭晨昂, 程琳燕, 高毅凡, 张威, 龚广传.  陆坡重力流沉积地貌单元三维地震表征及其成因 . 海洋地质与第四纪地质, 2023, 43(1): 37-48. doi: 10.16562/j.cnki.0256-1492.2022070702
    [2] 何其江, 沈爱斯, 刘刚, 丁咚, 瞿洪宝, 刘根, 苟鹏飞.  西沙群岛宣德环礁水下沙洲动力地貌特征及其成因机制 . 海洋地质与第四纪地质, 2023, 43(1): 1-12. doi: 10.16562/j.cnki.0256-1492.2022041101
    [3] 刘阿成, 唐建忠, 张杰, 吴巍.  闽中南近海浅部地震地层和埋藏特殊地貌 . 海洋地质与第四纪地质, 2022, 42(6): 119-130. doi: 10.16562/j.cnki.0256-1492.2022032201
    [4] 张广璐, 杨俊, 龙海燕, 赵彦彦, 邹立, 魏浩天, 刘盛, 杨丹丹, 孙国静.  南海东北部陆坡区浮游有孔虫壳体的原位微区Mg/Ca分析 . 海洋地质与第四纪地质, 2022, 42(6): 43-58. doi: 10.16562/j.cnki.0256-1492.2021122101
    [5] 孔祥淮, 陆凯, 徐晓达, 杨慧良, 张勇, 尚鲁宁.  南黄海地形地貌特征及其成因探讨 . 海洋地质与第四纪地质, 2022, 42(6): 21-31. doi: 10.16562/j.cnki.0256-1492.2022072903
    [6] 杜学鑫, 祝文君, 牟明杰, 尚鲁宁, 李攀峰, 尉佳, 虞义勇, 孟元库, 胡刚.  菲律宾海板块俯冲与岛弧演化的钻探靶区研究 . 海洋地质与第四纪地质, 2022, 42(5): 199-210. doi: 10.16562/j.cnki.0256-1492.2022062002
    [7] 侯方辉, 秦轲, 陆凯, 赵京涛, 李攀峰, 孟祥君, 黄威, 胡刚, 孙军, 龚小晗.  九州-帕劳海脊中段及两侧盆地构造沉积特征及俯冲起始:多道反射地震综合研究 . 海洋地质与第四纪地质, 2022, 42(5): 187-198. doi: 10.16562/j.cnki.0256-1492.2022062801
    [8] 粟华强, 王小静, 任艺君, 刘焱光.  北极拉普捷夫海沉积物痕量金属赋存形态及富集机制 . 海洋地质与第四纪地质, 2022, 42(4): 61-72. doi: 10.16562/j.cnki.0256-1492.2022012701
    [9] 陶舒琴, 李云海, 唐正, 叶翔, 孙恒, 高众勇, 李国刚.  南极罗斯海–阿蒙森海2019—2020年夏季表层悬浮颗粒有机质组成及其控制因素 . 海洋地质与第四纪地质, 2022, 42(4): 24-38. doi: 10.16562/j.cnki.0256-1492.2022022101
    [10] 周郑鹏, 肖文申, 王汝建, 滕聿央.  南极罗斯海表层沉积物中生源组分的分布规律及其环境指示意义 . 海洋地质与第四纪地质, 2022, 42(4): 12-23. doi: 10.16562/j.cnki.0256-1492.2021093002
    [11] 黄远静, 胡心迪, 张永战.  南沙郑和环礁小南薰礁的点礁地貌特征及其控制因素 . 海洋地质与第四纪地质, 2022, 42(3): 25-35. doi: 10.16562/j.cnki.0256-1492.2021082201
    [12] 深化陆海统筹研究,服务海洋强国建设−《中国陆海统筹战略研究》书评 . 海洋地质与第四纪地质, 2022, 42(2): 214-214.
    [13] 刘刚, 金鼎坚, 吴芳, 于坤, 李奇, 张文凯, 王建超.  机载激光雷达在水下地貌识别与断裂构造精细解译中的应用 . 海洋地质与第四纪地质, 2022, 42(2): 190-199. doi: 10.16562/j.cnki.0256-1492.2021061502
    [14] 罗顺开, 周怀阳, 赵国庆, 袁伟.  加瓜海脊铁锰结壳的年龄及其定年方法适用性比较 . 海洋地质与第四纪地质, 2022, 42(1): 135-145. doi: 10.16562/j.cnki.0256-1492.2021070502
    [15] 左瀚穹, 刘胜, 汪洋, 郭依群, 王万虎, 王洋.  粤东汕头近岸海域灾害地质风险综合评价 . 海洋地质与第四纪地质, 2022, 42(): 1-9. doi: 10.16562/j.cnki.0256-1492.2022072101
    [16] 雷雁翔, 何磊, 王玉敏, 张朋朋, 张斌, 胡蕾, 吴治国, 叶思源.  渤海湾西岸晚更新世以来的沉积环境演化及碳埋藏评价 . 海洋地质与第四纪地质, 2021, 41(6): 194-205. doi: 10.16562/j.cnki.0256-1492.2021020101
    [17] 范佳慧, 窦衍光, 赵京涛, 李军, 邹亮, 蔡峰, 陈晓辉, 李清.  东海陆坡—冲绳海槽水体剖面地球化学特征与指示意义 . 海洋地质与第四纪地质, 2021, 41(6): 102-114. doi: 10.16562/j.cnki.0256-1492.2021072201
    [18] 骆迪, 蔡峰, 闫桂京, 李清, 孙运宝, 董刚, 李昂.  冲绳海槽西部陆坡泥底辟和泥火山特征及其形成动力机制 . 海洋地质与第四纪地质, 2021, 41(6): 91-101. doi: 10.16562/j.cnki.0256-1492.2021040902
    [19] 段云莹, 裴绍峰, 廖名稳, 翟世奎, 张海波, 徐刚, 袁红明.  莱州湾表层沉积物重金属分布特征、污染评价与来源分析 . 海洋地质与第四纪地质, 2021, 41(6): 67-81. doi: 10.16562/j.cnki.0256-1492.2020112601
    [20] 刘昌岭, 孙运宝.  海洋天然气水合物储层特性及其资源量评价方法 . 海洋地质与第四纪地质, 2021, 41(5): 44-57. doi: 10.16562/j.cnki.0256-1492.2021082401
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  1555
  • HTML全文浏览量:  444
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-18
  • 修回日期:  2021-02-02
  • 网络出版日期:  2021-05-28
  • 刊出日期:  2022-02-28

基于微地貌特征的西太平洋菲律宾海海底稳定性评价

doi: 10.16562/j.cnki.0256-1492.2020121801
    作者简介:

    刘娅楠(1997—),女,硕士研究生,主要从事海洋地质研究工作,E-mail:yanan_liu@mail.sdu.edu.cn

    通讯作者: 刘森(1989—),男,博士,助理研究员,主要从事海洋地质环境等研究工作,E-mail:sen_liu@sdu.edu.cn
基金项目:  国家自然科学基金面上项目“菲律宾海盆底层水体性质对中更新世气候转型的响应机制”(41976192);中国地质调查局项目(DD20191010)联合资助
  • 中图分类号: P737.22

摘要: 随着海洋战略地位的逐步提高,深远海海底资源开发和海洋工程建设将面临巨大挑战,主要是受限于技术手段,高精度调查资料难以获取,无法全面准确地进行海底稳定性评价。针对这一问题,本文提出了基于微地貌特征的深远海海底稳定性评价方法。基于已有的研究工作,本文选取西太平洋菲律宾海中南部某区域为研究区,利用ArcGIS平台建立研究区DEM(Digital Elevation Model),提取宏、微观地貌因子,结合全球地震数据、研究区底质类型和潜在地质灾害分布特征,运用模糊数学方法评价研究区海底稳定性,并绘制海底稳定性区划图。结果显示,对区域3220个评价单元进行稳定性分析,可将研究区海底稳定性划分为5个等级,包括基本稳定、较稳定、中等稳定、较不稳定和不稳定。其中,稳定区主要集中在较为平坦的中北部,不稳定区多发育在九州-帕劳海岭、海山、山间盆地等大规模地貌单元发育区,分析揭示,研究区海底稳定性与微地貌特征密切相关。因此,本文提出的基于微地貌特征的海底稳定性评价方法,能够很好地服务于深远海海底稳定性评价。

English Abstract

  • 21世纪是海洋的世纪,建设海洋工程、发展海洋经济、开展海洋研究是推动强国战略的重要内容。目前,我国海洋事业正逐步向深远海迈进,在资源开发、工程建设和捍卫海洋主权等方面已取得一定成果[1-3]。海底稳定性是海洋开发建设的重要制约因素,海底地质稳定性差,制约程度高,开发风险高;海底地质稳定性好,制约程度低,开发风险低[4]。如何准确对深远海海底稳定性进行评价是开展深远海开发利用的重点工作之一,由于影响海底稳定性的因素具有复杂性和不确定性,因此,评价结果并不具有绝对含义[5]

    目前,涉及海底稳定性的研究成果多集中于近海且常以单一地貌为研究对象,缺少对深远海海底稳定性的宏观性评价。国外学者侧重于海底边坡、斜坡等单一地貌,常采用概率、数值模拟、半解析等数学方法进行分析[6-7],对黑海高加索大陆架[8]、高纬度冰期斯瓦尔巴-巴伦支海[9]等区域的海底斜坡稳定性进行了研究,探索了地震和沉积速率对海底斜坡稳定性的影响[10],海底沉积斜坡和增生楔的稳定性[11]等问题,成果大多只聚焦于目标区的稳定性分析,缺乏定量化的分区评价。我国学者除对海底斜坡进行了大量研究外[12],近年来以地貌类型、地形坡度、地震数据、工程地质参数等因素作为主要评价因子,利用GIS、层次分析和模糊综合评价等方法进行海底稳定性评价和分区,在南海北部陆坡[13]、南堡-曹妃甸海域[14]和莱州湾[15]等区域进行了小范围的宏观评价。然而,这些区域大多位于近海,深远海海底稳定性评价研究还存在较多空白。相较于近海,深远海地质环境复杂,具有勘查难度大、数据精度低和研究成果少等问题,如何基于现有数据资料正确、全面地评价深远海海底稳定性,对于深远海资源开发和工程建设具有深远意义。

    海底微地貌是影响深远海海底稳定性的重要因素,不仅其本身的起伏变化会对区域稳定性产生影响,而且常为海底滑坡、陡坎等致灾因子的发育提供条件。基于研究团队前期工作基础,本文选取西太平洋菲律宾海中南部某区域为研究区,利用ArcGIS平台建立研究区DEM(数字高程模型,Digital Elevation Model),提取宏、微观地貌因子(坡度、地形起伏度),结合海底地震、海底底质类型、海底地质灾害等要素,通过模糊数学评价方法将以上要素数字化,综合分析研究区海底稳定性并进行分区,提出了基于微地貌特征的深远海海底稳定性评价方法。研究成果能够为深远海海底稳定性评价提供技术方法参考,丰富深远海海洋地质研究。

    • 研究区地处欧亚板块、印度-澳大利亚和太平洋板块交汇处,位于西太平洋菲律宾海中南部,横跨西菲律宾海盆和帕里西维拉海盆,九州-帕劳海岭从中间穿过,范围为14.5°~17.0°N、132.5°~136.0°E(图1),面积约为1.0×105 km2,海底标高为−6712.8~−1692.2 m。

      图  1  菲律宾海板块海底地形地貌与研究区位置图[22]

      Figure 1.  Seabed topography and geomorphology of the Philippine Sea plate and location of the study area [22]

      菲律宾海四周被呈链状的岛弧、海沟包围,中部宽阔,南北窄小,近菱形展布,具有典型的沟-弧-盆体系特征[16]。现有的研究表明,菲律宾海板块自61 Ma开始扩张,期间经历多次旋转、扩张,其形成与演化与太平洋板块运动息息相关[17]。在43 Ma左右,受太平洋板块俯冲影响形成古伊豆-小笠原岛弧[11]。其后,因四国-帕里西维拉海盆扩张影响,古伊豆-小笠原岛弧裂解为九州-帕劳海岭和伊豆-小笠原-马里亚纳弧[18-21]

      研究区受复杂而剧烈的地质作用影响,微地貌单元广泛分布,发育有海山、海丘、山间谷地等多种微地貌单元,其中海山主要发育在九州-帕劳海岭及其西部海盆,海丘、山间谷地则集中分布在海岭东侧的帕里西维拉海盆。研究区能够较为明显地反映出菲律宾海海底地貌特征,利于对其海底稳定性进行研究,具有一定的代表性。

    • 本文数据主要来源于公共平台公开的海底高程数据,主要有SRTM、ASTER等。利用ArcGIS平台建立研究区海底DEM(DEM即数字高程模型,是通过有限的地形高程数据实现对地面地形的数字化模拟,是用一组有序数值阵列形式表示地面高程的一种实体地面模型),从微观和宏观两个角度提取关键地貌因子;基于全球地震数据(https://earthquake.usgs.gov/earthquakes/search/),运用Kriging插值法对研究区地震区划进行分析;海洋地质灾害分布和底质类型数据来源于对公开数据的处理和识别。

    • 坡度(微观地貌因子)和地形起伏度(宏观地貌因子)作为典型的地貌因子,能够代表性地反映海底微地貌特征,参考已有研究成果,本文选择坡度和地形起伏度两个地貌因子进行海底稳定性评价[23-24]。将研究区DEM在ArcGIS平台中以“标准差”的形式进行分类,根据表1中的计算方式,获取研究区坡度和地形起伏度分布特征。

      表 1  典型地貌因子概念及算法[25-26]

      Table 1.  Concept and algorithm of typical geomorphic factor [25-26]

      地形因子概念公式
      坡度描述地表单元陡缓程度,表示地面在某点的倾斜度tanα=△h/△dα—坡度,△h—高程差(m),△d—水平距离(m)
      地形起伏度区域最高点与最低点海拔高度的差值,反映地形起伏特征[25]RAi=ZimaxZiminRAi—地形起伏度(m),Zimax—区域内最大高程值(m),Zimin—区域内最小高程值(m)
    • 由于影响海底稳定性的因素复杂,稳定性分级界限模糊,加之人们主观上的差异,不易对海底稳定性得出一致评价。因此,综合前人的经验和相关的评价结果,采用模糊数学方法来进行海底稳定性评价工作是可行的。

      模糊数学评价是地质评价中常用的一种数学评价方法,可以实现将相对复杂且不够确定的影响因素数学化。研究区位于西太平洋菲律宾海中南部,受制于地理位置和技术条件,很难对其海底稳定性进行精确评价,模糊数学评价法可以利用模糊数学的隶属度和隶属函数理论把定性评价转化为定量评价,从而对研究对象做出一个综合的评价[27]。通过数字化评价指标,综合评定评价指标等级,可以有效减少评价主体间的主观评定误差(图2)。

      图  2  评价方法的技术路线

      Figure 2.  The technical flowchart for evaluation methods

    • 研究区坡度变化范围为0°~58°,平均坡度6.9°,标准差为7.2°,坡度主要集中于0°~15°,表明研究区坡度变化较大,但大部分区域坡度较为平缓。坡度的低值主要集中在研究区的中北部,该区域地形较为平坦,坡度变化较小;研究区东部和西南部地形相对复杂,海山、海丘等地貌单元发育,坡度较高且变化频繁;坡度最大值分布在九州-帕劳海岭,该区域具有较高的高程差,地形起伏大,坡度较高。

    • 研究区地形起伏度相对较小,主要集中在44.6 m以下,平均值为31.9 m,最大值仅为344.6 m。低值主要集中在研究区中北部,该区域地形较为平坦,地貌单元类型相对单一;高值集中在九州-帕劳海岭和海山等区域。

    • 研究区内底质类型丰富,除常见的远洋黏土外,区域内广泛发育了基岩、铁锰结核和硅藻软泥。基岩硬度相对较高,分布的区域通常具有较大的土体承载力;硅藻软泥则相反,其相对较软,对土体承载力会产生完全不同的影响。

    • 海底滑坡在主、被动大陆边缘广泛发育,可以将失稳的沉积物带到深海盆地[28-33]。九州-帕劳海岭边缘地带不仅有较高的坡度,而且具有很大的高程差,极易发生海底滑坡。研究区中北部地形较为平坦,西部海盆区虽然坡度也比较大,但是高程差相对较低,地貌起伏变化不大,为海底滑坡的低易发区。

    • 陡坎是研究区内一种常见且分布广泛的致灾因子,是指与海底斜坡地形走向平行或近于平行且坡度较大的海底陡坡[34]。受九州-帕劳海岭和大型地貌单元影响,陡坎主要发育在研究区中部和大规模海山、海丘群处,这些区域都具有比较高的高程差和坡度。

    • 崩塌是海底较陡斜坡上的岩土体突然受力而脱离崩落的地质现象,具有较大的破坏性。研究区地形起伏较大,陡坡广泛发育,为崩塌的产生提供了有利条件。区域内大规模海山、山间盆地以及九州-帕劳海岭附近往往都具有较大的地形起伏度和坡度,是崩塌的易发区域。

    • 本文采用模糊数学原理,建立由多种影响因素组成的评价因素集A,构建与影响因素集相匹配的模糊评语集X。通过模糊信息化确定各单一因素对评审等级的归属程度,建立评价因素集A到评语集X的模糊评价矩阵R。利用模糊权值矩阵计算各因素在评价目标中的权重值W,最后运用模糊运算矩阵计算出定量解。

    • 评价指标主要由孕灾背景和潜在地质灾害两个指标组成,其中孕灾背景指标又包括地震区划、微观地貌因子、宏观地貌因子和底质类型四种指标[5]。研究区位于菲律宾海盆中南部,水深为–6712.8~–1692.2 m,区域内无大型地震,受热带气旋影响不大,基于以上特点,综合考虑各个指标特性,将5类指标划分为5个等级,建立海底稳定性评价指标体系(表2)。数据来源于海底地震烈度区划图、海底地质灾害分布图、微观与宏观地貌因子分布图(通过对坡度、坡度变率、坡向、坡向变率、曲率5种微观地貌因子和地表粗糙度、地形起伏度、高程变异系数、地表切割深度4种宏观地貌因子进行综合分析,参考已有研究成果,分别选择坡度和地形起伏度作为微观与宏观地貌因子的指标)以及底质类型分布图。

      表 2  海底稳定性评价指标体系

      Table 2.  Evaluation index system for seabed stability

      指标体系地震区划灾害地质微观地貌因子(坡度)宏观地貌因子(地形起伏度)底质类型
      1级地震动峰加速度值=0.05 g,相当于5级地震区海底火山0°~3°0~19 m基岩
      2级地震动峰加速度值=0.1 g,相当于6级地震区裂谷3°~7°19~45 m铁锰结壳
      3级地震动峰加速度值=0.15 g,相当于7级地震区海底滑坡7°~15°45~77 m含铁锰结核的远洋黏土
      4级地震动峰加速度值=0.2 g,相当于8级地震区陡坎15°~25°77~120 m远洋黏土
      5级地震动峰加速度值≥0.3 g,相当于9级地震区崩塌>25°>120 m硅藻软泥

      根据选取的5类评价指标,可以得到稳定性评价因素集A(式1)。

      $ A = \left\{ {{a_1},{a_2},{a_3},{a_4},{a_5}} \right\} $

      (1)

      a1—地震区划指标,a2—灾害地质指标,a3—微观地貌因子指标,a4—宏观地貌因子指标,a5—底质类型指标。

    • 逻辑信息分类法和特征分类法是常用的分级方法,通常将级别划分为3级和5级[35]。考虑到研究区具体情况,本文选择五级分类体系,分为不稳定、较不稳定、中等稳定、较稳定和基本稳定5个等级区,得到模糊评语集X

      $ X = \{ {v_1},\;{v_2},\;{v_3},\;{v_4},\;{v_5}\} $

      (2)

      v1—基本稳定,v2—较稳定,v3—中等稳定,v4—较不稳定性,v5—不稳定。

    • 评价因子归属度反映了评价因子隶属于评语集的程度,通常由隶属函数确定。由于研究区位于深海,难以用具有连续变化特点的函数对其进行模糊信息化,因此选取具有正态分布特点的“0,0.2,0.5,0.8,1.0,0.8,0.5,0.2,0”作为隶属度函数,对海底稳定性评价因子的影响程度进行表示(表3)。通过例证法、正太型函数分布规律以及专家经验法得到隶属度值,各评价因子的隶属程度应基本相等[23, 36]

      表 3  海底稳定性评价指标隶属度值

      Table 3.  Membership value of evaluation index of seabed stability

      稳定性
      等级
      评价指标
      地震区划灾害地质微观地貌因子宏观地貌因子底质类型
      基本稳定1级1级1级1级1级
      v10.150.150.150.150.15
      较稳定2级2级2级2级2级
      v20.300.300.300.300.30
      中等稳定3级3级3级3级3级
      v30.550.550.550.550.55
      较不稳定4级4级4级4级4级
      v40.800.800.800.800.80
      不稳定5级5级5级5级5级
      v50.850.850.850.850.85
    • 利用获取的评价指标隶属度值对各评价指标进行量化,得到稳定性评价因素集A到模糊评语集X的模糊评价矩阵R

      $ R=\left[\begin{array}{ccc}{v}_{1}& {v}_{2}& \cdots {v}_{5}\\ {r}_{11}& {r}_{12}& \cdots {r}_{15}\\ {r}_{21}& {r}_{22}& \cdots {r}_{25}\\ \vdots & \vdots & \vdots \\ {r}_{51}& {r}_{52}& \cdots {r}_{55}\end{array}\right] $

      (3)

      v1v2v3v4v5—各评价因子的隶属度值;r1—地震区划指标;r2—灾害地质指标;r3—微观地貌因子指标;r4—宏观地貌因子指标;r5—底质类型指标。

    • 评价指标的权重值反映了评价因子间的相对重要性,对海底稳定性评价具有重要意义。本文采用专家评判与层次分析决策相结合的方法确定海底稳定性评价指标的权重值[37]。首先通过专家对各指标的相对重要性进行判断,然后利用层次分析过程建立权重值判别表,得到权重值判别矩阵,最终计算出各评价指标的权重值分配集W表4)。

      表 4  评价指标权重值

      Table 4.  The weight value of the evaluation index

      评价指标地震区划灾害地质微观地貌因子宏观地貌因子底质类型
      权重值0.08820.44120.22060.14710.1029
    • 通过建立的模糊关系矩阵R和权值分配集W,以3'×3'大小的网格单元对研究区海底稳定性进行评价,利用模糊运算矩阵得到综合评价结果B

      $ B = W * R = ({b_1},\;{b_2},\;{b_3},\;{b_4},\;{b_5}) $

      (4)

      W—权重值分配集,R—模糊评价矩阵,*—模糊变换算子。

      评价结果B是基于评价因素集A的综合评价结果,根据模糊数学的最大隶属度原则,取隶属度最大者所对应的等级作为评价单元海底稳定性等级。

    • 以3'×3'大小的网格为评价单元,依据模糊数学原理构建的模糊综合评价系统进行计算,采用优势合并方法,将优势的等级值作为该区的稳定性等级,得到研究区海底稳定性区划图(图3)。

      图  3  海底稳定性区划图

      Figure 3.  Division map of submarine stability

      (1)基本稳定区

      研究区基本稳定区主要分布在中北部。该区域地形地貌相对平坦,缺乏大规模地貌单元发育,受宏观、微观地貌因子影响较小。此外,由于构造、岩浆热液等地质运动相对匮乏,灾害地质因子并不发育,仅有局部地区分布少量海底火山,因此具有较高的稳定性。

      (2)较稳定区

      较稳定区广泛分布在各地貌单元过渡区。该区地形地貌的坡度和地形起伏度通常不大,底质类型多为基岩和铁锰结核,一般受地质灾害影响较小,较为稳定。

      (3)中等稳定区

      中等稳定区在研究区各个范围内都有发育。该区通常具有一定的坡度和地形起伏度,多位于大规模地貌的过渡区或较为陡峭的微地貌单元处。受地形起伏变化和底质类型影响,局部可能发育海底滑坡等较严重的地质灾害,但总体还是比较稳定。

      (4)较不稳定区

      较不稳定区零散分布在研究区内。该分区主要位于地形地貌变化较大的区域,可能受海底滑坡、陡坎等地质灾害影响。此外,局部地区的不稳定也可能与硅藻软泥的分布有关。

      (5)不稳定区

      不稳定区大多位于海山、山间盆地等地形地貌起伏变化较大、坡度较陡的区域。该分区通常受灾害地质因子影响较大,是海底滑坡、陡坎、崩塌等地质灾害的易发区域。这些区域的底质类型多为远洋黏土和硅藻软泥,稳定性相对较低。

    • (1)西太平洋菲律宾海微地貌单元发育,其海底稳定性与地形地貌变化密切相关。稳定区通常较为平坦,缺乏地貌单元和灾害地质干扰;不稳定区主要集中在九州-帕劳海岭及其西部的海山、山间盆地等大规模地貌单元发育区;较稳定、中等稳定、较不稳定区广泛分布在各地貌单元及地貌单元间的过渡地带。

      (2)基于研究区自身特点,选取地震区划、灾害地质、微观地貌因子、宏观地貌因子和底质类型作为评价因子,运用模糊数学原理构建稳定性评价模型,建立了5类5级评价指标体系。评价结果能较为合理地显示研究区海底稳定性,与实际情况基本吻合。

      (3)深远海海底稳定性评价对于我国未来的海洋资源开发、海洋经济发展具有重要指导意义。然而,该领域目前还存在很大空白,技术规程有待完善,研究成果也大多集中在近海。建议规范深远海海底稳定性评价体系,为进一步建设深远海海洋工程奠定基础。

参考文献 (37)

目录

    /

    返回文章
    返回