菲律宾海中部海域声速剖面结构及季节性变化

李攀峰, 颜中辉, 杜润林, 孙波, 刘李伟, 杨源, 于得水

李攀峰, 颜中辉, 杜润林, 孙波, 刘李伟, 杨源, 于得水. 菲律宾海中部海域声速剖面结构及季节性变化[J]. 海洋地质与第四纪地质, 2021, 41(1): 147-157. DOI: 10.16562/j.cnki.0256-1492.2020112301
引用本文: 李攀峰, 颜中辉, 杜润林, 孙波, 刘李伟, 杨源, 于得水. 菲律宾海中部海域声速剖面结构及季节性变化[J]. 海洋地质与第四纪地质, 2021, 41(1): 147-157. DOI: 10.16562/j.cnki.0256-1492.2020112301
LI Panfeng, YAN Zhonghui, DU Runlin, SUN Bo, LIU Liwei, YANG Yuan, YU Deshui. Structures and seasonal variation of sound velocity profiles in the central Philippine Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 147-157. DOI: 10.16562/j.cnki.0256-1492.2020112301
Citation: LI Panfeng, YAN Zhonghui, DU Runlin, SUN Bo, LIU Liwei, YANG Yuan, YU Deshui. Structures and seasonal variation of sound velocity profiles in the central Philippine Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 147-157. DOI: 10.16562/j.cnki.0256-1492.2020112301

菲律宾海中部海域声速剖面结构及季节性变化

基金项目: 中国地质调查局项目(DD20191003)
详细信息
    作者简介:

    李攀峰(1987—),男,工程师,主要从事深海地质研究工作, E-mail:lpf_320@126.com

    通讯作者:

    杜润林(1987—),男,助理研究员,主要从事海洋地质研究工作,E-mail:durunlin123@163.com

  • 中图分类号: P313

Structures and seasonal variation of sound velocity profiles in the central Philippine Sea

  • 摘要: 利用2019年菲律宾海中部海域经质量校正后的Argo浮标数据,采用Wilson第二方程式计算得到每个浮标站位不同水深的声速值,分析了研究区声速的垂向结构、水平分布及季节性变化特征,并初步探讨了声速与海底地形的关系。结果显示研究区声速在垂向上表现为典型的三层结构,从上到下分别是混合层、主跃变层、深海等温层;声速在100 m以浅受季节影响最大,100~800 m影响程度基本一致,800 m以深逐渐减弱,1200 m以深基本不受影响。声速水平分布特征主要表现为:声道轴深度为900~1100 m,大致呈现南部较浅、北部较深的趋势,季节性变化不大;声速值在200 m以浅表现为南高北低,200~700 m为北高南低,800~1100 m为中间高、四周低,1200 m以深为南高北低。九州-帕劳海脊声道轴附近深度声速受地形影响明显低于周围海域。
    Abstract: With the mass-calibrated Argo buoy data of 2019 from the central Philippine Sea, the sound velocity values at different water depths are calculated using Wilson's second equation, and the vertical structure, horizontal distribution patterns and seasonal variations of sound velocity are analyzed, and the relationship between sound velocity and seafloor topography was preliminarily discussed. It is found that the sound velocity in the study area has a typical three-layer structure in vertical direction, from the top to the bottom they are successively the mixed layer, the main thermocline layer, and the deep isothermal layer. The sound velocity in the water less than 100 m is mainly effected by the season, and the influence remains the same from 100 to 800 m in water depth. The influence is gradually weakening from 800 m to deep, and for the water deeper than 1200 m the sound velocity remains stable. The horizontal distribution of sound velocity shows that when the depth of the sound channel axis is between 900 and 1100 m, it is roughly shallow in the south and deep in the north, with little seasonal variation; when the water depth is less than 200 m, the sound velocity is high in the south and low in the north, for the water in depth of 200-700 m, the velocity is high in the north and low in the south, when the water is in the range of 800-1100 m, it is high in the middle and low in the south, for the area with water depth deeper than 1200 m the velocity is high in the south and low in the north. The sound velocity near the deep sound channel axis of the Kyushu-Palau ridge is significantly lower than that of the surrounding area due to the influence of topography.
  • 图  1   研究区范围及水深地形图

    Figure  1.   Bathymetric map showing the survey area

    图  2   研究区2019年Argo浮标站位图

    a. 春季,b. 夏季,c. 秋季,d. 冬季。

    Figure  2.   Location map of Argo buoys in 2019

    a. Spring, b. Summer, c. Autumn, d. Winter.

    图  3   浮标站位位置图

    Figure  3.   Location map of Argo buoys

    图  4   典型声速结构图

    a、b、c、d为图3浮标站位区域。

    Figure  4.   Structure maps of sea water sound velocity

    a, b, c and d represent the respective buoys.

    图  5   声层平面分布图

    a. 春季,b. 夏季,c. 秋季,d. 冬季。

    Figure  5.   Plane distribution of sonic layer

    a. Spring, b. Summer, c. Autumn, d. Winter.

    图  6   声道轴平面分布图

    a. 春季,b. 夏季,c. 秋季,d. 冬季。

    Figure  6.   Plane distribution of sound channel axis

    a. Spring, b. Summer, c. Autumn, d. Winter.

    图  7   各季节标准层声速变化

    Figure  7.   Variation of sound velocity with the season

    图  8   声速平面分布图

    a. 20 m,b. 200 m,c. 400 m,d. 1200 m。

    Figure  8.   Plane distribution map of sound velocity

    图  9   经向声速剖面断面图

    Figure  9.   Sound velocity profile in longitude direction

    表  1   研究区各季节标准层声速值

    Table  1   The sound velocity of the standard layer in each season

    深度/m2050100200300400500600700800
    春季最大值/(m/s)1539.21537.81537.71533.91524.01523.21523.71522.41505.81497.6
    最小值/(m/s)1516.21514.61513.91502.31491.51486.21483.71483.21481.31479.9
    变化值/(m/s)23.023.223.831.632.537.040.039.124.517.7
    平均值/(m/s)1532.61531.71530.11522.51515.115071498.214911486.41484.1
    标准差4.574.504.733.394.666.656.795.523.672.31
    夏季最大值/(m/s)1539.81540.01538.11532.01524.11522.81523.71521.41504.01497.5
    最小值/(m/s)1525.51519.31516.91506.41491.21487.61484.81483.51481.41480.4
    变化值/(m/s)14.320.621.225.633.035.238.937.922.617.0
    平均值/(m/s)1536.91534.51530.41522.51515.21506.91498.21491.21486.51484.1
    标准差2.373.624.443.034.406.957.105.433.502.20
    秋季最大值/(m/s)1538.61538.81538.31531.21523.41523.31521.01515.81506.01497.5
    最小值/(m/s)1527.41525.71518.31491.31487.81485.01484.51482.81480.11479.2
    变化值/(m/s)11.213.220.039.935.638.336.533.025.918.4
    平均值/(m/s)1536.71535.91530.51521.31514.41505.91497.114901485.71483.5
    标准差1.492.304.312.884.246.436.024.282.731.74
    冬季最大值/(m/s)1537.31537.91538.01533.51523.61523.31521.21516.61507.81499.5
    最小值/(m/s)1519.81520.21520.71509.21492.61486.91484.81483.31480.71480.7
    变化值/(m/s)17.517.717.324.330.936.436.333.227.118.8
    平均值/(m/s)1531.31531.61530.61521.31514.31506.61498.41491.51486.81484.3
    标准差4.344.394.273.045.758.017.696.084.212.71

    深度/m900100011001200130014001500160017001800
    春季最大值/(m/s)1490.81487.61486.51485.81486.21486.71487.41488.31489.31490.3
    最小值/(m/s)1479.71480.01480.41481.11482.01482.91484.21485.21486.41487.8
    变化值/(m/s)11.17.66.14.74.23.83.33.12.92.5
    平均值/(m/s)1483.01482.71482.71483.11483.71484.51485.41486.51487.61488.8
    标准差1.571.21.070.920.790.690.610.540.490.43
    夏季最大值/(m/s)1490.61487.11486.91487.01487.21487.51488.31488.81489.61490.7
    最小值/(m/s)1480.01480.01480.41481.31482.21483.01484.11485.31486.41487.7
    变化值/(m/s)10.67.16.55.75.04.54.23.53.23.0
    平均值/(m/s)1482.91482.61482.61483.01483.61484.41485.41486.51487.61488.8
    标准差1.501.181.070.960.780.660.580.530.480.42
    秋季最大值/(m/s)1490.21487.41485.51485.71485.81486.51487.21488.21489.21490.3
    最小值/(m/s)1479.31479.61479.91480.91481.91483.11484.21485.21486.51487.7
    变化值/(m/s)10.97.85.64.83.93.43.03.02.72.6
    平均值/(m/s)1482.51482.21482.31482.71483.41484.31485.21486.31487.51488.7
    标准差1.261.060.940.810.690.590.530.490.450.41
    冬季最大值/(m/s)1493.91487.81485.81485.91486.11486.71487.21488.01488.91490.0
    最小值/(m/s)1480.01480.21480.51481.21482.01482.91483.91485.01486.31487.7
    变化值/(m/s)13.87.55.34.74.13.83.33.02.62.3
    平均值/(m/s)1483.11482.61482.61483.01483.61484.41485.31486.41487.61488.8
    标准差1.831.120.970.850.750.660.600.540.490.44
    下载: 导出CSV
  • [1] 张旭, 张永刚, 张健雪, 等. 一种新的声速剖面结构参数化方法[J]. 海洋学报: 中文版, 2011, 33(5):54-60. [ZHANG Xu, ZHANG Yonggang, ZHANG Jianxue, et al. A new model for calculating sound speed profile structure [J]. Acta Oceanologica Sinica, 2011, 33(5): 54-60.
    [2] 吴碧, 陈长安, 林龙. 声速经验公式的适用范围分析[J]. 声学技术, 2014(6):504-507. [WU Bi, CHEN Changan, LIN Long. Analysis of applicable scope of empirical equation for sound velocity [J]. Technical Acoustics, 2014(6): 504-507.
    [3] 张斌, 李广雪, 黄继峰. 菲律宾海构造地貌特征[J]. 海洋地质与第四纪地质, 2014, 34(2):79-88. [ZHANG Bin, LI Guangxue, HUANG Jifeng. The Tectonic Geomorphology of the Philippine sea [J]. Marine Geology & Quaternary Geology, 2014, 34(2): 79-88.
    [4] 张旭, 张永刚, 张胜军, 等. 菲律宾海的声速剖面结构特征及季节性变化[J]. 热带海洋学报, 2009, 28(6):23-34. [ZHANG Xu, ZHANG Yonggang, ZHANG Shengjun, et al. Distribution and seasonal variability of sound speed profile in the Philippine Sea [J]. Journal Article, 2009, 28(6): 23-34. doi: 10.3969/j.issn.1009-5470.2009.06.004
    [5] 曹震卿, 张永刚, 李庆红, 等. 西太平洋一、二岛链间海区声传播的季节因素分析[J]. 科学技术与工程, 2018, 18(29):20-29. [CAO Zhenqing, ZHANG Yonggang, LI Qinghong, et a1. Analysis of seasonal factors to acoustic propagation between the areas of first and second island chMns in the Western Pacific Ocean [J]. Science Technology and Engineering, 2018, 18(29): 20-29. doi: 10.3969/j.issn.1671-1815.2018.29.004
    [6] 程琛, 张旭, 史峰. 西太平洋夏季三类声速环境下的会聚区特性比较[J]. 海洋科学进展, 2015, 33(1):56-62. [CHENG Chen, ZHANG Xu, SHI Feng. Comparison of convergence zone features under three different hydrological environment in the west Pacific Ocean in summer [J]. Advances in Marine Science, 2015, 33(1): 56-62. doi: 10.3969/j.issn.1671-6647.2015.01.007
    [7] 王彦磊, 高建华, 李杰, 等. 西北太平洋水声环境区划及声传播特征[J]. 海洋通报, 2013, 32(1):85-91. [WANG Yanlei, GAO Jianhua, LI Jie, et a1. Zoning and propagation loss characteristics of underwater acoustic environment in the Northwest Pacific Ocean [J]. Marine Science Bulletin, 2013, 32(1): 85-91. doi: 10.11840/j.issn.1001-6392.2013.01.013
    [8]

    Bingham F M, Suga T. Distributions of mixed layer properties in North Pacific water mass formation areas: comparison of Argo floats and world Ocean Atlas 2001 [J]. Ocean science, 2006, 2(1): 61-70. doi: 10.5194/os-2-61-2006

    [9]

    Munk W H, Forbes A M G. Global ocean warming: an acoustic measure [J]. Journal of Physical Oceanography, 1989, 19(11): 1765-1778. doi: 10.1175/1520-0485(1989)019<1765:GOWAAM>2.0.CO;2

    [10] 吴时国, 范建柯, 董冬冬. 论菲律宾海板块大地构造分区[J]. 地质科学, 2013, 48(3):677-692. [WU Shiguo, FAN Jianke, DONG Dongdong. Discussion on the tectonic division of the Philippine Sea Plate [J]. Chinese Journal of Geology, 2013, 48(3): 677-692. doi: 10.3969/j.issn.0563-5020.2013.03.008
    [11]

    Barth A P, Tani K, Meffre S, et al. Generation of Silicic Melts in the Early Izu-Bonin Arc Recorded by Detrital Zircons in Proximal Arc Volcaniclastic Rocks From the Philippine Sea [J]. Geochemistry, Geophysics, Geosystems, 2017, 18: 3576-3591.

    [12]

    Ishizuka O, Taylor R N, Yuasa M, et al. Making and breaking an island arc: A new perspective from the Oligocene Kyushu-Palau arc, Philippine Sea [J]. Geochemistry, Geophysics, Geosystems, 2010, 12: 1-40.

    [13] 殷征欣, 李正元, 沈泽中, 等. 西太平洋帕里西维拉海盆不对称性发育特征及其成因[J]. 吉林大学学报: 地球科学版, 2019, 49(1):218-229. [YIN Zhengxin, LI Zhengyuan, SHEN Zezhong, et al. Asymmetric Geological Developments and Their Geneses of the Parece Vela Basin in Western Pacific Ocean [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(1): 218-229.
    [14] 许淑梅, 张晓东, 翟世奎. 四国海盆起源与沉积环境演化[J]. 海洋地质与第四纪地质, 2004, 24(2):119-123. [XU Shumei, ZHANG Xiaodong, ZHAI Shikui. The Origin and Sedimentary Environment Evolution of the Shikoku Basin [J]. Marine Geology & Quaternary Geology, 2004, 24(2): 119-123.
    [15] 南明星, 段睿. 基于Argo数据的北太平洋声速剖面研究[J]. 电声技术, 2004, 24(2):119-123. [NAN Mingxing, DUAN Rui. Research on the Sound Speed Profile in the North Pacific Ocean Using the Argo Data [J]. Marine Geology & Quaternary Geology, 2004, 24(2): 119-123.
    [16] 李兆钦, 刘增宏, 邢小罡. 全球海洋Argo散点资料集(V3.0)(1997—2019)用户手册.

    LI Zhaoqin, LIU Zenghong, XING Xiaogang. User Manual for Global Argo Observational data set (V3.0) (1997-2019).

    [17]

    Wilson W D. Extrapolation of the equation or the speed of sound in sea water [J]. Journal of the Acoustical Society of America, 1962, 34(6): 866-866. doi: 10.1121/1.1918215

    [18] 魏宗坤. 高精度声速剖面测量系统研究[D]. 黑龙江: 哈尔滨工程大学, 2019.

    WEI Zongkun. The Research on High Precision Sound Velocity Profile Measurement System[D]. Heilongjiang: Harbin Engineering University, 2019.

    [19] 陈希, 李妍, 李振锋, 等. 一种基于声信号的海洋温跃层特征参数寻优反演方法: CN201910684576.7[P]. 2019-11-01.

    CHEN Xi, LI Yan, LI Zhenfeng, et al. An inversion method of ocean thermocline characteristic parameter optimization based on acoustic signals: CN201910684576.7[P]. 2019-11-01

    [20]

    Saunders P M. Practical conversion of pressure to depth [J]. Journal of physical oceanography, 1981, 11: 573-574. doi: 10.1175/1520-0485(1981)011<0573:PCOPTD>2.0.CO;2

    [21] 康霖, 王凡, 陈永利. 北太平洋低纬度西边界流(NMK)的时空特征[J]. 海洋预报, 2011, 28(3):32-39. [KANG Lin, WANG Fan, CHEN Yongli. Characteristics of temporal and spatial distribution of North Pacific low-lalitude Western Boundary Currents [J]. MArine Forecasts, 2011, 28(3): 32-39. doi: 10.3969/j.issn.1003-0239.2011.03.006
    [22] 杨蓓蓓, 林霄沛. 棉兰老流与棉兰老潜流季节内变化研究[J]. 中国海洋大学学报: 自然科学版, 2016, 46(6):21-28. [YANG Beibei, Lin Xiaopei. Intraseasonal variability of the Mindanao current and the Mindanao undercurrent [J]. Periodical of ocean university of China, 2016, 46(6): 21-28.
    [23] 韩复兴, 孙建国, 王坤. 深海声道对波场传播的影响[J]. 石油地球物理勘探, 2014, 49(3):444-450, 467. [HAN Fuxing, SUN Jianguo, WANG Kun. Deep Sea Channel Influence on Wave Field Energy Propagation [J]. Oil Geophysical Prospecting, 2014, 49(3): 444-450, 467.
    [24] 胡治国. 深海复杂地形环境下声传播规律及其空间相关特性研究[D]. 中国科学院大学, 2018.

    HU Zhiguo. Study on The Law of Sound Propagation and Its Spatial Correlation Characteristics in The Deep-sea Complex Terrain Environment[D]. Beijing: University of Chinese Academy of Sciences, 2018.

  • 期刊类型引用(4)

    1. 李保金,薛树强,孙文舟,李景森,曾安敏,卞加超. 简化声速剖面的声线精度损失极小准则及遗传算法. 测绘学报. 2024(07): 1336-1344 . 百度学术
    2. 赵爽,王振杰,聂志喜,贺凯飞,刘慧敏,孙振. 顾及声速结构时域变化的海底基准站高精度定位方法. 测绘学报. 2023(01): 41-50 . 百度学术
    3. 邱燕萍,高思宇,李自强,陈倩. 基于WOA18的西北太平洋第一、二岛链间声速特征分析. 海洋信息技术与应用. 2023(02): 65-75 . 百度学术
    4. Shuang ZHAO,Zhenjie WANG,Zhixi NIE,Kaifei HE,Huimin LIU,Zhen SUN. Precise Positioning Method for Seafloor Geodetic Stations Based on the Temporal Variation of Sound Speed Structure. Journal of Geodesy and Geoinformation Science. 2023(02): 81-92 . 必应学术

    其他类型引用(3)

图(9)  /  表(1)
计量
  • 文章访问数:  1912
  • HTML全文浏览量:  254
  • PDF下载量:  53
  • 被引次数: 7
出版历程
  • 收稿日期:  2020-11-22
  • 修回日期:  2021-01-18
  • 网络出版日期:  2021-02-28
  • 刊出日期:  2021-02-27

目录

    /

    返回文章
    返回