留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杭州湾沉积物中硫酸盐—甲烷转换带内的碳循环

贺行良 谭丽菊 段晓勇 印萍 谢永清 杨磊 董超 王江涛

贺行良, 谭丽菊, 段晓勇, 印萍, 谢永清, 杨磊, 董超, 王江涛. 杭州湾沉积物中硫酸盐—甲烷转换带内的碳循环[J]. 海洋地质与第四纪地质. doi: 10.16562/j.cnki.0256-1492.2020021401
引用本文: 贺行良, 谭丽菊, 段晓勇, 印萍, 谢永清, 杨磊, 董超, 王江涛. 杭州湾沉积物中硫酸盐—甲烷转换带内的碳循环[J]. 海洋地质与第四纪地质. doi: 10.16562/j.cnki.0256-1492.2020021401
HE Xingliang, TAN Lijv, DUAN Xiaoyong, YIN Ping, XIE Yongqing, YANG Lei, DONG Chao, WANG Jiangtao. Carbon cycle within the sulfate-methane transition zone in the marine sediments of Hangzhou Bay[J]. Marine Geology & Quaternary Geology. doi: 10.16562/j.cnki.0256-1492.2020021401
Citation: HE Xingliang, TAN Lijv, DUAN Xiaoyong, YIN Ping, XIE Yongqing, YANG Lei, DONG Chao, WANG Jiangtao. Carbon cycle within the sulfate-methane transition zone in the marine sediments of Hangzhou Bay[J]. Marine Geology & Quaternary Geology. doi: 10.16562/j.cnki.0256-1492.2020021401

杭州湾沉积物中硫酸盐—甲烷转换带内的碳循环


doi: 10.16562/j.cnki.0256-1492.2020021401
详细信息
    作者简介:

    贺行良(1982—),男,高级工程师,主要研究方向为海洋生物地球化学,E-mail:76791772@qq.com

    通讯作者: 段晓勇(1987—),男,副研究员,主要研究方向为环境地球化学,E-mail:duan-xy@qq.com
  • 基金项目:  国家地质调查项目“浙江中部海岸带综合地质调查”(DD20190276),“长江口等重点海岸带综合地质调查”(DD20160145);国家自然科学基金“海洋沉积物中天然气水合物分解释放气体的氧化特性研究”(41406076);浙江省地质矿产专项资金“浙江省海岸带重点区综合地质调查(嘉兴重点区)”(【省资】2017005)
  • 中图分类号: P76

Carbon cycle within the sulfate-methane transition zone in the marine sediments of Hangzhou Bay

More Information
  • 摘要: 杭州湾海底沉积物中蕴藏着大量的浅层生物气,作为温室气体CH4的重要载体,研究其甲烷厌氧氧化(AOM)及相关碳循环过程,对正确评估浅层生物气的生态环境效应具有重要的科学意义。通过对YS6孔柱状沉积物孔隙水、顶空气等地球化学参数的测试分析,基于质量平衡和碳同位素质量平衡原理,利用“箱式模型”定量研究了硫酸盐—甲烷转换带(SMTZ)内的碳循环过程。结果表明:SMTZ位于海底约6~8 mbsf沉积层,其内部碳循环过程除了包含有机质的硫酸盐还原(OSR)、AOM和碳酸盐沉淀(CP)反应外,还隐藏存在“AOM生成的溶解无机碳(DIC)”产甲烷反应(CR),反应速率分别为9.14、7.42、4.36、2.72 mmol·m−2·a−1,而有机质降解产甲烷反应(ME)未发生。各反应对SMTZ内孔隙水DIC的补充贡献率为OSR>AOM>ME,而对DIC的消耗贡献率CP>CR。深部含甲烷沉积层向上扩散而来的CH4并不是驱动SMTZ内部SO42−还原的唯一电子供体,CR和OSR反应亦是导致进入SMTZ内硫酸盐扩散通量大于甲烷的重要因素,且SMTZ下边缘沉积层出现明显的13CH4亏损亦与CR反应有关。本研究认为,定量评估海底沉积物中AOM作用的相对强弱时,SMTZ内可能存在的“隐藏的”产甲烷作用(如CR、ME等)不能忽视。
  • 图  1  YS 6站位位置

    Figure  1.  Map showing the locations of Core YS 6 in Hangzhou Bay

    图  2  SMTZ内碳循环“箱式模型”图[14]

    溶解组分用黄色框表示,固体组分用灰色框表示;灰线箭头表示模型域之外的DIC、SO42−和CH4的输入/输出;5个主要反应路径AOM、OSR、CR、ME和CP分别用不同颜色的箭头标识。

    Figure  2.  Illustration of box model for SMTZ-internal carbon cycling[14]

    The dissolved components are shown in yellow and the solid components in gray; The gray arrow represents the input/output of DIC, SO42− and CH4 outside the box model; The reaction paths of AOM, OSR, CR, ME and CP are marked by different colored arrows.

    图  3  YS6孔孔隙水部分溶解组分的垂直分布剖面

    阴影为SMTZ示意层;0 mbsf处为底层海水数据。

    Figure  3.  Pore water profiles of Core YS6

    Yellow shaded layer for SMTZ; Green shaded layer for MEZ; the data of 0 mbsf from bottom water.

    图  4  5种反应对SMTZ内DIC碳库的相对贡献率

    Figure  4.  The relative contribution of each reaction to pore water DIC in SMTZ

    表  1  孔隙水部分溶解组分的扩散通量

    Table  1.   Diffusion fluxes of dissolved components in pore water

    组分扩散系数D0/(m2·s−1扩散通量F/(mmol·m−2·a−1符号
    SO42−8.91E-1011.87FSO4.in
    CH41.39E-094.65FCH4.in
    Ca2+6.72E-102.29FCa.in
    0.76FCa.out
    Mg2+5.91E-104.15FMg.in
    1.33FMg.out
    DIC9.89E-1016.72FDIC.out
    7.23FDIC.in
    下载: 导出CSV

    表  2  SMTZ内轻、重碳同位素反应速率和总反应速率

    Table  2.   The reaction rates of light and heavy carbon isotopes in SMTZ and the total reaction rates

    项目参数计算结果
    轻、重DIC通量(mmol·m−2·a−112FDIC.out−16.53
    12FDIC.in−7.15
    13FDIC.out−0.18
    13FDIC.in−0.08
    碳同位素值(‰)δ13COM−23.32
    δ13CCH4-SMTZ−90.34
    δ13CDIC-SMTZ−17.04
    δ13CCH4-bottom−71.31
    δ13CDIC-bottom−0.42
    13C/12C比值rstd0.011 237
    rOM0.010 975
    rCH4-SMTZ0.010 222
    rDIC-SMTZ0.011 046
    rCH4-bottom0.010 436
    rDIC-bottom0.011 232
    分馏系数αCR1.070 9
    αAOM1.017 0
    反应分数f0.000.501.00
    b0.370.370.37
    轻同位素反应速率
    (mmol·m−2·a−1
    12RAOM11.879.267.35
    12RCR4.353.392.69
    12RCP4.314.314.31
    12ROM12.3410.449.04
    12RME12.345.220.00
    12RME-CH46.172.610.00
    12RME-DIC6.172.610.00
    12ROSR-C0.005.229.04
    重同位素反应速率
    (mmol·m−2·a−1
    13RAOM0.120.090.07
    13RCR0.040.030.03
    13RCP0.050.050.05
    13ROM0.140.110.10
    13RME0.140.060.00
    13RME-CH40.060.030.00
    13RME-DIC0.070.030.00
    13ROSR-C0.000.060.10
    总反应速率
    (mmol·m−2·a−1
    RAOM11.999.357.42
    RCR4.393.422.72
    RCP4.364.364.36
    ROM12.4810.559.14
    RME12.485.280.00
    RME-CH46.242.640.00
    RME-DIC6.242.640.00
    ROSR-C0.005.289.14
    甲烷通量绝对差值(mmol·m−2·a−1)△FCH43.291.360.06
      注:△FCH4= FCH4.in−(RAOM−RCR−RME-CH4)。
    下载: 导出CSV
  • [1] Milkov A V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there? [J]. Earth-Science Reviews, 2004, 66(3-4): 183-197. doi: 10.1016/j.earscirev.2003.11.002
    [2] Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v
    [3] Regnier P, Dale A W, Arndt S, et al. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: a modeling perspective [J]. Earth-Science Reviews, 2011, 106(1-2): 105-130. doi: 10.1016/j.earscirev.2011.01.002
    [4] Blair N E, Aller R C. Anaerobic methane oxidation on the Amazon shelf [J]. Geochimica et Cosmochimica Acta, 1995, 59(18): 3707-3715. doi: 10.1016/0016-7037(95)00277-7
    [5] Borowski W S, Paull C K, Ussler III W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate [J]. Geology, 1996, 24(7): 655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2
    [6] Egger M, Riedinger N, Mogollón J M, et al. Global diffusive fluxes of methane in marine sediments [J]. Nature Geoscience, 2018, 11(6): 421-245. doi: 10.1038/s41561-018-0122-8
    [7] Beulig F, Røy H, McGlynn S E, et al. Cryptic CH4 cycling in the sulfate–methane transition of marine sediments apparently mediated by ANME-1 archaea [J]. ISME J, 2018, 13(2): 250-262.
    [8] Flury S, Røy H, Dale A W, et al. Controls on subsurface methane fluxes and shallow gas formation in Baltic Sea sediment (Aarhus Bay, Denmark) [J]. Geochimica et Cosmochimica Acta, 2016, 188: 297-309. doi: 10.1016/j.gca.2016.05.037
    [9] Komada T, Burdige D J, Li H L, et al. Organic matter cycling across the sulfate-methane transition zone of the Santa Barbara Basin, California Borderland [J]. Geochimica et Cosmochimica Acta, 2016, 176: 259-278. doi: 10.1016/j.gca.2015.12.022
    [10] Yoshinaga M Y, Holler T, Goldhammer T, et al. Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane [J]. Nature Geoscience, 2014, 7(3): 190-194. doi: 10.1038/ngeo2069
    [11] Kim S, Choi K, Chung J. Reduction in carbon dioxide and production of methane by biological reaction in the electronics industry [J]. International Journal of Hydrogen Energy, 2013, 38(8): 3488-3496. doi: 10.1016/j.ijhydene.2012.12.007
    [12] Lash G G. Significance of stable carbon isotope trends in carbonate concretions formed in association with anaerobic oxidation of methane (AOM), Middle and Upper Devonian shale succession, western New York State, USA [J]. Marine and Petroleum Geology, 2018, 91: 470-479. doi: 10.1016/j.marpetgeo.2018.01.032
    [13] Chuang P C, Frank Y T, Wallmann K, et al. Carbon isotope exchange during Anaerobic Oxidation of Methane (AOM) in sediments of the northeastern South China Sea [J]. Geochimica et Cosmochimica Acta, 2019, 246: 138-155. doi: 10.1016/j.gca.2018.11.003
    [14] Hong W L, Torres M E, Kim J H, et al. Carbon cycling within the sulfate-methane-transition-zone in marine sediments from the Ulleung Basin [J]. Biogeochemistry, 2013, 115(1-3): 129-148. doi: 10.1007/s10533-012-9824-y
    [15] Ni Y Y, Dai J X, Zou C N, et al. Geochemical characteristics of biogenic gases in China [J]. International Journal of Coal Geology, 2013, 113: 76-87. doi: 10.1016/j.coal.2012.07.003
    [16] 柴小平, 胡宝兰, 魏娜, 等. 杭州湾及邻近海域表层沉积物重金属的分布、来源及评价[J]. 环境科学学报, 2015, 35(12):3906-3916. [CHAI Xiaoping, HU Baolan, WEI Na, et al. Distribution, sources and assessment of heavy metals in surface sediments of the Hangzhou Bay and its adjacent areas [J]. Acta Scientiae Circumstantiae, 2015, 35(12): 3906-3916.
    [17] 夏小明, 杨辉, 李炎, 等. 长江口-杭州湾毗连海区的现代沉积速率[J]. 沉积学报, 2004, 22(1):130-135. [XIA Xiaming, YANG Hui, LI Yan, et al. Modern sedimentation rates in the contiguous sea area of Changjiang Estuary and Hangzhou Bay [J]. Acta Sedimentologica Sinica, 2004, 22(1): 130-135. doi: 10.3969/j.issn.1000-0550.2004.01.020
    [18] Xu F L, Ji Z Q, Wang K, et al. The distribution of sedimentary organic matter and implication of its transfer from Changjiang Estuary to Hangzhou Bay, China [J]. Open Journal of Marine Science, 2016, 6(1): 103-114. doi: 10.4236/ojms.2016.61010
    [19] 陈少平, 孙家振, 沈传波, 等. 杭州湾地区浅层气成藏条件分析[J]. 华东地质学院学报, 2003, 26(4):352-356. [CHEN Shaoping, SUN Jiazhen, SHEN Chuanbo, et al. Reservoir formation condition of shallow gas in the area of Hangzhou Bay [J]. Journal of East China Geological Institute, 2003, 26(4): 352-356.
    [20] 胡新强, 顾兆峰, 张训华, 等. 长江口外海域浅层气地震反射形态特征及分布[J]. 海洋地质与第四纪地质, 2016, 36(1):151-157. [HU Xinqiang, GU Zhaofeng, ZHANG Xunhua, et al. Seismic shape features and distribution of shallow gas in the sea area off the Yangtze River Estuary [J]. Marine Geology & Quaternary Geology, 2016, 36(1): 151-157.
    [21] 杨涛, 蒋少涌, 赖鸣远, 等. 海洋沉积物孔隙水中溶解无机碳(DIC)的碳同位素分析方法[J]. 地球学报, 2005, 26(S1):51-52. [YANG Tao, JIANG Shaoyong, LAI Mingyuan, et al. An analytical method for carbon isotopic composition of dissolved inorganic carbon (DIC) in pore waters from marine sediments [J]. Acta Geoscientica Sinica, 2005, 26(S1): 51-52.
    [22] 杨涛, 蒋少涌, 赖鸣远, 等. 连续流同位素质谱测定水中溶解无机碳含量和碳同位素组成的方法研究[J]. 地球化学, 2006, 35(6):675-680. [YANG Tao, JIANG Shaoyong, LAI Mingyuan, et al. Analytical method for concentration and carbon isotopic composition of dissolved inorganic carbon (DIC) by continuous flow-isotope ratio mass spectrometer [J]. Geochimica, 2006, 35(6): 675-680. doi: 10.3321/j.issn:0379-1726.2006.06.014