海底“三极”与地表“三极”:动力学关联

李三忠, 索艳慧, 王光增, 姜兆霞, 赵彦彦, 刘一鸣, 李玺瑶, 郭玲莉, 刘博, 于胜尧, 刘永江, 张国伟

李三忠, 索艳慧, 王光增, 姜兆霞, 赵彦彦, 刘一鸣, 李玺瑶, 郭玲莉, 刘博, 于胜尧, 刘永江, 张国伟. 海底“三极”与地表“三极”:动力学关联[J]. 海洋地质与第四纪地质, 2019, 39(5): 1-22. DOI: 10.16562/j.cnki.0256-1492.2019070901
引用本文: 李三忠, 索艳慧, 王光增, 姜兆霞, 赵彦彦, 刘一鸣, 李玺瑶, 郭玲莉, 刘博, 于胜尧, 刘永江, 张国伟. 海底“三极”与地表“三极”:动力学关联[J]. 海洋地质与第四纪地质, 2019, 39(5): 1-22. DOI: 10.16562/j.cnki.0256-1492.2019070901
LI Sanzhong, SUO Yanhui, WANG Guangzeng, JIANG Zhaoxia, ZHAO Yanyan, LIU Yiming, LI Xiyao, GUO Lingli, LIU Bo, YU Shengyao, LIU Yongjiang, ZHANG Guowei. Tripole on seafloor and tripole on Earth surface: Dynamic connections[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 1-22. DOI: 10.16562/j.cnki.0256-1492.2019070901
Citation: LI Sanzhong, SUO Yanhui, WANG Guangzeng, JIANG Zhaoxia, ZHAO Yanyan, LIU Yiming, LI Xiyao, GUO Lingli, LIU Bo, YU Shengyao, LIU Yongjiang, ZHANG Guowei. Tripole on seafloor and tripole on Earth surface: Dynamic connections[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 1-22. DOI: 10.16562/j.cnki.0256-1492.2019070901

海底“三极”与地表“三极”:动力学关联

基金项目: 山东省泰山学者特聘教授项目;国家海洋局重大专项“全球变化与海气相互作用”(GASI-GEOGE-01);国家自然科学基金杰出青年基金“构造地质学”(41325009);国家基金委-山东海洋科学中心项目“海洋地质过程与环境”(U1606401);青岛海洋科学与技术试点国家实验室鳌山卓越科学家计划(2015ASTP-0S10)资助
详细信息
    作者简介:

    李三忠(1968—),男,教授,博士生导师,海洋地质与构造地质专业,E-mail:sanzhong@ouc.edu.cn

  • 中图分类号: P738.1

Tripole on seafloor and tripole on Earth surface: Dynamic connections

  • 摘要: 地球地表环境3个极端分别为南极、北极和青藏高原,被誉为地表“三极”。本文提出深地动力系统的“三极”,分别为Tuzo、Jason和东南亚环形俯冲系统,这“三极”主体发育于海底之下的深部地幔,因此称为海底“三极”。地表“三极”和海底“三极”统称地圈“六极”,是全球变化(变暖或变冷)、深时地球、深地动力、地球系统、宜居地球等地球科学前沿研究领域难以回避的研究对象,是地球多圈层相互作用的6个纽带和突破口,也是寻求地球系统动力学机制的关键所在。Tuzo和Jason是现今分别位于大西洋、太平洋之下的大型横波低速异常区(LLSVP),它们控制了大火成岩省、微板块的形成和演化,也控制了集中式火山去气作用,进而引起大气循环变化;它们还不断衍生微板块,并将其向北驱散,这些微板块围绕东亚环形俯冲系统不断聚集,导致大量物质深俯冲,促进深部物质循环,同时,在岛弧地带释放大量温室气体,改变地表系统大气环流;板块聚散伴随海陆格局变迁,同时,也改变着全球海峡通道、高原隆升和垮塌,调节着地表流体系统的运行:包括海洋环流和大气环流。冰盖形成与演化也受其控制。海底“三极”也是地史时期超大陆聚散的根本控制因素,而地表系统的百万年内的多尺度周期性变化主要受公转偏心率、地轴斜率和岁差控制,气候变化受热带驱动和冰盖驱动双重控制。总之,尽管早期地球以后逐渐具有地球宜居性,但地圈-生物圈相互作用极其复杂,地圈“六极”研究可作为宜居地球研究的突破口和生长点。
    Abstract: The three extreme regions of the Earth’s surface environment, i.e. the Antarctica, Arctic and Qinghai-Tibet Plateau, are known as the " three poles (tripole)” of the surface Earth system. In this paper, the concept of tripole of deep-Earth geodynamic system is proposed, which includes Tuzo, Jason and the Circum-East Asian subduction system. Since the principle parts of the deep-Earth tripole are developed mainly in the deep mantle beneath the seafloor, they are called hereby the seafloor tripole. The surface tripole and the deep tripole collectively consists of the " six poles” of the geosphere, which are the unavoidable research objects in the frontiers of geosciences, such as global change, deep-time Earth, deep-Earth geodynamics, Earth system and habitable Earth. They are the six links and breakthroughs in the multi-spherical interaction of the Earth as well as the key to search for the dynamic mechanism of the Earth system. Tuzo and Jason are Large Low Shear-wave Velocity Provinces (LLSVPs) located under the Atlantic and the Pacific, respectively. They control the formation and evolution of large igneous provinces and micro-plates, as well as centralized volcanic degassing which leads to the changes in atmospheric circulation. They also continuously cause the formation of micro-plates, push them moving northward, and constantly assemble them into the Circum-East Asian subduction system. A large amount of substances are subducted deeply to trigger the deep material circulation. Simultaneously, a large amount of greenhouse gases are released through island arcs, which changes the atmospheric circulation of the surface Earth system. Plate assembly and dispersion together will change the continent-ocean configuration patterns in addition to the global seaways, the uplift and collapse of the plateaus, and further regulate the operation of surface Earth fluid system, including both the ocean circulation and atmospheric circulation. The formation and evolution of ice sheets are also controlled by them. The " three poles” under the seafloor are indeed the fundamental controlling factors of the supercontinent convergence and dispersal in the geological history. The multi-scale periodic changes of the surface Earth system are mainly controlled by the eccentricity of the Earth around the Sun, the obliquity of the Earth axis and the precession. Climate change is driven by both tropical and ice-sheet driving forces. In a word, although the Earth is habitable after the Early Earth, the interaction between the geosphere and biosphere is extremely complex. The study of the geospheric " six poles” is doubtlessly the breakthrough and growth point for the study of habitable Earth.
  • 图  1   地表系统“三极”(北极、南极和青藏高原)示意

    Figure  1.   Tripole of surface earth system, i.e. the Arctic, Antarctic and Qinghai-Tibet Plateau

    图  2   40 Ma以来CO2浓度和δ18O变化(据文献[6]和[8])

    Figure  2.   Variations in CO2 content and δ18O since 40 Ma(After references [6] and [8])

    图  3   核-幔边界(2 800 km深度)SMEAN剪切波或横波异常(据文献[56, 57])

    图示了现今非洲(A,即Tuzo)和太平洋(P,即Jason)“超级地幔柱”位置和侧向变化。白色圈为201~15 Ma期间的大火成岩省位置[57],大火成岩省名称字母缩略如下:C. CAMP; K. Karroo; A. Argo margin; SR. Shatsky Rise; MG. Magellan Rise; G. Gascoyne; PE. Parana-Etendeka; BB. Banbury Baslats; MP. Manihiki Plateau; O1. Ontong Java 1; R. Rajmahal Traps; SK. Southern Kerguelen; N. Nauru; CK. Central Kerguelen; HR. Hess Rise;W. Wallaby Plateau; BR. Broken Ridge; O2. Ontong Java 2; M. Madagascar; SL. S. Leone Rise; MR. Maud Rise; D. Deccan Traps; NA. North Atlantic; ET. Ethiopia; CR. Columbia River。红色点为Courtillot等(2003)认定的深起源热点[58]。地幔柱生成带位于两个LLSVPs的周缘[59]

    Figure  3.   SMEAN shear wave velocity anomalies near the core–mantle boundary (2 800 km depth) (after references [56, 57])

    Fig.3 shows the position and lateral variation of the African superplume (A, Tuzo) and the Pacific superplume (P, Jason). LIPs reconstructed back through time (201~15 Ma) from their present locations to those in which they were erupted are shown as annotated white circles. LIPs of the past 200 My are: C. CAMP; K. Karroo; A. Argo margin; SR. Shatsky Rise; MG. Magellan Rise; G. Gascoyne; PE. Parana-Etendeka; BB. Banbury Baslats; MP. Manihiki Plateau; O1. Ontong Java 1; R. Rajmahal Traps; SK. Southern Kerguelen; N. Nauru; CK. Central Kerguelen; HR. Hess Rise;W. Wallaby Plateau; BR. Broken Ridge; O2. Ontong Java 2; M. Madagascar; SL. S. Leone Rise; MR. Maud Rise; D. Deccan Traps; NA. North Atlantic; ET. Ethiopia; CR. Columbia River. Hotspots argued to have a deep origin by Courtillot et al. (2003) are shown as red dots[58]. The Plume Generation Zones(PGZs) lie at the edges of the LLSVPs[59]

    图  4   板块净运动特征与下伏地幔流的关系(据文献[60])

    a和b为双极、四极和净拉伸参照系下现今地表板块运动的净极位置分布,在a中为黑色符号,在b中蓝色为板拉力相关的板块驱动力净极位置,红色为板底拖曳力。c. 为过大圆ABCD的地幔剖面,表示了层析揭示的剪切波速异常(也在图a中彩色表示了2 800 km深处)以及相关的地幔流场(绿色箭头)、表面板块运动(黑色箭头)及净双极和四极位置(黑色符号)

    Figure  4.   Association of plate tectonic net characteristics with those of underlaying mantle flow (after reference [60])

    a and b net characteristic pole locations for the dipole, quadrupole and net stretching components of present-day surface plate motions (black symbols) in Fig. 4a and for plate tectonic driving forces associated with slab pull 29 (blue symbols) and basal tractions on plates (red symbols) in Fig.4b. c. A mantle cross-section cutting through great circle ABCD (drawn on maps in all panels) shows the tomographic shear velocity anomaly (colours, also drawn in map view in a at 2 800 km depth), the associated mantle flow field14 (green arrows), surface plate motion (black arrows), and net characteristic dipole and quadrupole locations for plate motions (black symbols)

    图  5   基于地幔流模式预测的2 677 km深处的地幔温度异常(a-c为模式1的预测,d-f为类模式2的预测)(据文献[53])

    棕色等值线为致密物质的50%集中区,绿色线条代表LLSVPs圈闭区,黑色线条为重建的现今海岸线位置,粉色线条标注的为华南,灰色线为俯冲带,箭头指向上盘。但由于这种重建是基于板块重建的地幔结构重构,因而板块重建不对,如图5d与Torsvik等(2008)的297 Ma的非常不同[61],因此结果也仅只能作为参考。从重构结果可以看到的是,两个LLSVPs并不是对等的,强弱和结构会随着上部板块聚散行为、进入下地幔的板片行为的滞后效应而发生变化

    Figure  5.   Mantle temperature anomalies at 2 677 km in depth predicted by mantle flow models driven by Case 1 (a-c) and Case 2 (d-f) (after reference [53])

    The brown contours indicate 50% concentration of dense material. The green contour represents LLSVPs. Reconstructed locations of present day coastlines are in black with the South China block show in magenta. Reconstructed subduction zone locations are shown as grey lines with triangles on the overriding plate. However, since this reconstruction is based on the reconstruction of the mantle structure of the plate reconstruction, the reconstruction of the plate is not correct, as shown in Fig.5d and Torsvik et al. (2008) 297 Ma is very different[61], so the results can only be used as a reference. It can be seen that the two LLSVPs are not equivalent, and the strength and weakness will change with the hysteresis effect of the plate slab behavior of the lower mantle

    图  6   中生代环太平洋及古太平洋内的板块运动学和大火成岩省重建(据文献[85])

    淡蓝色细线指重建的磁条带,黄绿色曲线圈定了太平洋下地幔低速区(LLSVP),洋中脊用浅蓝色粗线表示,磁线理用天蓝色细线表示。a. 168.2 Ma (M42) 太平洋板块初始形成,同时皮加费塔(Pigafetta)盆地 (PIG) 形成;b. 139.6 Ma (M16) 为太平洋下地幔低速区北北东部边缘的活动上涌时期,太平洋板块东北侧脊-柱相互作用触发了沙茨基海隆(SHA) 形成于大约144 Ma, 尼科亚I (NIC I) 海台和中太平洋海山群 (MPM) 形成于大约140 Ma,麦哲伦海隆 (MAG) 形成于大约135 Ma;c. 120.4 Ma (M0) 为一个新的活动上涌时期,太平洋板块南侧脊-柱相互作用激发了翁通爪哇海台(OJP)、马尼希基(MAN)和希库朗基海台(HIK) 形成事件。尼科亚II (NIC II) 海台也属于这次事件, 其喷发发生在太平洋下地幔低速区北部边缘脊-柱交接区。还是这次, 中太平洋海山群再次活跃,形成了几个具有OIB典型特征的次级水下海山。同时,太平洋下地幔低速区西缘附近的东马里亚纳海盆 (EMB)先后发生了127和120 Ma的板内岩浆脉冲事件;d. 112 Ma太平洋下地幔低速区南缘依然活动,并与洋中脊相互作用,形成了希库朗基海台、瑙鲁海盆(NAU)和东马里亚纳海盆;e. 95 Ma太平洋下地幔低速区最东缘变得活跃,在与洋中脊相互作用的地区形成了加勒比海台 (CAR)。板块名称缩写如下:BIS (Biscoe), CHS (Chonos), FAR (法拉隆), GUE (格雷罗), IZA (依泽奈崎), KUL (库拉), MAC (Mackinley), PAC (太平洋), PEN (Penas), PHO (菲尼克斯), WAK (Washikemba), WRA (Wrangellia)和YAK (Yakutat)

    Figure  6.   Plate reconstructions of plate kinematics and large igneous provinces for Mesozoic circum-Pacific and Paleo-Pacific plates(after reference [85])

    ‘M’ notations refer to established magnetic anomalies. The orange outline denotes the Pacific LLSVP. MORs are represented by thick light blue lines and magnetic anomalies in white thin lines. a. At 168.2 Ma (M42) the Pacific Plate was at its onset. Pigafetta Basin (PIG) was forming. b. At 139.6 Ma (M16) a period of active upwellings of the Pacific LLSVP at its N-NE margins triggered the formation of Shatsky Rise (SHA) at circa 144 Ma, Nicoya I (NIC I) plateau and Mid-Pacific Mountains (MPM) at circa 140 Ma and Magellan Rise (MAG) at circa 135 Ma. c. At 120.4 Ma (M0) a new period of mantle upwellings stimulated the formation the Ontong-Java (OJP), Manihiki (MAN) and Hikurangi (HIK) Plateau event. The Nicoya II (NIC II) plateau belongs to these series of upwellings, erupting close to the northern margins of the LLSVP. Also at this time, a rejuvenated stage occurred at the Mid-Pacific Mountains characterized by the formation of several sub-aerial seamounts with a clear OIB signature that were eroded and later subsided. Meanwhile, the East Mariana Basin (EMB), near the W margins of the Pacific LLSVP, presented an intraplate magmatic pulse at circa 127 Ma and 120 Ma, respectively. d. At 112 Ma the southern margin of the LLSVP remains active and in interaction with a MOR, forming sections of the Hikurangi Plateau, Nauru Basin (NAU) and East Mariana Basin. e. At 95 Ma the easternmost margins of the Pacific LLSVP became active forming the Caribbean Plateau (CAR) at the intersection of with a MOR. Tectonic plate abbreviations BIS (Biscoe), CHS (Chonos), FAR (Farallon), GUE (Guerrero), IZA (Izanagi), KUL (Kula), MAC (Mackinley), PAC (Pacific), PEN (Penas), PHO (Phoenix), WAK (Washikemba), WRA (Wrangellia) and YAK (Yakutat)

    图  7   单一的大陆(Pangea)和单一的大洋(Panthalassa) 与分散的大陆和大洋的5阶段交替演化模式 (据文献[108])

    Figure  7.   Five-stage evolution model of single supercontinent such as Pangea and single super-ocean such as Panthalassa or dispersed continents and oceans (after reference [108])

    图  8   850~0 Ma大陆与大洋的重组过程及其相应的海平面、花岗岩、冰期、海水中锶和碳同位素变化规律

    a. 显生宙以来的海平面变化,A-Hallam (1992) [116];B-Fischer(1984) [111];b. 冰期(星号),冰室状态(空白),温室状态(G);c. 海水中87Sr/86Sr;d. δ13Ccarb;e. 大陆和海洋的聚集和分离:AF:非洲,AMAZON:亚马逊,AN:南极洲,AUS:澳大利亚,BAL:波罗的海,EAF:东非地体,IND:印度(India),KAZ:哈萨克斯坦,LAU:劳伦古陆,SIB:西伯利亚,SAM:南美,SF:旧金山,WAF:西非,AT:大西洋(北部-中部),IO:印度洋(西-东-东南)。其中,没有显示的为基梅里地体群、华北、华南和特提斯[117],碰撞拼合形成的超大陆A-泛大洋A由实心圆圈表示; 超大陆B-泛大洋B和冈瓦纳古陆则由空心圆表示。时间分别为720 ~690 Ma、600 ~580 Ma和570 Ma。南美-非洲地区的数据修改自文献[118]

    Figure  8.   The variations in sea level, granite, ice age, seawater Sr and C isotopes during re-organization of continents and oceans since 850 Ma

    a. the variations of sea level since the Phanerozoic, A-Hallam (1992)[116]; B-Fischer (1984)[111]; b. Ice period (asterisk), ice chamber status (blank), greenhouse status (G); c. 87Sr/86Sr in seawater; d. δ13Ccarb; e. Continental and oceanic combinations: AF:Africa, AMAZON: Amazonas, AN:Antarctica, AUS:Australia, BAL:Baltica, EAF:East African terranes, IND:India, KAZ: Kazakhstania, LAU:Laurentia, SIB:Siberia, SAM:South America, SF:San Francisco, WA:West Africa, AT:Atlantic (north-central), IO:Indian(west-east-southeast). The Kimeri terrane group, North China, South China and Tethys[117] are not shown in this Figure, and the supercontinent A-Pan Ocean A formed by collision and formation is represented by a solid circle; Supercontinent B-Pan Ocean B and Gondwana The ancient land is represented by a hollow circle. The time is 720 ~690 Ma, 600 ~580 Ma and 570 Ma. Data for the South American-African region has been modified reference [118]

  • [1] 刘丰豪, 党皓文. 冰盖演变与冰期旋回[M]//中国大洋发现计划办公室, 海洋地质国家重点实验室(同济大学). 大洋钻探五十年. 上海: 同济大学出版社, 2018: 70-83.

    LIU Fenghao, DANG Haowen. The evolution of the ice sheet and glacial cycle[M]// In: The office of IODP-China, State Key Laboratory of Marine Geology(eds). Fifty Years of Ocean Drilling. 2018: 70-83.

    [2] 黄恩清, 田军. 水文循环和季风演变[M]//中国大洋发现计划办公室, 海洋地质国家重点实验室(同济大学). 大洋钻探五十年. 上海: 同济大学出版社, 2018: 99-111.

    HUANG Enqing, TIAN Jun. Hydrological Cycle and Monsoon Evolution[M]// In: eds, The office of IODP-China, State Key Laboratory of Marine Geology(eds), Fifty Years of Ocean Drilling. 2018: 99-111.

    [3]

    Brinkhuis H, Schouten S, Collinson M E, et al. Episodic fresh surface waters in the Eocene Arctic Ocean [J]. Nature, 2006, 441(7093): 606-609. doi: 10.1038/nature04692

    [4]

    Sluijs A, Schouten S, Pagani M, et al. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum [J]. Nature, 2006, 441(7093): 610-613. doi: 10.1038/nature04668

    [5]

    Prueher L M, Rea D K. Volcanic triggering of late Pliocene glaciation: evidence from the flux of volcanic glass and ice-rafted debris to the North Pacific Ocean [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 173(3-4): 215-230. doi: 10.1016/S0031-0182(01)00323-6

    [6]

    Zachos J C, Dickens G R, Zeebe R E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics [J]. Nature, 2008, 451(7176): 279-283. doi: 10.1038/nature06588

    [7] 许倬云. 万古江河: 中国历史文化的转折与开展[M]. 长沙: 湖南人民出版社, 2017: 1-540.

    XU Zuoyun, Eternal rivers: The transition and development of Chinese history and culture[M]. Hunan People's Publishing Press, 2019: 1-540.

    [8]

    Zhang Y G, Pagani M, Liu Z H, et al. A 40-million-year history of atmospheric CO2 [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 371(2001): 20130096. doi: 10.1098/rsta.2013.0096

    [9]

    Haug G H, Tiedemann R. Effect of the formation of the isthmus of panama on Atlantic ocean thermohaline circulation [J]. Nature, 1998, 393(6686): 673-676. doi: 10.1038/31447

    [10]

    Montes C, Cardona A, Jaramillo C, et al. Middle Miocene closure of the central American seaway [J]. Science, 2015, 348(6231): 226-229. doi: 10.1126/science.aaa2815

    [11]

    Cane M A, Molnar P. Closing of the Indonesian seaway as a precursor to east African aridification around 3-4 million years ago [J]. Nature, 2001, 411(6834): 157-162. doi: 10.1038/35075500

    [12]

    Haug G H, Ganopolski A, Sigman D M, et al. North Pacific seasonality and the glaciation of North America 2.7 Million years ago [J]. Nature, 20058, 433(7028): 821-825.

    [13]

    Wang P X. Cenozoic deformation and the history of sea-land interactions in Asia[M]//Clift P, Kuhnt W, Wang P, et al. Continent-Ocean Interactions Within East Asian Marginal Seas. Washington DC: American Geophysical Union., 2004.

    [14]

    Woodard S C, Rosenthal Y, Miller K G, et al. Antarctic role in Northern Hemisphere glaciation [J]. Science, 2014, 346(6211): 847-851. doi: 10.1126/science.1255586

    [15]

    Livermore R, Nankivell A, Eagles G, et al. Paleogene opening of Drake passage [J]. Earth and Planetary Science Letters, 2005, 236(1-2): 459-470. doi: 10.1016/j.jpgl.2005.03.027

    [16]

    Kennett J P, Shackleton N J. Oxygen isotopic evidence for the development of the psychrosphere 38 Myr ago [J]. Nature, 1976, 260(5551): 513-515. doi: 10.1038/260513a0

    [17]

    Pagani M, Zachos J C, Freeman K H, et al. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene [J]. Science, 2005, 309(5734): 600-603. doi: 10.1126/science.1110063

    [18]

    Galeotti S, DeConto R, Naish T, et al. Antarctic ice sheet variability across the Eocene-Oligocene boundary climate transition [J]. Science, 2016, 352(6281): 76-80. doi: 10.1126/science.aab0669

    [19]

    Bijl P K, Schouten S, Sluijs A, et al. Early Palaeogene temperature evolution of the southwest Pacific Ocean [J]. Nature, 2009, 461(7265): 776-779. doi: 10.1038/nature08399

    [20]

    Kennett J P, Stott L D. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene [J]. Nature, 1991, 353(6341): 225-229. doi: 10.1038/353225a0

    [21]

    McInerney F A, Wing S L. The paleocene-eocene thermal maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future [J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 489-516. doi: 10.1146/annurev-earth-040610-133431

    [22]

    Coxall H K, Wilson P A, Pälike H, et al. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean [J]. Nature, 2005, 433(7021): 53-57. doi: 10.1038/nature03135

    [23]

    Miller K G, Wright J D, Fairbanks R G. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion [J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B4): 6829-6848. doi: 10.1029/90JB02015

    [24]

    Pound M J, Haywood A M, Salzmann U, et al. Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97-5.33 Ma) [J]. Earth-Science Reviews, 2012, 112(1-2): 1-22. doi: 10.1016/j.earscirev.2012.02.005

    [25]

    Holbourn A, Kuhnt W, Schulz M, et al. Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion [J]. Nature, 2005, 438(7067): 483-487. doi: 10.1038/nature04123

    [26]

    Tian J. Coherent variations of the obliquity components in global ice volume and ocean carbon reservoir over the past 5 Ma [J]. Science China Earth Sciences, 2013, 56(12): 2160-2172. doi: 10.1007/s11430-013-4750-y

    [27]

    Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate [J]. Nature, 1992, 359(6391): 117-122. doi: 10.1038/359117a0

    [28] 吴福元, 黄宝春, 叶凯, 等. 青藏高原造山带的垮塌与高原隆升[J]. 岩石学报, 2008, 24(1):1-30. [WU Fuyuan, HUANG Baochun, YE Kai, et al. Collapsed Himalayan-Tibetan orogen and the rising Tibetan plateau [J]. Acta Petrologica Sinica, 2008, 24(1): 1-30.
    [29]

    Matthews K J, Müller R D, Sandwell D T. Oceanic microplate formation records the onset of India-Eurasia collision [J]. Earth and Planetary Science Letters, 2016, 433: 204-214. doi: 10.1016/j.jpgl.2015.10.040

    [30]

    Ali J R, Aitchison J C. Greater India [J]. Earth-Science Reviews, 2005, 72(3-4): 169-188. doi: 10.1016/j.earscirev.2005.07.005

    [31]

    Xiao W J, Ao S J, Yang L, et al. Anatomy of composition and nature of plate convergence: Insights for alternative thoughts for terminal India-Eurasia collision [J]. Science China Earth Sciences, 2017, 60(6): 1015-1039. doi: 10.1007/s11430-016-9043-3

    [32]

    Hou Z Q, Cook N J. Metallogenesis of the Tibetan collisional Orogen: a review and introduction to the special issue [J]. Ore Geology Reviews, 2009, 36(1-3): 2-24. doi: 10.1016/j.oregeorev.2009.05.001

    [33]

    Hou Z Q, Yang Z M, Lu Y J, et al. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones [J]. Geology, 2015, 43(3): 247-250. doi: 10.1130/G36362.1

    [34]

    Li Y L, Wang C S, Dai J G, et al. Propagation of the deformation and growth of the Tibetan–Himalayan orogen: a review [J]. Earth-Science Reviews, 2015, 143: 36-61. doi: 10.1016/j.earscirev.2015.01.001

    [35] 王国灿, 曹凯, 张克信, 等. 青藏高原新生代构造隆升阶段的时空格局[J]. 中国科学: 地球科学, 2011, 54(1):29-44. [WANG Guocan, CAO Kai, ZHANG Kexin, et al. Spatio-temporal framework of tectonic uplift stages of the Tibetan Plateau in Cenozoic [J]. Science China Earth Sciences, 2011, 54(1): 29-44.
    [36]

    Li J X, Yue L P, Roberts A P, et al. Global cooling and enhanced Eocene Asian mid-latitude interior aridity [J]. Nature Communication, 2018, 9(1): 3026. doi: 10.1038/s41467-018-05415-x

    [37]

    Sun J M, Windley B F. Onset of aridification by 34 Ma across the Eocene-Oligocene transition in Central Asia [J]. Geology, 2015, 43(11): 1015-1018. doi: 10.1130/G37165.1

    [38]

    Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China [J]. Nature, 2002, 416(6877): 159-163. doi: 10.1038/416159a

    [39]

    Zheng H B, Wei X C, Tada R, et al. Late Oligocene-early Miocene birth of the Taklimakan desert [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(25): 7662-7667. doi: 10.1073/pnas.1424487112

    [40]

    Kroon D, Steens T, Troelstra S R. Onset of monsoonal related upwelling in the Western Arabian Sea as revealed by planktonic foraminifers[M]//Prell W L, Niitsuma N. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 1991: 257-263.

    [41]

    Zheng H B, Clift P D, Wang P, et al. Pre-Miocene birth of the Yangtze river [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 7556-7561. doi: 10.1073/pnas.1216241110

    [42]

    Delescluse M, Montési L G J, Chamot-Rooke N. Fault reactivation and selective abandonment in the oceanic lithosphere [J]. Geophysical Research Letters, 2008, 35(16): L16312. doi: 10.1029/2008GL035066

    [43]

    Bull J M, Scrutton R A. Fault reactivation in the central Indian Ocean and the rheology of oceanic lithosphere [J]. Nature, 1990, 344(6269): 855-858. doi: 10.1038/344855a0

    [44]

    Bull J M, Scrutton R A. Seismic reflection images of intraplate deformation, central Indian Ocean, and their tectonic significance [J]. Journal of the Geological Society, 1992, 149(6): 955-966. doi: 10.1144/gsjgs.149.6.0955

    [45]

    Chamot-Rooke N, Jestin F, de Voogd B. Intraplate shortening in the central Indian Ocean determined from a 2100-km-long north-south deep seismic reflection profile [J]. Geology, 1993, 21(11): 1043-1046. doi: 10.1130/0091-7613(1993)021<1043:ISITCI>2.3.CO;2

    [46]

    Royer J Y, Sandwell D T. Evolution of the eastern Indian Ocean since the late cretaceous: constraints from Geosat altimetry [J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B10): 13755-13782. doi: 10.1029/JB094iB10p13755

    [47]

    van Orman J, Cochran J R, Weissel J K, et al. Distribution of shortening between the Indian and Australian plates in the central Indian Ocean [J]. Earth and Planetary Science Letters, 1995, 133(1-2): 35-46. doi: 10.1016/0012-821X(95)00061-G

    [48]

    Betzler C, Eberli G P, Lüdmann T, et al. Refinement of Miocene sea level and monsoon events from the sedimentary archive of the Maldives (Indian Ocean) [J]. Progress in Earth and Planetary Science, 2018, 5: 5. doi: 10.1186/s40645-018-0165-x

    [49]

    Sun X J, Wang P X. How old is the Asian monsoon system?-Palaeobotanical records from China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222(3-4): 181-222. doi: 10.1016/j.palaeo.2005.03.005

    [50]

    Clift P D, Wan S M, Blusztajn J. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: a review of competing proxies [J]. Earth-Science Reviews, 2014, 130: 86-102. doi: 10.1016/j.earscirev.2014.01.002

    [51]

    Zhang Y G, Pagani M, Liu Z H. A 12-Million-Year temperature history of the tropical Pacific Ocean [J]. Science, 2014, 344(6179): 84-87.

    [52] 翦知湣, 金海燕. 大洋碳循环与气候演变的热带驱动[J]. 地球科学进展, 2008, 23(3):221-227. [JIAN Zhimin, JIN Haiyan. Ocean carbon cycle and tropical forcing of climate evolution [J]. Advances in Earth Science, 2008, 23(3): 221-227. doi: 10.3321/j.issn:1001-8166.2008.03.001
    [53]

    Young A, Flament N, Maloney K, et al. Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era [J]. Geoscience Frontiers, 2019, 10(3): 989-1013. doi: 10.1016/j.gsf.2018.05.011

    [54]

    Homrighausen S, Hoernle K, Hauff F, et al. Global distribution of the HIMU end member: Formation through Archean plume-lid tectonics [J]. Earth-Science Reviews, 2018, 182: 85-101. doi: 10.1016/j.earscirev.2018.04.009

    [55]

    Zhang Z, Li S Z, Suo Y H, et al. Formation mechanism of the global Dupal isotope anomaly [J]. Geological Journal, 2016, 51(S1): 644-651.

    [56]

    Becker T W, Boschi L. A comparison of tomographic and geodynamic mantle models [J]. Geochemistry, Geophysics, Geosystems, 2002, 3(1): 2001GC000168.

    [57]

    Burke K, Torsvik T H. Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle [J]. Earth and Planetary Science Letters, 2004, 227(3-4): 531-538. doi: 10.1016/j.jpgl.2004.09.015

    [58]

    Courtillot V, Davaille A, Besse J, et al. Three distinct types of hotspots in the earth’s mantle [J]. Earth and Planetary Science Letters, 2003, 205(3-4): 295-308. doi: 10.1016/S0012-821X(02)01048-8

    [59]

    Burke K, Steinberger B, Torsvik T H, et al. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary [J]. Earth and Planetary Science Letters, 2008, 265(1-2): 49-60. doi: 10.1016/j.jpgl.2007.09.042

    [60]

    Conrad C P, Steinberger B, Torsvik T H. Stability of active mantle upwelling revealed by net characteristics of plate tectonics [J]. Nature, 2013, 498(7455): 479-482. doi: 10.1038/nature12203

    [61]

    Torsvik T H, Smethurst M A, Burke K, et al. Long term stability in deep mantle structure: evidence from the ~ 300 Ma Skagerrak-Centered Large Igneous Province (the SCLIP) [J]. Earth and Planetary Science Letters, 2008, 267(3-4): 444-452. doi: 10.1016/j.jpgl.2007.12.004

    [62]

    Honza E, Fujioka K. Formation of arcs and backarc basins inferred from the tectonic evolution of Southeast Asia since the Late Cretaceous [J]. Tectonophysics, 2004, 384(1-4): 23-53. doi: 10.1016/j.tecto.2004.02.006

    [63]

    Liu B, Li S Z, Suo Y H, et al. The geological nature and geodynamics of the Okinawa Trough, Western Pacific [J]. Geological Journal, 2016, 51(S1): 416-428.

    [64]

    Seton M, Müller R D, Zahirovic S, et al. Global continental and ocean basin reconstructions since 200 Ma [J]. Earth-Science Reviews, 2012, 113(3-4): 212-270. doi: 10.1016/j.earscirev.2012.03.002

    [65]

    Suo Y H, Li S Z, Zhao S J, et al. Continental margin basins in East Asia: tectonic implications of the meso-Cenozoic East China Sea pull-apart basins [J]. Geological Journal, 2015, 50(2): 139-156. doi: 10.1002/gj.2535

    [66]

    Suo Y H, Li S Z, Yu S, et al. Cenozoic tectonic jumping and implications for hydrocarbon accumulation in basins in the East Asia Continental Margin [J]. Journal of Asian Earth Sciences, 2014, 88: 28-40. doi: 10.1016/j.jseaes.2014.02.019

    [67]

    Müller R D, Sdrolias M, Gaina C, et al. Long-term sea-level fluctuations driven by ocean basin dynamics [J]. Science, 2008, 319(5868): 1357-1362. doi: 10.1126/science.1151540

    [68]

    Replumaz A, Capitanio F A, Guillot S, et al. The coupling of Indian subduction and Asian continental tectonics [J]. Gondwana Research, 2014, 26(2): 608-626. doi: 10.1016/j.gr.2014.04.003

    [69]

    Zahirovic S, Matthews K J, Flament N, et al. Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic [J]. Earth-Science Reviews, 2016, 162: 293-337. doi: 10.1016/j.earscirev.2016.09.005

    [70]

    Zahirovic S, Müller R D, Seton M, et al. Tectonic speed limits from plate kinematic reconstructions [J]. Earth and Planetary Science Letters, 2015, 418: 40-52. doi: 10.1016/j.jpgl.2015.02.037

    [71]

    Gibbons A D, Zahirovic S, Müller R D, et al. A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys [J]. Gondwana Research, 2015, 28(2): 451-492. doi: 10.1016/j.gr.2015.01.001

    [72] 刘一鸣, 李三忠, 于胜尧, 等. 青藏高原班公湖-怒江缝合带及周缘燕山期微地块聚合与增生造山过程[J]. 大地构造与成矿学, 2019, 43(4):824-838. [LIU Yiming, LI Sanzhong, YU Shengyao, et al. The Mesozoic collage and orogeny process of micro-blocks in Bangong-Nujiang suture zone, Tibetan Plateau [J]. Geotectonica et Metallogenia, 2019, 43(4): 824-838.
    [73] 周洁, 李三忠, 索艳慧, 等. 碰生型微地块的分类及其形成机制[J]. 大地构造与成矿学, 2019, 43(4):795-823. [ZHOU Jie, LI Sanzhong, SUO Yanhui, et al. Type and genetic mechanism of collision-derived micro-blocks [J]. Geotectonica et Metallogenia, 2019, 43(4): 795-823.
    [74] 姜素华, 张雯, 李三忠, 等. 西北太平洋洋陆过渡带新生代盆地构造演化与油气分布特征[J]. 大地构造与成矿学, 2019, 43(4):839-857. [JIANG Suhua, ZHANG Wen, LI Sanzhong, et al. Cenozoic oil-gas distribution and tectonic evolution of the basins in the northwest pacific continent-ocean connection zone [J]. Geotectonica et Metallogenia, 2019, 43(4): 839-857.
    [75]

    Li S Z, Santosh M, Zhao G C, et al. Intracontinental deformation in a frontier of super-convergence: a perspective on the tectonic milieu of the South China Block [J]. Journal of Asian Earth Sciences, 2012, 49: 313-329. doi: 10.1016/j.jseaes.2011.07.026

    [76]

    Li S Z, Zhao S J, Liu X, et al. Closure of the proto-Tethys ocean and early Paleozoic amalgamation of microcontinental blocks in East Asia [J]. Earth-Science Reviews, 2018, 186: 37-75. doi: 10.1016/j.earscirev.2017.01.011

    [77]

    Anderson D L. New Theory of the Earth[M]. New York: Cambridge University Press, 2007: 1-384.

    [78] 刘金平, 李三忠, 索艳慧, 等. 残生微洋块: 俯冲消减系统下盘的复杂演化[J]. 大地构造与成矿学, 2019, 43(4):762-778. [LIU Jinping, LI Sanzhong, SUO Yanhui, et al. Subduction-derived oceanic micro-block: complex evolution of footwall in subduction system [J]. Geotectonica et Metallogenia, 2019, 43(4): 762-778.
    [79] 孟繁, 李三忠, 索艳慧, 等. 跃生型微地块: 离散型板块边界的复杂演化[J]. 大地构造与成矿学, 2019, 43(4):644-664. [MENG Fan, LI Sanzhong, SUO Yanhui, et al. Ridge jumping-derived micro-blocks: unravelling a complex evolutionary process for the divergent plate boundaries [J]. Geotectonica et Metallogenia, 2019, 43(4): 644-664.
    [80] 牟墩玲, 李三忠, 索艳慧, 等. 裂生微地块构造特征及成因模式: 来自西太平洋弧后扩张作用的启示[J]. 大地构造与成矿学, 2019, 43(4):665-677. [MU Dunling, LI Sanzhong, SUO Yanhui, et al. Tectonic and Geodynamic mechanism of back-arc-rifting derived micro-blocks: insights from Back-arc spreading in the West Pacific [J]. Geotectonica et Metallogenia, 2019, 43(4): 665-677.
    [81] 汪刚, 李三忠, 姜素华, 等. 增生型微地块的成因模式及演化[J]. 大地构造与成矿学, 2019, 43(4):745-761. [WANG Gang, LI Sanzhong, JIANG Suhua, et al. Formation mechanisms and evolution of accretion-derived micro-blocks [J]. Geotectonica et Metallogenia, 2019, 43(4): 745-761.
    [82] 赵林涛, 李三忠, 索艳慧, 等. 延生微地块: 洋脊增生系统的复杂过程[J]. 大地构造与成矿学, 2019, 43(4):715-729. [ZHAO Lintao, LI Sanzhong, SUO Yanhui, et al. Propagation-derived micro-blocks: Complex evolution of mid-ocean ridge accretion system [J]. Geotectonica et Metallogenia, 2019, 43(4): 715-729.
    [83] 甄立冰, 李三忠, 郭玲莉, 等. 延生型微板块成因机制模拟研究进展[J]. 大地构造与成矿学, 2019, 43(4):730-744. [ZHEN Libing, LI Sanzhong, GUO Lingli, et al. A review of the research progress on the genetic mechanism of the propagation-derived microplate [J]. Geotectonica et Metallogenia, 2019, 43(4): 730-744.
    [84] 王光增, 李三忠, 索艳慧, 等. 转换型微板块类型、成因及其大地构造启示[J]. 大地构造与成矿学, 2019, 43(4):700-715. [WANG Guangzeng, LI Sanzhong, SUO Yanhui, et al. Transform-derived microplates: classification, mechanism and tectonic significance [J]. Geotectonica et Metallogenia, 2019, 43(4): 700-715.
    [85]

    Madrigal P, Gazel E, Flores K E, et al. Record of massive upwellings from the Pacific large low shear velocity province [J]. Nature Communication, 2016, 7: 13309. doi: 10.1038/ncomms13309

    [86] 李阳, 李三忠, 郭玲莉, 等. 拆离型微地块: 洋陆转换带和洋中脊变形机制[J/OL]. 大地构造与成矿学, 2019: 1-16. https://doi.org/10.16539/j.ddgzyckx.2019.04.011.

    LI Yang, LI Sanzhong, GUO Lingli, et al. Detachment-derived Micro-blocks: new insights for the deformation mechanism of the ocean-continent transition and the mid-ocean ridge[J/OL]. Geotectonica et Metallogenia, 2019: 1-16. https://doi.org/10.16539/j.ddgzyckx.2019.04.011.

    [87] 李园洁, 李三忠, 姜兆霞, 等. 海洋磁异常及其动力学[J/OL]. 大地构造与成矿学, 2019: 1-22. https://doi.org/10.16539/j.ddgzyckx.2019.04.005.

    LI Yuanjie, LI Sanzhong, JIANG Zhaoxia, et al. Marine magnetic anomalies and its dynamics[J/OL]. Geotectonica et Metallogenia, 2019: 1-22. https://doi.org/10.16539/j.ddgzyckx.2019.04.005.

    [88]

    Gurnis M. Large-scale mantle convection and the aggregation and dispersal of supercontinents [J]. Nature, 1988, 332(6166): 695-699. doi: 10.1038/332695a0

    [89]

    Zhong S J, Zhang N, Li Z X, et al. Supercontinent cycles, true polar wander, and very long-wavelength mantle convection [J]. Earth and Planetary Science Letters, 2007, 261(3-4): 551-564. doi: 10.1016/j.jpgl.2007.07.049

    [90]

    Royer D L, Berner R L, Montañez I P, et al. CO2 as a primary driver of Phanerozoic climate [J]. GSA Today, 2004, 14: 4-10.

    [91]

    Shaviv N J, Veizer J. Celestial driver of Phanerozoic climate? [J]. GSA Today, 2003, 13(7): 4-10. doi: 10.1130/1052-5173(2003)013<0004:CDOPC>2.0.CO;2

    [92]

    Larson R L. Latest pulse of Earth: evidence for a mid-Cretaceous superplume [J]. Geology, 1991, 19(6): 547-550. doi: 10.1130/0091-7613(1991)019<0547:LPOEEF>2.3.CO;2

    [93]

    Bice K L, Norris R D. Possible atmospheric CO2 extremes of the middle cretaceous (late Albian-Turonian) [J]. Paleoceanography, 2002, 17(4): 22-1.

    [94]

    Selby D, Mutterlose J, Condon D J. U-Pb and Re-Os geochronology of the Aptian/Albian and Cenomanian/Turonian stage boundaries: implications for timescale calibration, osmium isotope seawater composition and Re-Os systematics in organic-rich sediments [J]. Chemical Geology, 2009, 265(3-4): 394-409. doi: 10.1016/j.chemgeo.2009.05.005

    [95]

    Miller K G, Kominz M A, Browning J V, et al. The Phanerozoic record of global sea-level change [J]. Science, 2005, 310(5752): 1293-1298. doi: 10.1126/science.1116412

    [96]

    Brumsack H J. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2-4): 344-361. doi: 10.1016/j.palaeo.2005.05.011

    [97]

    Schlanger S O, Jenkyns H C. Cretaceous oceanic anoxic events: causes and consequences [J]. Geologie en Mijnbouw, 1976, 55(3-4): 179-184.

    [98]

    Jenkyns H C. Geochemistry of oceanic anoxic events [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q030004.

    [99]

    Irving E, North F K, Couillard R. Oil, climate, and tectonics [J]. Canadian Journal of Earth Sciences, 1974, 11(1): 1-17. doi: 10.1139/e74-001

    [100]

    Friedrich O, Norris R D, Erbacher J. Evolution of Middle to Late Cretaceous oceans-A 55 m.y. record of Earth’s temperature and carbon cycle [J]. Geology, 2012, 40(2): 107-110. doi: 10.1130/G32701.1

    [101]

    Norris R D, Bice K L, Magno E A, et al. Jiggling the tropical thermostat in the Cretaceous hothouse [J]. Geology, 2002, 30(4): 299-302. doi: 10.1130/0091-7613(2002)030<0299:JTTTIT>2.0.CO;2

    [102]

    Roth P H. Mesozoic palaeoceanography of the North Atlantic and Tethys oceans[M]//Summerhayes C P, Shackleton N J. North Atlantic Palaeoceanography. Geological Society, London, Special Publication, 1986, 21(1): 299-320.

    [103]

    Voigt S, Jung C, Friedrich O, et al. Tectonically restricted deep-ocean circulation at the end of the Cretaceous greenhouse [J]. Earth and Planetary Science Letters, 2013, 369-370: 169-177. doi: 10.1016/j.jpgl.2013.03.019

    [104]

    Bohaty S M, Zachos J C. Significant southern ocean warming event in the late middle Eocene [J]. Geology, 2003, 31(11): 1017-1020. doi: 10.1130/G19800.1

    [105]

    Kennett J P. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography [J]. Journal of Geophysical Research, 1977, 82(27): 3843-3860. doi: 10.1029/JC082i027p03843

    [106]

    Shipboard Scientific Party. Leg 189 summary[M]//Exon N F, Kennett J P, Malone M J, et al. Proceedings of the Ocean Drilling Program. College Station, TX: Intial Reports, 2001: 1-98.

    [107]

    Gernigon L, Franke D, Geoffroy L, et al. Crustal fragmentation, magmatism, and the diachronous opening of the Norwegian-Greenland Sea [J]. Earth-Science Reviews, 2019. doi: 10.1016/j.earscirev.2019.04.011

    [108]

    Veevers J J. Tectonic-climatic supercycle in the billion-year plate-tectonic eon: Permian Pangean icehouse alternates with Cretaceous dispersed-continents greenhouse [J]. Sedimentary Geology, 1990, 68(1-2): 1-16. doi: 10.1016/0037-0738(90)90116-B

    [109]

    Veevers J J. Pangea: evolution of a supercontinent and its consequences for Earth’s paleoclimate and sedimentary environments[M]//Klein G D. Pangea: Paleoclimate, Tectonics, and Sedimentation During Accretion, Zenith, and Breakup of a Supercontinent. McLean, VA: Geological Society of America, 1994, 288: 12-23.

    [110]

    Holmes A. The problem of geological time. Third part: the convergence of evidence [J]. Scientia, 1928, 22(43): 7.

    [111]

    Fischer A G. The two Phanerozoic supercycles[M]//Berggren W A, van Couvering J A. Catastrophes and Earth History. Princeton, NJ: Princeton University Press, 1984: 129-150.

    [112]

    Anderson D L. Hotspots, polar wander, Mesozoic convection and the geoid [J]. Nature, 1982, 297(5865): 391-393. doi: 10.1038/297391a0

    [113]

    Collins W J. Slab pull, mantle convection, and Pangaean assembly and dispersal [J]. Earth and Planetary Science Letters, 2003, 205(3-4): 225-237. doi: 10.1016/S0012-821X(02)01043-9

    [114]

    Worsley T R, Nance D, Moody J B. Global tectonics and eustasy for the past 2 billion years [J]. Marine Geology, 1984, 58(3-4): 373-400. doi: 10.1016/0025-3227(84)90209-3

    [115]

    Humler E, Besse J. A correlation between mid-ocean-ridge basalt chemistry and distance to continents [J]. Nature, 2002, 419(6907): 607-609. doi: 10.1038/nature01052

    [116]

    Hallam A. Phanerozoic Sea-Level Changes[M]. New York: Columbia University Press, 1992.

    [117]

    Audley-Charles M G, Hallam A. Introduction[M]//Audley C M G, Hallam A. Gondwana and Tethys. Geological Society, London, Special Publications, 1988, 37: 1-4.

    [118]

    Veevers J J. Pan-African is pan-Gondwanaland: oblique convergence drives rotation during 650-500 Ma assembly [J]. Geology, 2003, 31(6): 501-504. doi: 10.1130/0091-7613(2003)031<0501:PIPOCD>2.0.CO;2

    [119] 汪品先, 田军, 黄恩清. 全球季风与大洋钻探[J]. 中国科学: 地球科学, 2018, 48(7):960-963. [WANG Pinxian, TIAN Jun, HUANG Enqing. Global monsoon and ocean drilling

    J]. Scientia Sinica Terrae, 2018, 48(7): 960-963.

    [120]

    Wang P X, Tian J, Cheng X R, et al. Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event [J]. Geology, 2003, 31(3): 239-242. doi: 10.1130/0091-7613(2003)031<0239:CRCPMI>2.0.CO;2

    [121]

    Wang P X, Tian J, Lourens L J. Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records [J]. Earth and Planetary Science Letters, 2010, 290(3-4): 319-330. doi: 10.1016/j.jpgl.2009.12.028

    [122]

    Broecker W S, Peteet D M, Rind D. Does the ocean-atmosphere system have more than one stable mode of operation? [J]. Nature, 1985, 315(6014): 21-26.

    [123]

    Zeebe R E. History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification [J]. Annual Review of Earth and Planetary Sciences, 2012, 40: 141-165. doi: 10.1146/annurev-earth-042711-105521

图(8)
计量
  • 文章访问数:  4308
  • HTML全文浏览量:  1102
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-08
  • 修回日期:  2019-07-17
  • 网络出版日期:  2019-11-06
  • 刊出日期:  2019-09-30

目录

    /

    返回文章
    返回