留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东海陆架盆地南部中生代构造-沉积演化与油气勘探方向

杨长清 杨艳秋 杨传胜 孙晶 王建强 肖国林 王蛟 王明键

引用本文:
Citation:

东海陆架盆地南部中生代构造-沉积演化与油气勘探方向

    作者简介: 杨长清(1965—),男,博士,研究员,主要从事海域油气调查与含油气沉积盆地构造分析,E-mail:yangcq65@126.com.
    通讯作者: 杨艳秋(1976—),女,正高级工程师,主要从事海域油气调查与盆地分析,E-mail:qimgyyq@126.com
  • 基金项目: 国家自然科学基金面上项目“东海陆架盆地南部与毗邻陆域中生代耦合过程研究”(41476053);中国地质调查项目(DD20160153,DD20190211)
  • 中图分类号: P744.4

Tectono-sedimentary evolution of the Mesozoic in the southern East China Sea shelf basin and its bearing on petroleum exploration

    Corresponding author: YANG Yanqiu, qimgyyq@126.com ;
  • CLC number: P744.4

  • 摘要: 东海陆架盆地位于欧亚板块东南缘,中生代以来盆地形成和演化过程受到古太平洋板块多期洋壳俯冲及其多构造体系叠加改造,其盆地原型、构造-沉积演化与油气成藏关系一直是研究的热点。本文综合应用东海陆架盆地南部最新地震调查、钻井和临近陆域资料,通过海陆对比、中生界层序地层建立、构造-沉积演化过程重塑,探讨中生界油气成藏的关键问题和勘探方向。研究结果认为东海陆架盆地南部中生界存在2个超层序7个层序,中生代以来演化表现为晚三叠世前的被动大陆边缘基底、晚三叠世—中侏罗世活动大陆边缘拗陷、白垩纪活动陆缘断陷盆地;早期基底NE向格架控制中生代盆地结构与宏观含油气性,中生代两期构造演化造就了两套生储盖组合,基隆运动、渔山运动和雁荡运动控制早期油气的生成、聚集,龙井运动主要控制早期油气藏调整与改造、再成藏;继承性隆起(斜坡)闽江斜坡和“凹中凸”台北转折带是中生界油气主要勘探方向。
  • 图 1  东海陆架盆地南部及邻域区域构造图

    Figure 1.  Tectonic map of the Southern East China Sea shelf basin and adjacent areas

    图 2  东海陆架盆地南部中生界层序地层及生储盖柱状图

    Figure 2.  Integrated Mesozoic column of sequence stratigraphy and source—reservoir—caprock combinations in the southern East China Sea shelf basin

    图 3  东海陆架盆地中生界地震层序地质解释剖面

    Figure 3.  Sectional map of Mesozoic seismic—geological interpretation in the East China Sea shelf basin

    图 4  东海陆架盆地典型剖面演化图

    Figure 4.  The Mesozoic evolution of the East China Sea shelf basin

    图 5  东海陆架盆地基底结构与南部中生界格架叠合图(据[36, 53-54]修改)

    Figure 5.  An overlapped tectonic map of the basement and the Mesozoic of the East China Sea shelf basin (after references [36, 53- 54])

    图 6  东海陆架盆地南部中生界油气成藏要素与匹配关系

    Figure 6.  Hydrocarbon accumulation factors and matching relationship of Mesozoic in the Southern East China Sea shelf basin

    图 7  东海陆架盆地南部中生界油气成藏模式图

    Figure 7.  Hydrocarbon accumulation model of the Mesozoic in the southern East China Sea shelf basin

  • [1] 钟锴, 朱伟林, 高顺莉, 等. 东海陆架盆地形成演化及油气成藏关键地质问题[J]. 地球科学, 2018, 43(10):3485-3497. [ZHONG Kai, ZHU Weilin, GAO Shunli, et al. Key geological questions of the formation and evolution and hydrocarbon accumulation of the East China Sea shelf basin [J]. Earth Science, 2018, 43(10): 3485-3497.

    [2] 黄志超, 叶加仁. 东海海域油气资源与选区评价[J]. 地质科技情报, 2010, 29(5):51-55. [HUANG Zhichao, YE Jiaren. Petroleum resources and regional selection evalution in the East China Sea [J]. Geological Science and Technology Information, 2010, 29(5): 51-55. doi: 10.3969/j.issn.1000-7849.2010.05.008

    [3] 田杨, 叶加仁, 杨宝林, 等. 东海陆架盆地丽水凹陷油气成藏规律及区带优选[J]. 天然气地球科学, 2016, 27(4):639-653. [TIAN Yang, YE Jiaren, YANG Baolin, et al. Hydrocarbon accumulation rule and exploration target optimization in Lishui Sag, East China Sea continental shelf basin [J]. Natural Gas Geoscience, 2016, 27(4): 639-653. doi: 10.11764/j.issn.1672-1926.2016.04.0639

    [4] 郝乐伟, 王琪, 梁建设, 等. 东海陆架盆地瓯江凹陷油气成藏机制探讨[J]. 天然气地球科学, 2014, 25(6):848-859. [HAO Leiwei, WANG Qi, LIANG Jianshe, et al. Mechanism of hydrocarbon accumulation in Oujiang Sag, the East China Sea shelf basin [J]. Natural Gas Geoscience, 2014, 25(6): 848-859. doi: 10.11764/j.issn.1672-1926.2014.06.848

    [5] 李上卿, 李纯洁. 东海西湖凹陷油气资源分布及勘探潜力分析[J]. 石油实验地质, 2003, 25(6):721-728. [LI Shangqing, LI Chunjie. Analysis on the petroleum resource distribution and exploration and potential of Xihu Depression, the East China Sea [J]. Petroleum Geology & Experiment, 2003, 25(6): 721-728. doi: 10.3969/j.issn.1001-6112.2003.06.015

    [6]

    Gurnis M, Turner M, Zahirovic S, et al. Plate tectonic reconstructions with continuously closing plates [J]. Computers & Geosciences, 2012, 38(1): 35-42. doi: 10.1016/j.cageo.2011.04.014
    [7]

    HallR. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations [J]. Journal of Asian Earth Sciences, 2002, 20(4): 353-431. doi: 10.1016/s1367-9120(01)00069-4
    [8]

    Northrup C J, Royden L H, Burchfiel B C. Motion of the Pacific plate relative to Eurasia and its potentialrelation to Cenozoic extension along the eastern margin of Eurasia [J]. Geology, 1995, 23(8): 719-722. doi: 10.1130/0091-7613(1995)023<0719:motppr>2.3.co;2
    [9]

    Li Z X, LI X H, Chung S L, et al. Magmatic switch-on and switch-off along the South China continental margin since the Permian: Transition from an Andean-type to a western Pacific-type plate boundary [J]. Tectonophysics, 2012, 532-535: 271-290. doi: 10.1016/j.tecto.2012.02.011
    [10] 李三忠, 余珊, 赵淑娟, 等. 东亚大陆边缘的板块重建和构造转换[J]. 海洋地质与第四纪地质, 2013, 33(3):65-94. [LI Sanzhong, YU Shan, ZHAO Shujuan, et al. Tectonic transition and plate reconstructions of the East Asian continental margin [J]. Marine Geology and Quaternary Geology, 2013, 33(3): 65-94.

    [11]

    Yang C Q, Yang Y Q, Li G, et al. The Mesozoic basin-mountain Coupling process of the Southern East China Sea shelf basin and its adjacent land area [J]. Acta Geological Sinica(English Edition), 2016, 90(3): 1051-1052. doi: 10.1111/1755-6724.12748
    [12] 李三忠, 臧艺博, 王鹏程, 等. 华南中生代构造转换和古太平洋俯冲启动[J]. 地学前缘, 2017, 24(4):213-225. [LI Sanzhong, ZANG Yibo, WANG Pengcheng, et al. Mesozoic tectonic transition in South China and initiation of Palaeo-Pacific subduction [J]. Earth Science Frontiers, 2017, 24(4): 213-225.

    [13]

    Yang C, Han B, Yang C, et al. Mesozoic basin evolution of the East China Sea shelf and tectonic system transitionin southeast China [J]. Geological Journal, 2018: 1-14. doi: 10.1002/gj.3409
    [14]

    Shu L S, Zhou X M, Deng P, et al. Mesozoic tectonic evolution of the southeast China block: New insights from basin analysis [J]. Journal of Asian Earth Sciences, 2009, 34: 376-391. doi: 10.1016/j.jseaes.2008.06.004
    [15] 郑求根, 周祖翼, 蔡立国, 等. 东海陆架盆地中新生代构造背景及演化[J]. 石油与天然气地质, 2005, 26(2):197-201. [ZHENG Qiugen, ZHOU Zuyi, CAI Ligu, et al. Meso-Cenozoic tectonic setting and evolution of East China Sea shelf basin [J]. Oil &Gas Geology, 2005, 26(2): 197-201. doi: 10.3321/j.issn:0253-9985.2005.02.012

    [16] 冯晓杰, 蔡东升, 王春修, 等. 东海陆架盆地中新生代构造演化特征[J]. 中国海上油气, 2003, 17(1):33-37. [FENG Xiaojie, CAI Dongshen, WANG Chunxiu, et al. The Meso-Cenozoic tectonic evolution in East China Sea shelf basin [J]. China Offshore Oil and Gas: Geology, 2003, 17(1): 33-37.

    [17] 蔡东升, 冯晓杰, 高乐, 等. 中国近海前第三纪残余盆地及其勘探潜力与方向[J]. 中国海上油气(工程), 2004, 16(1):1-17. [CAI Dongsheng, FENG Xiaojie, GAO Le, et al. Petroleum potential and exploration direction of Pre-Tertiary remnant basins in offshore China [J]. China Offshore Oil and Gas(Engineering), 2004, 16(1): 1-17. doi: 10.3969/j.issn.1673-1506.2004.01.001

    [18] 杨长清, 杨传胜, 李刚, 等. 东海陆架盆地南部中生代构造演化与原型盆地性质[J]. 海洋地质与第四纪地质, 2012, 32(3):105-111. [YANG Changqing, YANG Chuansheng, LI Gang, et al. Mesozoic tectonic evolution and prototype basin characters in the southern East China Sea shelf basin [J]. Marine Geology and Quaternary Geology, 2012, 32(3): 105-111.

    [19]

    Xu C H, Zhang L, Shi H S, et al. Tracing an early Jurassic magmatic arc from south to east China Seas [J]. Tectonics, 2017, 36(3): 466-492. doi: 10.1002/2016TC004446
    [20]

    Xu J Y, Ben-Avraham Z, Kelty T, et al. Origin of marginal basins of the NW Pacific and their plate tectonic reconstructions [J]. Earth-Science Reviews, 2014, 130: 154-159. doi: 10.1016/j.earscirev.2013.10.002
    [21] 孙肇才. 从东海石油地质重要进展看西太平洋大陆边缘新生代盆地的构造演化: 一种海沟向洋后退的残余弧后盆地演化模式[J]. 海相油气地质, 2004, 9(Sup. 1):1-17. [SUN Zhaocai. The tectonic evolution of Cenozoic basin in the western Pacific continental margin from the perspective of important petroleum geological advances in the East China Sea: A model of residual arc basin backwards with trench returning to the ocean [J]. Marine Petroleum Geology, 2004, 9(Sup. 1): 1-17.

    [22]

    Hsu K J, Li J L, Chen H H, et al. Tectonics of South China: Key to understanding west Pacific geology [J]. Tectonophysics, 1990, 183: 9-39. doi: 10.1016/0040-1951(90)90186-C
    [23] 谢窦克, 毛建仁, 彭维震, 等. 华南岩石层与大陆动力学[J]. 地球物理学报, 1997, 40(S1):153-163. [XIE Douke, MAO Jianren, PENG Weizhen, et al. The rock strata of South China and continental dynamics [J]. Acta Geophysica Sinica, 1997, 40(S1): 153-163.

    [24] 谢桂青, 毛景文, 胡瑞忠, 等. 中国东南部中-新生代地球动力学背景若干问题的探讨[J]. 地质论评, 2005, 51(6):613-620. [XIE Guiqing, MAO Jingwen, HU Ruizhong, et al. Discussion on some problems of Meso-Cenozoic geodynamic background in southeastern China [J]. Geological Review, 2005, 51(6): 613-620. doi: 10.3321/j.issn:0371-5736.2005.06.002

    [25]

    Gilder S A, Gill J, Coe R S, et al. Isotopicand paleomagnetic constraints on the Mesozoic tectonic evolution of South China [J]. Journal of Geophysics Research, 1996, 101(B7): 13137-16154.
    [26]

    Li X H. Cretaceous magmatism and lithospheric extension in southeast China [J]. Journal of Asian Earth Science, 2000, 18: 293-305. doi: 10.1016/S1367-9120(99)00060-7
    [27]

    Jahn B M, Zhou X H, Li J L. Formation and tectonic evolution of southeastern China and Taiwan: isotopic and geochemical constraints [J]. Tectonophysics, 1990, 183: 145-160. doi: 10.1016/0040-1951(90)90413-3
    [28]

    Zhou X M, Li W X. Origin oflate M esozoic igneous rock in SE China: implications for lithosphere subduction and underplating of mafic magmas [J]. Tectonophysics, 2000, 326: 269-287. doi: 10.1016/S0040-1951(00)00120-7
    [29]

    Li J H, Zhang Y Q, Dong S W, et al. Cretaceous tectonic evolution of South China: A preliminary synthesis [J]. Earth-Science Reviews, 2014, 134: 98-136. doi: 10.1016/j.earscirev.2014.03.008
    [30]

    Li Z X, Li X H. Formation of the 1300 km-wide intracontinental orogen and postorogenic magmatic provincein Mesozoic South China: A flat-slab subduction model [J]. Geology, 2007, 35(2): 179-182. doi: 10.1130/g23193a
    [31] 孙卫东, 凌明星, 杨晓勇, 等. 洋脊俯冲与斑岩铜金矿成矿[J]. 中国科学: 地球科学, 2010, 40(2):127-137. [SUN Weidong, LING Mingxing, YANG Xiaoyong, et al. Ridge subduction and porphyry copper gold mineralization: Anoverview [J]. Sci China Earth Sci, 2010, 40(2): 127-137.

    [32] 陶瑞明. 从西太平洋板块构造探讨东海陆架盆地形成机制和类型划分[J]. 中国海上油气(地质), 1994, 8(l):14-20. [TAO Ruiming. Discuss on basin formation mechanism and basin types in East China Sea continental shelf basin on west Pacific Plate tectonics [J]. China Offshore Oil and Gas(Geology), 1994, 8(l): 14-20.

    [33]

    Dickson W R. Plate tectonic evolution of North Pacific Rim [J]. Geodynamics of Western Pacific Jour Phy. Earth, 1978, 26(S1): 1-19.
    [34] 冯晓杰, 张川燕, 王春修, 等. 东海陆架和台西南盆地中生界及其油气勘探潜力[J]. 中国海上油气(地质), 2001, 15(5):306-310. [FENG Xiaojie, ZHANG Chuanyan, WANG Chunxiu, et al. Mesozoic in the East China Sea shelf and Taixinan basin and its petroleum potential [J]. China Offshore Oil and Gas(Geology), 2001, 15(5): 306-310.

    [35] 高乐. 东海陆架中生代残余盆地特征及勘探方向探讨[J]. 中国海上油气, 2005, 17(3):148-152. [GAO Le. Mesozoic remnant basin characteritics and hydrocarbon exploration direction on East China Sea sheft [J]. China Offshore Oil and Gas, 2005, 17(3): 148-152. doi: 10.3969/j.issn.1673-1506.2005.03.002

    [36] 吕炳全, 王红罡, 李维显. 东海陆架油气勘探的新领域[J]. 古地理学报, 2002, 4(2):88-97. [LV Bingquan, WANG Honggang, LI Weixian, et al. New prospect for hydrocarbon exploration in the East China Sea shelf [J]. Journal of Palaeogeography, 2002, 4(2): 88-97. doi: 10.3969/j.issn.1671-1505.2002.02.011

    [37] 金春爽, 乔德武, 须雪豪, 等. 2015, 东海陆架盆地南部油气资源前景与选区[J]. 中国地质, 2015, 42(5):1601-1609. [JIN Chunsuan, QIAO Dewu, XU Xuehao, et al. Oil and gas potential and target selection in southern East China Sea shelf basin [J]. Geology in China, 2015, 42(5): 1601-1609. doi: 10.3969/j.issn.1000-3657.2015.05.027

    [38] 须雪豪, 陈琳琳, 汪企浩. 东海陆架盆地中生界地质特征与油气资源潜力浅析[J]. 海洋石油, 2004, 24(3):1-8. [XU Xuehao, CHEN Linlin, WANG Qihao. Analysis of Mesozoic geological characteristics and resource potential in the East China Sea shelf basin [J]. Offshore Oil, 2004, 24(3): 1-8. doi: 10.3969/j.issn.1008-2336.2004.03.001

    [39] 杨传胜, 杨长清, 李刚, 等. 东海陆架盆地中-新生界油气勘探研究进展与前景分析[J]. 海洋地质与第四纪地质, 2018, 38(2):136-147. [YANG Chuansheng, YANG Changqing, LI Gang, et al. Prospecting of Meso-cenozoic hydrocarbon in the East China Sea shelf basin [J]. Marine Geology and Quaternary Geology, 2018, 38(2): 136-147.

    [40] 杨长清, 韩宝富, 杨艳秋, 等. 东海陆架盆地中生界油气调查进展与面临的挑战[J]. 海洋地质前沿, 2017, 33(4):1-8. [YANG Changqing, HAN Baofu, YANG Yanqiu, et al. Oil and gas exploration in the Mesozoic of the East China Sea shelf basin: Progress and challenges [J]. Marine Geology Frontiers, 2017, 33(4): 1-8.

    [41] 任纪舜, 牛宝贵, 和政军, 等. 中国东部的构造格局和动力演化[M]. 北京: 原子能出版社, 1998.

    REN Jishun, NIU Baogui, HE Zhenjun, et al. Tectonic Pattern and Dynamic Evolution in the Eastern China[M]. Beijing: Atomic Energy Publishing House, 1998.
    [42] 徐先兵, 张岳桥, 贾东, 等. 华南早中生代大地构造过程[J]. 中国地质, 2009, 36(3):573-593. [XU Xianbin, ZHANG Yueqiao, JIA Dong, et al. The Early Mesozoic tectonic process in South China [J]. Geology in China, 2009, 36(3): 573-593. doi: 10.3969/j.issn.1000-3657.2009.03.007

    [43] 张岳桥, 徐先兵, 贾东, 等. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录[J]. 地学前缘, 2009, 16(1):234-247. [ZHANG Yueqiao, XU Xianbin, JIA Dong, et al. Deformation records of the transition from Indosinian collisional tectonic system to Yanshanian subduction tectonic system in South China [J]. Earth Science Frontiers, 2009, 16(1): 234-247. doi: 10.3321/j.issn:1005-2321.2009.01.026

    [44]

    Shu L S, Yan W, Sha J G, et al. Jurassic sedimentary features and tectonic settings of southeastern China [J]. Sci China Ser D-Earth Sci, 2009, 52: 1969-1978. doi: 10.1007/s11430-009-0159-z
    [45] 马文璞. 区域构造解析—方法理论和中国板块构造[M]. 北京: 地质出版社, 1992.

    MA Wenpu. Regional Structure Analysis: Method Theory and Chinese Plate Tectonics[M]. Beijing: Geology Industry Press, 1992.
    [46]

    Sengor A M C. Paleotectonic of Asia: Fragment of a Synthesis[M]//In: Yin An, Harrison M, The Tectonic Evolution of Asia. Cambridge University Press, 1996, l487-614.
    [47] 杨艳秋, 李刚, 戴春山. 东海陆架盆地西部坳陷带中生界分布特征极其有利区探讨[J]. 世界地质, 2011, 30(3):396-403. [YANG Yanqiu, LI Gang, DAI Chunshan. Characteristics of Mesozoic distribution and discussion on its favourable area in western depression zone of East China Sea Shelf basin [J]. Global Geology, 2011, 30(3): 396-403. doi: 10.3969/j.issn.1004-5589.2011.03.011

    [48] 王文娟, 李刚, 杨长清. 东海陆架盆地地震层序特征及地质属性[J]. 海洋地质与第四纪地质, 2013, 33(3):117-122. [WANG Wenjuan, LI Gang, YANG Changqing, et al. Characteristics of seismic sequences in the East China Sea shelf basin and their geological attributes [J]. Marine Geology and Quaternary Geology, 2013, 33(3): 117-122.

    [49] 龚建明, 李刚, 杨长清, 等. 东海南部三叠纪地层分布[J]. 海洋地质与第四纪地质, 2012, 32(3):119-124. [GONG Jianming, LI Gang, YANG Changqing, et al. Distribution of Triassic strata in the southern East China Sea [J]. Marine Geology and Quaternary Geology, 2012, 32(3): 119-124.

    [50] 杨长清, 杨传胜, 孙晶, 等. 东海陆架盆地南部中生代演化与动力学转换过程[J]. 吉林大学学报(地球科学版), 2019, 49(1):139-152. [YANG Changing, YANG Chuansheng, SUN Jing, et al. Mesozoic evolution and dynamics transition process in the southern East China Sea shelf basin [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(1): 139-152.

    [51] 王蛟, 李智高, 蔡来星, 等. 东海陆架盆地南部中生界沉积模式[J]. 吉林大学学报(地球科学版), 2019, 49(1):131-138. [WANG Jiao, LI Zhigao, CAI Laixing, et al. Sedimenary model of Mesozoic in the southern part of the East China Sea shelf basin [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(1): 131-138.

    [52] 蔡学林, 朱介寿, 曹家敏, 等. 华南地区岩石圈三维结构类型与演化动力学[J]. 大地构造与成矿学, 2003, 27(4):301-312. [CAI Xuelin, ZHU Jieshou, CAO Jiaming, et al. Three-dimensional tectonic types and evolutional dynamics of lithosphere of South China region [J]. Geotectonica et Metallogenia, 2003, 27(4): 301-312. doi: 10.3969/j.issn.1001-1552.2003.04.002

    [53] 李培廉, 朱平. 试论东海陆架盆地的基底构造演化和盆地形成机制[J]. 海洋地质与第四纪地质, 1992, 12(3):37-43. [LI Peilian, ZHU Pin. Basement tectonic evolution and basin formation mechanism of the East China Sea shelf basin [J]. Marine Geology and Quaternary Geology, 1992, 12(3): 37-43.

    [54] 高德章, 赵金海, 薄玉玲, 等. 东海及邻近地区岩石圈三维结构研究[J]. 地质科学, 2006, 41(1):10-26. [GAO Dezhang, ZHAO Jinhai, BO Yuling, et al. A Sdudy on lithosphere 3D structures in the East China Sea and adjacent regions [J]. Chinese Journal of Geology, 2006, 41(1): 10-26. doi: 10.3321/j.issn:0563-5020.2006.01.002

    [55] 李春峰, 陈冰, 周祖翼. 中国东部及邻近海域磁异常数据所揭示的深部构造[J]. 中国科学D辑: 地球科学, 2009, 39(12):1770-1779. [LI Chunfeng, CHEN Bing, ZHOU Zuyi. Deep structure revealed by magnetic anomaly data in Eastern China and adjacent seas [J]. Science in China Series D: Earth Science, 2009, 39(12): 1770-1779.

    [56] 陈冰, 王家林, 吴健生, 等. 东海陆架盆地海礁凸起南块基底性质研究[J]. 石油实验地质, 2002, 24(4):301-305. [CHEN Bing, WANG Jialin, WU Jiansheng, et al. Study on the basement properties of the south Haijiao uplift in the East China Sea shelf basin [J]. Petroleum Geology & Experiment, 2002, 24(4): 301-305. doi: 10.3969/j.issn.1001-6112.2002.04.003

    [57] 徐立明, 金春爽, 姜在兴, 等. 浙江东部沿海早白垩世海侵地层确定及其意义[J]. 福建地质, 2016(2):92-103. [XU Liming, JIN Chunshuang, JIANG Zaixing, et al. The establishment of marine Early Cretaceous strata in east area of Zhejiang coast and its significance [J]. Geology of Fujian, 2016(2): 92-103. doi: 10.3969/j.issn.1001-3970.2016.02.002

    [58] 许璐, 杨长清, 王海荣. 东海陆架南部海域及周边陆域白垩纪海侵标志及地质意义[J]. 海洋地质前沿, 2017, 33(4):22-30. [XU Lu, YANG Changqing, WANG Hairong. Cretaceous transgression in the southern East China Sea shelf basin and adjacent land areas: evidence and geological significance [J]. Marine Geology Frontiers, 2017, 33(4): 22-30.

    [59] 杨长清, 李刚, 龚建明, 等. 中国东南海域中生界油气地质条件与勘探前景[J]. 吉林大学学报: 地球科学版, 2015, 45(1):1-12. [YANG Changqing, LI Gang, GONG Jianming, et al. Petroleum geological conditions and exploration prospect of the Mesozoic in Southeast China Sea Area [J]. Journal of Jilin University (Earth Science Edition), 2015, 45(1): 1-12.

    [60] 梁若冰. 东海陆架盆地南部中生界油气勘探潜力分析[J]. 海洋石油, 2017, 37(3):16-22. [LIANG Ruobing. Analysis of hydrocarbon exploration potential in the Mesozoic of the southern East China Sea shelf basin [J]. Offshore Oil, 2017, 37(3): 16-22. doi: 10.3969/j.issn.1008-2336.2017.03.016

    [61] 胡广, 胡文瑄, 曹剑, 等. 东南沿海地区下白垩统烃源岩及油气潜力分析[J]. 高校地质学报, 2011, 17(2):206-219. [HU Guang, HU Wenxuan, CAO Jiang, et al. Source rock features and resource potential of the Lower Cretaceous strata in coastal southeast China [J]. Geological Journal of China Universities, 2011, 17(2): 206-219. doi: 10.3969/j.issn.1006-7493.2011.02.006

    [62] 王国纯. 东海盆地前第三系与古潜山油气藏[J]. 石油勘探与开发, 1991, 18(2):11-18. [WANG Guochun. A discussion on the Pre-Tertiary system and ancient buried hill oil pool in East China Sea basin [J]. Petroleum Exploration and Development, 1991, 18(2): 11-18.

  • [1] 崔幸王亮亮罗洪明黄晓纯李亭慧杨传胜戴黎明郭玲莉马芳芳刘泽 . 东海陆架盆地南部中生代盆地性质与演化:砂箱物理模拟检验. 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2017.04.012
    [2] 赵斐宇姜素华李三忠孟凡顺曹伟汪刚张慧璇高嵩郑祺亮 . 曾母拉分盆地的油气成藏规律:廷贾-西巴兰线断裂的控制. 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2017.04.014
    [3] 赵希林于胜尧李三忠彭银彪姜杨邢光福余明刚刘凯 . 中国东南部与日本中生代岩浆作用差异性. 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2017.04.004
    [4] 李珊珊彭松陶倩倩朱绍鹏严恒 . 涠西南凹陷南斜坡晚始新世扇三角洲复杂储层预测关键技术及油气地质意义. 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2017.02.016
    [5] 冉伟民栾锡武邵珠福刘鸿李德勇赵洋王慧东颜中辉 . 东海陆架盆地南部生长断层活动特征. 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2017052501
    [6] 唐贤君张绍亮单蕊 . 中国东部-朝鲜半岛中生代板块结合带划分——对嵌入模式的新认识. 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2018.02.008
    [7] 刘泽戴黎明李三忠马芳芳索艳慧郭玲莉陶建丽杨传胜张嘉琪 . 东海陆架盆地南部中生代成盆过程的数值模拟. 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2017.04.011
    [8] 杨传胜杨长清李刚杨艳秋孙晶颜中辉王建强 . 东海陆架盆地中—新生界油气勘探研究进展与前景分析. 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2018.02.014
    [9] 李双林王建强董贺平赵青芳 . 东海陆架盆地南部海域油气地球化学探测:烃类地球化学异常与含油气性综合评价. 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2019070302
    [10] 陈春峰施剑徐东浩张银国张伯成王军 . 南黄海崂山隆起形成演化及对油气成藏的影响. 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2018.03.005
    [11] 倪仕琪王志欣宋继叶逄林安 . 南海西南部西纳土纳盆地油气成藏组合分析与资源潜力评价. 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2018.05.013
    [12] 孙文军李三忠王鹏程李玺瑶刘晓光张剑兰浩圆李少俊 . 鲁西地区中生代穹盆构造与东亚构造体制转换. 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2017.04.007
    [13] 朱荣伟刘海龄姚永坚崔小君黎雨晗王印 . 南沙海域中生代构造挤压及其成因. 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2017.06.006
    [14] 陶建丽楼达戴黎明李三忠董昊马芳芳兰浩圆李法坤王亮亮刘泽 . 中国东部大陆边缘中生代晚期增生过程的数值模拟:以那丹哈达为例. 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2019040101
    [15] 刘为裴健翔于俊峰范彩伟张秀苹邵远 . 古地貌对重力流沉积控制作用及与天然气成藏的关系——以莺歌海盆地中新统为例. 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2017.06.021
    [16] 王一丹于福生刘志娜王于恒王逸群 . 板块俯冲变形过程二维离散元模拟—对东海陆架盆地成因启示. 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2019070306
    [17] 张敏强高顺莉谭思哲 . 南黄海盆地中、古生界地质特征及勘探方向. 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2018.03.002
    [18] 肖国林王明健杨长清庞玉茂 . 东海南部中生界烃类生成、运聚与成藏数值模拟. 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2019070304
    [19] 夏在连花彩霞刘计勇俞昊 . 下扬子区下古生界油气有利勘探区带探讨. 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2018.03.006
    [20] 陈梅张莉施小斌骆帅兵于传海郭磊冯英辞 . 西沙海槽盆地新生代沉积环境演化. 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2016090401
  • 加载中
图(7)
计量
  • 文章访问数:  149
  • HTML全文浏览量:  52
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-03
  • 改回日期:  2019-07-11
  • 网络出版日期:  2019-10-14

东海陆架盆地南部中生代构造-沉积演化与油气勘探方向

    通讯作者: 杨艳秋(1976—),女,正高级工程师,主要从事海域油气调查与盆地分析,E-mail:qimgyyq@126.com
    作者简介: 杨长清(1965—),男,博士,研究员,主要从事海域油气调查与含油气沉积盆地构造分析,E-mail:yangcq65@126.com
  • 1. 中国地质调查局青岛海洋地质研究所,青岛 266071
  • 2. 青岛海洋国家实验室海洋矿产资源评价与探测技术功能实验室,青岛 266071
基金项目: 国家自然科学基金面上项目“东海陆架盆地南部与毗邻陆域中生代耦合过程研究”(41476053);中国地质调查项目(DD20160153,DD20190211)

摘要: 东海陆架盆地位于欧亚板块东南缘,中生代以来盆地形成和演化过程受到古太平洋板块多期洋壳俯冲及其多构造体系叠加改造,其盆地原型、构造-沉积演化与油气成藏关系一直是研究的热点。本文综合应用东海陆架盆地南部最新地震调查、钻井和临近陆域资料,通过海陆对比、中生界层序地层建立、构造-沉积演化过程重塑,探讨中生界油气成藏的关键问题和勘探方向。研究结果认为东海陆架盆地南部中生界存在2个超层序7个层序,中生代以来演化表现为晚三叠世前的被动大陆边缘基底、晚三叠世—中侏罗世活动大陆边缘拗陷、白垩纪活动陆缘断陷盆地;早期基底NE向格架控制中生代盆地结构与宏观含油气性,中生代两期构造演化造就了两套生储盖组合,基隆运动、渔山运动和雁荡运动控制早期油气的生成、聚集,龙井运动主要控制早期油气藏调整与改造、再成藏;继承性隆起(斜坡)闽江斜坡和“凹中凸”台北转折带是中生界油气主要勘探方向。

English Abstract

  • 东海陆架盆地南部指海礁凸起以南,台西盆地以北海域,是发育于前中生代克拉通基础上的中、新生代叠合盆地,面积约10×104 km2。该区自1974年开展油气勘探以来,在新生界已获得重大油气突破,发现了残雪、断桥、平湖等9个油气田和玉泉、孤山等5个含油气构造[1-5];而中生界由于区域地质构造和地球物理场复杂,资料品质差,基础地质研究薄弱,严重制约了油气勘探进展。究其原因,主要是中生代以来盆地形成和演化过程受到古太平洋板块多期洋壳俯冲及其多构造体系叠加改造[6-13],使得对中生代以来盆地原型、构造-沉积演化及大规模构造-岩浆活动的动力学背景一直存在争议[14-21],针对盆地成因与动力学机制诸多学者提出了不同的构造成因模式:包括阿尔卑斯型的大陆碰撞说[22]、地幔柱说[23-24]、大陆伸展和裂谷说[25-26];及与古太平洋板块俯冲有关的古太平洋板块俯冲效应说[27-29]、古太平洋板块平板俯冲说[9-10, 30]、洋脊俯冲说[31-32]。盆地性质有的学者认为侏罗纪-早白垩世为弧前盆地[33],晚白垩世晚期为弧后盆地[15];有的学者认为晚三叠世-中侏罗世为克拉通边缘坳陷盆地,白垩纪为弧前盆地[16];还有学者认为早中生代(T3-J2)为活动大陆边缘坳陷盆地,晚中生代(K12-K2)为断陷盆地[14]等,从而影响了对盆地中生界油气成藏条件及油气成藏规律的认识。但随着勘探技术进步和理论的发展,已研究证明东海陆架南部中生界具有巨大的油气资源潜力[34-40]。本文综合应用东海陆架盆地南部最新地震调查、钻井、临近陆域资料,通过海陆对比、中生界层序地层分析、构造-沉积演化过程重塑,探讨中生界油气成藏的关键问题和主要勘探方向。

    • 东海陆架盆地地处欧亚板块、太平洋板块、菲律宾板块交汇的东南大陆边缘,是华南陆壳向洋壳的延伸,西邻浙闽隆起,东以钓鱼岛隆褶带将其与冲绳海槽盆地分隔,是印度—澳大利亚板块和太平洋板块与欧亚板块巨型汇聚地带。呈北东向带状展布,具有NE分带、NW分块的构造格局(图1)。

      图  1  东海陆架盆地南部及邻域区域构造图

      Figure 1.  Tectonic map of the Southern East China Sea shelf basin and adjacent areas

      大量地质证据表明,华南岩浆活动晚三叠世—中侏罗世火山活动是拉斑系列玄武岩、安山岩—流纹岩双峰式组合,晚侏罗世—早白垩世早期是钙碱性系列(玄武岩)安山岩—英安岩—流纹岩单峰式组合,早白垩世中期—晚白垩世是钙碱性系列玄武岩、安山岩—流纹岩双峰式组合,不同于以新生代为主的环太平洋东岸的南美和北美,也同样不同于日本岛弧和台湾岛弧。控制亚洲显生宙构造演化的3大动力体系(古亚洲洋体系,特提斯—古太平洋体系和印度洋—太平洋体系)在华南都有强烈表现[41-42],华南地壳表现出复杂的构造变形样式[43-44],新生代构造叠加使原有的地质和地貌被强烈破坏和改造。

      印支运动早期随着古特提斯洋的关闭,三叠纪华夏内陆形成了一系列NW—NWW向的断裂带、剪切带、褶皱和变形页理以及伴生的变质作用和岩浆活动;印支运动晚期,由于Sibumasu地块不断向北运移,印支陆块和华南陆块碰撞拼合,中国东部形成了统一大陆[41]。晚三叠世之后华南构造体制逐渐转入古太平洋体系[10-13]。随着南海西部古特提斯逐渐关闭,印支地块和中缅马地块碰撞缝合形成巨大的含锡花岗岩带,粤东缺失中、下三叠统,华南东部开始海侵,形成NE向海盆;中侏罗世时期华南构造运动相对平静,主要发育河湖相红层;晚侏罗世—早白垩世早期华南西部一直保持为陆地,火山活动较少,华南东部由于古太平洋向西俯冲的远程效应,出现大规模的中酸性—酸性火山喷发和火山碎屑堆积;早白垩世早期古太平洋向欧亚大陆的俯冲因倾角太陡向洋后撤,区域应力场由压扭变为张扭;晚白垩世早期,东亚大陆边缘演变成俯冲型活动大陆边缘[13, 45],也有学者认为属安第斯型大陆边缘[46];晚白垩世晚期直至始新世,由于太平洋俯冲和西部印度—欧亚板块碰撞的联合效应形成了一系列拉分盆地群,其主控断层为NE向的走滑断层;古新世—始新世期间,太平洋板块运动方向由NWW转向NNW,东海主要处于单剪应力场,盆地发育一系列箕状断陷,是东海陆架盆地中各个断陷的主要发育期,也是东海陆架新生代盆地的主要成盆期。

    • 构造层序代表了在同一构造应力背景下充填演化的阶段性产物,其界面多为地层不整合面或与不整合相对应的整合面。通过对东海陆架盆地南部地震地层解析,经井-震标定验证,中生界可以分为2个构造层序、7个层序[47-48]图2)。中生界构造层序整体上反射波频率较低,连续性差,地震层速度明显高于上覆地层,受改造强烈,但闽江斜坡地震反射清晰。后期剥蚀的残留地层形态具有NE分带性,东厚西薄,以基隆凹陷最为发育,厚度可达5 000 m。

      图  2  东海陆架盆地南部中生界层序地层及生储盖柱状图

      Figure 2.  Integrated Mesozoic column of sequence stratigraphy and source—reservoir—caprock combinations in the southern East China Sea shelf basin

      东海陆架中生界由Ss1、Ss2 两个超层序组成。Ss1由Tg区域不整合面和T6不整合面所限定,钻遇地层由中、下侏罗统福州组组成。岩性为砂砾岩、粉砂岩与灰黑色泥岩,夹薄煤层,钻遇厚度401 m(未穿),为含钙质超微化石的海侵体系沉积。但福州组之下还有千米以上地层未钻遇,推测为上三叠统[49]图3),相当于浙江乌灶组,福建文宾山组或广东小水组,以海相泥岩为主,是潜在烃源岩层。

      图  3  东海陆架盆地中生界地震层序地质解释剖面

      Figure 3.  Sectional map of Mesozoic seismic—geological interpretation in the East China Sea shelf basin

      Ss2超层序由T6不整合面与T5不整合面所限定,对应的地层包括下白垩统厦门组、渔山组和上白垩统闽江组、石门潭组。根据现有钻井资料,厦门组钻遇厚度为577 m,上部为砂泥岩互层,中部主要为泥岩,下部为长石砂岩;渔山组钻遇厚度为350 m,下部为砾岩,中部为砂岩,上部为泥岩与砂岩互层;闽江组钻遇厚度为450 m,岩性为泥岩夹泥质粉砂岩;石门潭组岩性为凝灰岩及杂色泥岩,夹安山岩,最大厚度约130 km,为火山碎屑岩沉积,在闽江北部尤为发育。地震剖面解释上白垩统比下白垩统分布广,闽江组超覆于渔山组之上(图3)。

    • 前期研究表明,东海陆架盆地南部中、新生代以来构造运动强烈,构造环境复杂,具有前晚三叠世基底、晚三叠—早侏罗世活动大陆边缘坳陷和白垩纪断陷盆地的叠加改造型盆地演化过程[50]图4),遭受了晚三叠—早侏罗世和早白垩世2次较大规模海侵事件[51],形成了陆相、海陆过渡相及海相沉积。

      图  4  东海陆架盆地典型剖面演化图

      Figure 4.  The Mesozoic evolution of the East China Sea shelf basin

    • 随着太平洋板块的扩大并向NW方向推移,欧亚板块向南推移,处于压剪应力场环境下的古东海地区产生一系列NE向正负相间的凸起和凹陷(基底凸起和基底凹陷)[52-53]。在南北拼合应力场下,海礁凸起一带及瓯江凹陷西部随中国东南大陆发生了大规模的中酸性岩浆活动,北北东向的基底凸起和基底凹陷以及部分地区的火山活动是东海陆架盆地形成之前的古地质背景。其与早先存在的北西向转换断层(舟山—平湖—国头断裂、鱼山—久米断裂等)结合,导致了成盆期南北分块、东西分带的总体构造格局[53]图5),为盆地的现今面貌奠定了基础。

      图  5  东海陆架盆地基底结构与南部中生界格架叠合图(据[36, 53-54]修改)

      Figure 5.  An overlapped tectonic map of the basement and the Mesozoic of the East China Sea shelf basin (after references [36, 53- 54])

      根据目前钻井及陆域对比等分析,东海陆架盆地的沉积基底为中、上元古界的黑云母斜长片麻岩,为华南海西-早印支期变质结晶基底,如瓯江断陷的LF1井和WZ6井揭示了厚度超过300 m的黑云母角闪斜长片麻岩。纵向上具有多层性,既有下元古界的深变质岩系,也有上元古界的浅变质岩系和古生界浅变质岩系等,基底的变质岩系在陆上浙闽区为弱磁性或无磁性的弱变质岩,与陈蔡群和龙泉群的岩性基本一致[53]

      根据重力场、磁场特征,东海陆架重磁特征与西邻华南地块相似,海区磁异常核心常为正,边部为负,磁性基底深度为5~11 km,呈北东—北北东方向展布,重力基底和磁力基底基本重合[36, 54-55],磁性基底深度往东增大[56]。地震资料表明东海陆架的地壳结构具有3个速度层,第1速度层是沉积层,层速度为3.4~5.5 km/s,厚约12 000 m,代表中、新生代的盆地沉积层;第2速度层的层速度为5.8~6.0 km/s,可能代表震旦系至古生界浅变质岩系的基础层;第3速度层为下地壳层,层速度为6.8~7.6 km/s,为前震旦系变质岩基底层。

    • 晚三叠世—早侏罗世时期,构造活动较弱,整体显示为一大型坳陷盆地(图4图5),基本上没有断层活动,具有NE向展布特征,发育闽江斜坡、台北转折带和基隆凹陷,最大沉积和沉降中心都位于基隆凹陷,最大厚度2 500 m。根据岩相古地理分析,基隆运动之后,该时期东海陆架西部浙闽隆起是主要物源区,大量的碎屑物质从隆起向盆地注入,盆地开始持续沉降,同时受到南部和东南部两个方向的海侵,形成了西部海陆过渡、东部海相的沉积建造。

      到中侏罗末期,由于受到燕山Ⅰ幕运动影响,构造活动强烈,盆地整体开始抬升,西部大幅度抬升,东部抬升幅度小,海水逐渐向东退却,导致闽江斜坡西部早期沉积的早—中侏罗世地层被大量的剥蚀,并缺失晚侏罗世地层。雁荡低凸起也开始慢慢发育,形成一个白垩纪的水下低凸起。

    • 进入白垩纪后,太平洋板块向欧亚板块俯冲加剧,伴随着区域性沉降和大规模的火山活动,早白垩世该区又开始沉降并遭受海侵[57-58],海侵面貌也发生变化,主要为自东而西的海侵,也就是来自古太平洋的海侵;华南东部开始大规模的伸展裂陷,东海陆架盆地继续扩张,沉积范围逐渐扩大,向西逐渐扩展越过雁荡凸起。此外,盆地内发育的古隆起对海水也有一定的屏障作用,反映了海平面比较稳定,水深变化不大,对该时期的沉积格局具有一定的影响。早白垩世末期发生了燕山Ⅲ幕运动,以右旋剪切、升降性质为主,构造活动中心逐渐向东迁移,伴随小规模的酸性火山喷发,发育酸性火山岩建造,在盆地闽江斜坡西部发生一系列北北东向左旋平移剪切断裂以及相配套的北西向、东西向断裂,瓯江断陷形成,发育了半地堑式湖盆沉积,主要受到东部控坳断裂影响,形成陆相特征为主的沉积,接受来自浙闽隆起带及灵峰凸起带物源,主要发育了冲积扇、三角洲、滨浅湖沉积。

      晚白垩世末期燕山Ⅳ幕运动,盆地抬升剥蚀,没有沉积、岩浆活动纪录,主要表现为断块升降运动。早古新世,东海陆架盆地继承晚白垩世进入裂陷发育阶段,新生代盆地叠加在中生代残留盆地之上,呈现东断西超的断陷盆地特征,早期沉积中心位于瓯江断陷,闽江斜坡缺失下古新统;晚期全区发育沉积,上古新统分布广,东厚西薄,发育了半地堑式的箕状断陷盆地,沉积了以浅海相沉积为主的古新统碎屑岩。始新世,整个东海陆架盆地进入断拗发育阶段,接受了厚度不等的海相沉积。渐新世末期该区第3次遭受大规模的区域抬升(即龙井运动),使得盆地中西部地区整套渐新世地层沉积很薄。新近纪到第四纪,该区断裂不发育,整体接受了河流和冲积平原相到海相沉积,呈现东厚西薄的特征。

    • 东海陆架盆地基底结构具有明显的分区特性,即NE分带,NW分块,并且发育系列NE向凹陷,其基底结构方面的差异性控制了盆地盖层NE分带的构造格局,即:东部地区临近西太平洋,表现为长期沉降的拗陷区,如基隆凹陷、西湖凹陷,是沉降中心,往往也是沉积中心,其沉积厚度大,有利于有机质富集、保存和向油气转化;西部地区临近浙闽隆起带,主要表现为西太平洋活动大陆边缘斜坡,沉积厚度向西逐渐减小,生油条件不如坳陷区,但是靠近物源区,是有利储集体及地层超覆与尖灭的发育区,也是油气运移的重要指向区,是油气聚集的有利场所。此外,与坳陷区相比,相同地层在斜坡区埋深较浅,油气演化程度相对较低,因而比坳陷区更容易富油少气。

      东海陆架盆地的活动大陆边缘的构造格局,决定了不同构造区含油气的差异,闽江斜坡和台北转折带应该以中生界为主,主要目的层上三叠—中侏罗统和白垩系;基隆凹陷是继承性沉降区,埋藏深,主要目的层是古—始新统,以气为主。

    • 东海陆架盆地中生代以来经历了活动陆缘挤压拗陷(T3-J2)和伸展断陷(K)3个阶段叠加演化过程,遭受2次海侵事件,岩相古地理主要为东海西陆,发育海陆交互相、滨海、浅水陆架、陆坡—深水陆架及岛弧体系。大量地震剖面及钻井资料揭示,中生界发育了两套较好的烃源岩和两组储盖组合[59-62]图2图3)。

      上三叠统—下侏罗统福州组(T3-J1+2)烃源岩已被FZ10和FZ13井两口钻井所证实,是东海陆架中生界主要的烃源岩层系[37, 59-60],根据地震剖面预测,该套烃源岩暗色泥岩厚度为200~760 m,主要分布在闽江斜坡南部、台北转折带和基隆凹陷,呈现东厚西薄、南厚北薄的特征。沉积环境为滨浅海相,岩性由暗色泥岩、碳质泥岩、泥页岩和煤所组成。从钻井所揭示的福州组来看,泥质岩有机碳(TOC)为0.69%~1.24%,生烃潜量(S1+S2)最大可达1.97 mg/g。氢指数(HI指数)为23~251 mg/g,平均为93 mg/g;最高热解峰温(Tmax)为446~478 ℃,平均为461 ℃。干酪根类型以Ⅲ型为主,少量为Ⅱ2型,属于腐殖型烃源岩。Ro为0.7%~3%,中东部Ro>2%,达到成熟—x过成熟阶段,自西北向东南逐渐变高。钻井揭示该套烃源岩品质中等,主要原因是钻井所揭示的仅仅是盆地中—下侏罗统的上半段;其次钻井位置不属于有利生烃相带,处于滨浅海沉积相带,据地震地层学推测优质烃源岩位于盆地东部和南部福州组中—下段。从邻域闽西南地区上三叠统暗色泥页岩、碳质泥岩为0.58%~14.96%,平均为2.36%,粤东地区小水组黑色炭质页岩,有机碳含量为1.17%~5.43%,为好—优质烃源岩。

      下白垩统烃源岩主要是厦门组和渔山组,闽江斜坡、台北转折带和基隆凹陷广泛分布,暗色泥岩厚度一般为50~450 m。下白垩统渔山组钻遇泥质岩的总有机碳为0.07%~0.89%,热解指数(S1+S2)为0.03~1.09 mg/g[37, 60]。氢指数HI为57~113 mg/g,平均为75 mg/g;Tmax为444 ℃,典型的Ⅲ型干酪根类型。Ro值为0.5%~1.2%,东部基隆凹陷总体Ro>2%,烃源岩处于成熟—高成熟演化阶段。FZ10和FZ13两口钻井所揭示的该套烃源岩有机质丰度较低,主要是岩石沉积环境为扇三角洲和滨浅湖相沉积,但越接近凹陷沉降中心,烃源岩品质趋好。而与之对应的陆域板头组、馆头组暗色泥岩有机碳含量为0.6%~2.0%[61],是一套好—优质烃源岩。

      通过钻井地层垂向沉积演化和地震地层学特征分析,东海陆架中生代发育2套生储盖组合:上三叠统—下侏罗统(生)—中侏罗统(储)—下白垩统(盖)组合和白垩系(生储盖)组合。上三叠—下侏罗统主要为拗陷型盆地扩张期的海侵细粒岩性沉积,是中生代地层的区域烃源岩层,中侏罗世受燕山运动影响,盆地不断抬升,海水逐渐向东海退,水体变浅,物源供给的变化,开始沉积河流—三角洲—滨浅海沉积体系,河道砂体及三角洲前缘砂体都是储集物性较好的储层,尤其中侏罗统顶部,砂体的横向连续性较好和不整合面的发育,储集性能好;早白垩世,古太平洋板块后撤式俯冲,盆地再次沉降遭受海侵影响,在下白垩统海侵域形成了连续性较好的偏泥页岩地层,既是第2套有利烃源岩层,也是下部组合的区域性盖层;晚白垩世,伴随着板块俯冲强烈,火山活动开始活跃,断陷活动增强,海平面变化频繁,形成了受火山物质影响的三角洲前缘砂体、分流河道砂体与海侵沉积的泥岩互层的沉积序列,三角洲前缘砂体、分流河道砂体构成储集性能较好的储集层,之间的海侵泥岩可以作为局部盖层或形成区域性盖层。

    • 多期构造运动,多期成藏、晚期调整定型,是复杂构造油气成藏的普遍规律。东海陆架盆地中生代以来具有复杂地球动力学背景,构造运动呈多期幕式和时空迁移特征,对油气成藏具有重要的控制。

      东海陆架盆地自中生代以来经历了基隆运动、渔山运动、雁荡运动和龙井运动等4次重要构造运动,他们控制着盆地演化与油气成藏要素形成与关键时期的匹配关系(图6),基隆运动是在前中生界基底上开始的大规模的张性活动,奠定东海陆架盆地中生代盆地基础,形成盆地东部闽江斜坡、基隆凹陷等一系列坳陷;渔山运动以拉张为主,规模上比基隆运动更强、更广,瓯江断陷形成,基隆凹陷开始新一轮的沉降,中部形成反转的台北转折带,2期运动早期控制主要烃源岩分布,是主要的成盆期,为沉积物提供较大沉积空间,奠定盆地油气成藏的物质基础,同时加快上三叠—下侏罗统烃源岩油气生成;雁荡运动是张扭性的运动,较前期平静,控制圈闭形成,此阶段埋藏深度适宜,有利于烃类的成熟与排出,并发育多个沉积中心形成较好的区域盖层,是中生界主要成藏期;龙井运动是一次水平挤压运动,主要表现为区域性抬升剥蚀、褶皱,局部构造加强、定型,有利于油气排出和聚集,圈闭定型,并且使早期油气藏破坏、调整,最终成藏。

      图  6  东海陆架盆地南部中生界油气成藏要素与匹配关系

      Figure 6.  Hydrocarbon accumulation factors and matching relationship of Mesozoic in the Southern East China Sea shelf basin

    • 区域性的继承性古隆起(斜坡)及古构造圈闭是各含油气系统油气早期运移聚集的有利场所。闽江斜坡从早期的古太平洋被动大陆边缘到中生代活动大陆边缘一直表现为面向太平洋的古斜坡,具有多期构造活动、多期运聚成藏的特点,受断层和不整合面的控制,既有侧向运移,也有垂向的运移,是中生界有利油气聚集区。台北转折带从基隆运动开始形成的低凸起(图5),经历多期演化形成现今“凹中凸”,其东部基隆凹陷表现为持续沉降(虽有沉积间断,但时间相对较短),西部发育闽江斜坡的浅凹,尽管存在多期构造运动,但都有助于烃源岩的成熟演化及油气排聚,发育自生自储的晚三叠—早侏罗世油气系统和白垩纪含油气系统,还发育下生上储式次生含油气系统(图7),需要注意的是新构造运动对原生油气藏的破坏和调整。

      图  7  东海陆架盆地南部中生界油气成藏模式图

      Figure 7.  Hydrocarbon accumulation model of the Mesozoic in the southern East China Sea shelf basin

    • (1)东海陆架盆地中生代复杂的地球动力学机制,造就了东海陆架盆地南部构造运动活跃,具有多期幕式构造-沉积演化过程,不同时期、不同性质的盆地构造相互叠加改造,控制着中生界油气成藏与勘探方向。

      (2)加强东海陆架盆地演化过程与中生界油气成藏关系综合研究,特别是构造运动对油气成藏的控制因素,查明不同时期油气资源分布规律与调整、改造,是东海陆架盆地南部中生界油气勘探实现突破的关键。

参考文献 (62)

目录

    /

    返回文章
    返回