夏威夷-皇帝海山链成因机制—古地磁学约束

姜兆霞, 李三忠, 刘青松, 张建利, 章钰桢

姜兆霞, 李三忠, 刘青松, 张建利, 章钰桢. 夏威夷-皇帝海山链成因机制—古地磁学约束[J]. 海洋地质与第四纪地质, 2019, 39(5): 104-114. DOI: 10.16562/j.cnki.0256-1492.2019061601
引用本文: 姜兆霞, 李三忠, 刘青松, 张建利, 章钰桢. 夏威夷-皇帝海山链成因机制—古地磁学约束[J]. 海洋地质与第四纪地质, 2019, 39(5): 104-114. DOI: 10.16562/j.cnki.0256-1492.2019061601
JIANG Zhaoxia, LI Sanzhong, LIU Qingsong, ZHANG Jianli, ZHANG Yuzhen. The kinematic mechanism study of Hawaii-Emperor seamount chain: Evidence from paleomagnetic records[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 104-114. DOI: 10.16562/j.cnki.0256-1492.2019061601
Citation: JIANG Zhaoxia, LI Sanzhong, LIU Qingsong, ZHANG Jianli, ZHANG Yuzhen. The kinematic mechanism study of Hawaii-Emperor seamount chain: Evidence from paleomagnetic records[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 104-114. DOI: 10.16562/j.cnki.0256-1492.2019061601

夏威夷-皇帝海山链成因机制—古地磁学约束

基金项目: 国家自然科学基金重大研究计划“西太平洋地球系统多圈层相互作用”培育项目“夏威夷皇帝海山链运动学过程研究”(91858108);中央高校基本科研业务经费(841941007)
详细信息
    作者简介:

    姜兆霞(1987—),女,副教授,主要从事古地磁学与环境磁学研究,E-mail:jiangzhaoxia@ouc.edu.cn

  • 中图分类号: P737.2

The kinematic mechanism study of Hawaii-Emperor seamount chain: Evidence from paleomagnetic records

  • 摘要: 夏威夷-皇帝海山链位于北太平洋中部,是一条自西北至东南延伸的海底火山链,并在47 Ma存在一个方向弯折。厘定这一特征的成因机制和运动学过程,是西太平洋海区软流圈与岩石圈相互作用以及跨圈层物质能量交换的关键科学问题,对于解译东亚大陆动力学演化过程亦具有重要意义。目前对于夏威夷-皇帝海山链47 Ma弯折的机制有两种争论:太平洋板块运动方向改变和热点移动。古地磁学是研究大陆漂移和板块演化的最有效手段之一,其最大优势是可以定量化研究地质历史时期中岩石圈板块的运动学过程。本文首先通过回顾与总结前人对夏威夷-皇帝海山链成因及转向机制的研究,重点探讨古地磁学在该问题上所提供的约束证据,并对存在的关键科学问题进行了梳理和展望。
    Abstract: The Hawaiian-Emperor seamount chain is located in the middle of North Pacific Ocean extending in a direction from northwest to southeast. It consists of two segments, the older Emperor chian trending in N10°W and the Hawaiian chanin extending in N110°E. The research interests of the Hawaiian-Emperor seamount chain remain in the origin of seamount chain and the the sharp bend of the chain, which are the key to the investigation of the upwelling in the mantle, the movement of the lithosphere, and the exchange of material and energy between different layers. Paleomagnetism is the best tool for the kinematic studies on the seamount chain. In this paper, we summarized the previous studies on the formation mechanism of the Hawaiian-Emperor chain and the bend formed 47 Ma, with emphasis on the paleomagnetic evidence for the kinematics process of the Hawaiian-Emperor seamount chain. Key scientific topics and research directions were also discussed.
  • 海底作为一个具有重要意义的地质界面,一直都是海洋科学研究的热点。海底底质的开发和利用在许多领域上都具有重要意义,特别是海洋军事[1]、海洋资源勘探[2]、水下考古[3]、海洋工程建设[4]、海洋渔业[5]等重要领域。传统的海底底质分类通常采用箱式取样、重力取样、抓斗等方式,按一定网格离散现场区域,通过室内测试分析后进行底质类型划分,但是该方式效率低,取样有限,作业成本高,所需时间长,且只能获取离散的海底底质点数据,需通过内插或外延的方式才能获得连续的底质分布。随着声学技术的不断发展,出现了多波束、侧扫声呐等一系列非接触式的声学底质探测方法[6-10],不仅改善了作业效率,而且明显减少了投入成本。目前应用较多的声学探测系统有多波束、侧扫声呐、浅地层剖面仪等。这些方法基本上都是基于沉积物类型与散射强度、回波波形等物理量的相关性,进行相关改正后再进行特征提取和统计分析[11-12]。多波束和侧扫声呐通过采集多角度反向散射信号来获取大面积的海底底质信息,多波束的回波强度数据往往侧重于统计特征参量的分类,而侧扫声呐的回波强度数据更倾向于图像纹理分类[13]。然而,海底以下的沉积层中包含了很多可以表征底质特征的声学参数,如声阻抗、声衰减等,由于多波束和侧扫仅能穿透海底表面以下数厘米的深度,无法提取这些特征信息[14-16]

    浅地层剖面仪,使用的是低频、高能量的正入射信号,能穿透至浅地层数十乃至数百米深度,获取这一深度区间内的高分辨率垂直剖面资料,其回波中包含更多浅地层沉积物信息,可用较高置信度推断底质类型[17-18]。关于浅地层剖面的底质分类方法主要有3种:一是组合系统分类,将浅地层剖面与多波束或侧扫声呐相结合来识别不同的底质特征;二是基于模型的声学参数底质反演分类,Shock [19-20]在Biot-Stoll模型的基础上计算了快波波速和衰减系数来预测表层沉积物的类型,反演方法在计算连续较深的沉积层性质时被证明是可靠的。郑红波等 [21]利用Biot-Stoll模型反演海底沉积物的孔隙度和渗透率,并计算平均粒径实现底质分类,结果表明,Biot-Stoll模型适用于软质海底沉积物的分类;三是无模型的回波信号统计特征量底质自动分类,Yegireddi等[22]利用灰度共生矩阵统计数据进行浅地层特征识别和纹理特征向量提取,并选择一种名为自组织映射的无监督神经网络算法进行分类,成功从海底图像中分离出4种不同底质类型的沉积层。陈佳兵[23]等提取图像的相关系数、角二阶矩、同质性等6个特征向量,并提出将粒子群优化算法与BP神经网络相结合,通过优化BP神经网络的初始权值和阈值提高底质分类的精度。本文基于最近在舟山群岛采集的高密度高分辨率浅地层剖面测线,从处理后的浅地层数据中提取用于底质分类研究的关键参数,在此基础上,用无模型的回波信号统计特征量反演海底表层沉积物类型,并与高密度侧扫声呐数据解释的地貌类型和实测海底沉积物类型进行对比,分析该反演方法的准确率和可靠性,并绘制海底底质分布类型图,作为一种海底沉积物类型反演的新方法探索,为后期开展相关研究提供参考。

    研究区主要位于舟山群岛海域,舟山群岛是浙东天台山脉向海延伸的余脉。在10~8 ka前,由于海平面上升将山体淹没才形成今天的岛群。古近纪和新近纪沿海及海岛地区全面隆起,处于剥蚀、侵蚀构造环境。进入第四纪,气候明显变冷,早更新世浙江沿海及海岛地区仍处于上升阶段,遭受构造侵蚀,形成了低山丘陵地貌。第四纪以来,伴随着海平面的多次升降,沉积了海相砂砾层和淤泥滩堆积[24-25]

    舟山群岛及其附近海域海流主要由东海沿岸流、长江冲淡水、台湾暖流等组成,季节性变化显著。受沿岸流影响,长江口入海泥沙经舟山群岛向东南搬运到水深小于60 m的内陆架区域。舟山群岛海域为典型往复流,岛屿间泥沙输运沿水道方向,潮流作用复杂,以峡道沉积作用为主,泥沙输运具有北进南出特征。已有研究表明,舟山群岛海域沉积物类型主要有5种,包括粉砂、砾质砂、砂质粉砂、粉砂质砂、砂,其中粉砂含量最高,呈片状广泛分布于舟山群岛东部宽阔海域[26-28]

    2021年7—8月中国地质调查局烟台海岸带地质调查中心在舟山海域开展了1 100 km浅地层剖面和523 km侧扫声呐测量(图1),作业过程中导航定位采用美国Trimble公司产SPS351-DGPS差分信标接收机,CGCS2000坐标系,投影方式采用高斯克吕格6°带投影。

    图  1  研究区内浅地层剖面和侧扫声呐测线图
    Figure  1.  Deployment of shallow seismic profiles and side scan sonar lines in the study area

    浅地层剖面采集仪器为英国应用声学公司生产的AAE型电火花浅地层剖面仪,测线间距1 km×2 km,震源为CSP-D(50-2400 J),水下声源Squid 2000,水听器为20单元组合检波水听器,频率响应范围为145~7 000 Hz,探测地层垂向分辨率优于0.5 m。通过试验确定的采集参数为:激发能量750 J,激发间隔800 ms,带通滤波100~5 000 Hz,电火花震源距离船尾30 m,水听器与电火花震源5 m,数据记录格式为SEGY,记录量程200 ms。

    侧扫声呐采用美国Klein公司生产的Klein4900型数字式双频侧扫声呐,主测线平行等深线,联络测线垂直主测线,主测线间距350 m,测量分两个区,金塘海域主测线共30条,联络测线共11条;定海海域主测线共17条,联络测线共11条。试验取得的剖面以具有较高分辨率和良好的记录面貌为原则,最终确定的侧扫声呐工作参数为:455 kHz低频采集,量程200 m,TVG选择自动,后拖时拖缆放长15 m,船速保持在5节左右。实际作业时根据回波信号的强度及声图质量,适时调整船速、量程等施工参数,确保声图能够清楚地反映海底的地貌特征。

    浅地层剖面数据处理采用集成开发的运行在Windows平台的处理系统,在浅地层剖面数据处理方面,有针对性地编写了特有模块和算法,目前成熟的模块有:能量分析、频谱分析、频率域滤波、时变滤波、真振幅恢复、道间能量均衡、非相干及相干噪音压制、水体噪音压制、鬼波压制、海底多次波压制、涌浪改正、潮位改正、道坐标归算等。根据浅地层剖面特点,本次使用的模块包括频谱分析、频率扫描、频率域滤波、振幅恢复、能量均衡、层位平滑、多次波衰减、噪音衰减等,通过数据处理,压制了噪音和多次波,突出了有效波,提高了信噪比,并加强了层位连续性,方便后续属性数据的提取。

    对原始SEGY数据进行前处理,包括滤波、真振幅恢复、振幅衰减补偿、振幅校正、振幅属性提取、多次波提取及反射系数计算等,方便后续属性数据的提取[29]

    通过对原始数据进行频率扫描,频谱分析等,大致确定数据资料的频率范围,以确定频率域滤波参数,通过分析对比,本次数据资料的有效频带范围大致在150~1 800,根据分析结果进而选择相应的滤波参数,滤波后高频和甚低频干扰噪音都得到了压制,同时也避免了噪音对后期海底振幅属性提取的干扰(图2)。

    图  2  带通滤波前(a)和滤波后(b)海底振幅属性对比
    Figure  2.  Comparison of seafloor amplitude properties before (a) and after (b) bandpass filtering

    地震波在传播过程中,受波前扩散、大地滤波、吸收、散射、投射损失等多种因素影响,后处理过程中使用振幅恢复模块对地震波能量进行补偿和校正,以恢复较深层的弱反射能量,处理效果及补偿前后能量衰减对比见图3,从剖面图和能量曲线上可以看出,振幅补偿后深层能量得到有效恢复。

    图  3  振幅补偿前(左)和补偿后(右)剖面对比
    Figure  3.  Amplitude compensation Profiles comparison before (left) and after (b) profiles comparison amplitude compensation

    外业采集过程中接收端能量往往受电缆沉放深度、震源深度、激发能量、海况等多种因素的影响,反映到资料剖面上,各道能量出现不均衡现象,同时也影响了海底反射能量,为减少这方面的影响,后处理过程中使用能量均衡模块,恢复因不同激发能量等因素引起的海底能量不一致性。通过互相关、能量匹配等方法对主要反射层位进行跟踪分析,采用拟合平滑局部层位以提高连续性、横向分辨率等。

    针对测区剖面上的短程多次波、海底多次波,采用预测反褶积模块对多次波进行衰减,特别是针对海底振幅能量有影响的鬼波,在提取能量前进行去鬼波处理(图4)。

    图  4  海底多次波处理前(左)和处理后(右)效果对比图
    Figure  4.  Before (left) and after (right) seabed multiple multi-wave processing

    通过浅地层剖面数据处理,对振幅进行校正后,先拾取海底反射(图5),再根据剖面判读反射特征与子波波形,推测实际地震子波长度大约为2 ms(图6),然后分别计算海底反射所在的波段和2 ms长度(下面简称区段)其对应的多个振幅属性,包括振幅最大值Max,振幅平均值Average及振幅均方根RMS等属性值。

    图  5  海底跟踪拾取
    Figure  5.  Seafloor tracking pickup
    图  6  子波长度估测
    Figure  6.  Wavelet length estimation

    对于异常振幅段要进行剔除,如震源无激发的记录道(图7),海底过浅以致海底反射受直达波影响的记录道,这类异常一般出现在测线开始或结尾处。

    图  7  测线3500—3670炮震源无激发记录
    Figure  7.  Source record of no excitation from 3500 to the 3670 shot

    根据高密度高分辨率浅地层剖面数据提取的各振幅属性值,包括波段Max、波段Average、波段RMS、区段Max、区段Average、区段RMS,见图8。对各属性体采用克里金栅格化后形成的等值线如图9所示。振幅属性值越大对应海底沉积物越硬,反之,值越小对应海底沉积物越软。

    图  8  根据浅地层剖面数据提取的各振幅属性值
    a:波段Max,b:波段Average,c:波段RMS,d:区段Max,e:区段Average,f:区段RMS。
    Figure  8.  Amplitude attribute values extracted from shallow seismic profiles
    a:Band Max, b: band Average, c:band RMS, d:section Max, e:section Average, f:section RMS.
    图  9  各振幅属性值克里金栅格化后等值线图
    a:波段Max,b:波段Average,c:波段RMS,d:区段Max,e:区段Average,f:区段RMS。
    Figure  9.  Each amplitude properties values Kriegin rasterized contour mapContour map of each amplitude attribute value after Kriging rasterization
    a: Band Max; b: band Average; c: band RMS; d: section Max; e: section Average; f: section RMS.

    通过对所有侧扫声呐测线的地貌进行分析,发现测区范围内主要存在冲刷沟槽(潮道)和海底平原地貌类型。在冲刷沟槽中分布大量的浅埋基岩和出露基岩、沙波、岩石台地和滑坡体等(图10),海底平原地区发育大量沙波以及人类活动留下的痕迹等,其中人类活动留下的痕迹又包括拖痕区、采砂区、渔网等(图11),测区侧扫声呐数据解释获得的地貌分类及其分布见图12

    图  10  侧扫声呐数据揭示的潮道底部出露的基岩
    高出海底近50 m。
    Figure  10.  Bedrock outcrop at the bottom of the tidal channel revealed by side-scan sonar data
    Nearly 50 m above the sea floor.
    图  11  侧扫声呐揭示的沙波
    Figure  11.  Sand waves revealed by side scan sonar
    图  12  侧扫声呐数据解释的地貌分类及其分布
    Figure  12.  Geomorphic classification and distribution interpreted by side scan sonar data

    出露基岩在本次调查范围内主要有两种,基本分布在冲刷沟槽(潮道)底部和潮道边缘,一种是在声呐图像上主要表现为反射深浅相间在水深100 m左右,由于拖鱼距离海底较大,声呐反射成像较差,但是岩石纹理仍然清晰,此类型在本次调查范围内的冲沟底部大面积出露,另一种是出露基岩表现为海底高高突起(图10),在声呐图像上的表现为海底水深线剧烈起伏,垂直拖鱼航向上近拖鱼位置反射强,随后为阴影暗反射区,基岩/风化壳分布范围见图12中红色区域所示。

    沙波一般是指浅水区河床中的泥沙质堆积地貌,在浅水区,水面受河床底部起伏影响呈波形,水流流速受上坡和下坡影响存在差异,进而导致沙波背水坡泥沙被侵蚀,而被侵蚀的泥沙会在下一个沙波的迎水坡堆积[30]。从平面上看,沙波的波峰大致互相平行,并与水流方向垂直或略显斜交。有时,它们呈时断时续的蛇曲形状或显弧形。测区范围内存在3处明显的沙波(图12中黄色范围),册子岛南边海域仅观察到少量沙波分布,估计是受挖沙影响,沙波沉积遭到破坏。大榭岛正北及东北海域的沙波,其沙波长达数百米,波高可达2~5 m(图11)。

    针对测区剖面上的海底多次波,采用预测反褶积模块对多次波进行求取(图13)。

    图  13  多次波提取前后剖面对比
    a:去多次波前,b:去多次波后,c:多次波。
    Figure  13.  Profile comparison before and after multiplex extraction
    a: Before multiplex extraction; b: after multiplex extraction; v: the multiplex.

    提取多次波后,再利用去多次波模块计算获得反射系数,图14为计算得到的反射系数属性体图。值越大对应海底沉积物越硬,反之,值越小反映海底沉积物越软。

    图  14  研究区浅地层剖面测线反射系数属性体(上)及等值线图(下)
    Figure  14.  Reflection coefficient properties (up) and contour map (down) of shallow seismic profiles

    由于测区范围内浅层气特别发育,除了基岩出露的部分测线段以外,几乎遍布整个测区,以致计算所获的反射系数整体偏高(图15)。

    图  15  测线反射系数(a)与RMS属性(b)对比图
    Figure  15.  Comparison of reflection coefficient (a) and RMS attributes (b)

    结合基岩出露、侧扫声呐资料解释后的沉积分区(图12)进行对比分析,可以明显看出,振幅属性对底质的刻画,特别是潮道区,区段振幅属性要优于波段振幅属性,3个区段振幅属性整体上差别不大。再根据2015年收集的实测表层样资料[31-32],进行综合对比(图16),并结合以往属性计算经验,最终采用区段RMS属性进行海底底质反演。为了方便对比,最终对区段RMS属性进行归一化处理。根据RMS属性值和粒度分析的相关关系,推测海底沉积物类型,研究区海底沉积物类型见图17,反演质量整体上较好。

    图  16  研究区实测表层沉积物类型及浅地层剖面区段振幅属性对比
    2015年实测沉积物类型:◆黏土质粉砂 ◆粉砂 ◆砂质粉砂。
    Figure  16.  Comparison of measured surface sediment types and amplitude attributes of shallow seismic profiles in the study area
    Measured sediment types in 2015:◆clayey silt ◆silt ◆sandy silt.
    图  17  根据浅地层剖面RMS振幅属性反演的海底表层沉积物类型
    Figure  17.  Seafloor surface sediment types derived from RMS amplitude attributes based on shallow seismic profiles

    部分推测区与表层样存在不符合的情况,研究区东北角反演推测的粉砂区,有2个黏土质粉砂表层样及2个砂质粉砂表层样落在此范围,1个砂质粉砂落在推测的黏土质粉砂范围内;另有桃花岛北边2个黏土质站位落在潮道边缘,推测为砂质区,全部29个站位中,其余22个站位(占总站位的72.41%)与推测的底质类型一致。

    反演推测区与表层样存在不符合的情况,原因可能为:一是表层样取样时间是2015年,地球物理测线采集是2021年,期间相隔6年,舟山海区流速大、沉积物源丰富,水动力(波浪、恒流、潮汐等)强,都会引起局部沉积物的成分变化,对比相关海域已公开发表的资料,可以发现不同年份的取样其底质分析结果也存在些许差异[33];二是研究区范围内浅层气特别发育,除基岩出露的区域外,浅层气几乎遍布其他区域,对沉积物类型反演有一定影响;三是受测线稀疏程度的影响,反演得到的海底底质分类的分辨率有限[34-35]

    本文探索了一种利用高密度高分辨率浅地层剖面资料振幅属性反演海底表层沉积物类型的新方法,利用地震数据前处理、振幅提取等技术,提取了浅地层剖面波段Max、波段Average、波段RMS、区段Max、区段Average、区段RMS等多个振幅属性值,对比分析发现区段RMS属性可较准确地反演沉积物类型。利用最近获得的浅地层剖面数据振幅RMS属性值反演出舟山群岛的沉积物类型主要有黏土、黏土质粉砂、粉砂、砂和基岩5种类型,通过与侧扫声呐数据解释的地貌单位和实测海底表层沉积物类型数据对比,初步估算准确率在72%以上,该反演方法在研究区可行。

    同时,该反演方法准确率受测线稀疏程度、数据原始采集质量等因素影响,因此结合本次资料处理及反演过程,为使后期提取的振幅属性更真实、多次波的计算更准确,在外业采集过程中应提高外业采集质量,保证记录长度超过多次波的到达时间在30 ms以上,尽量减小背景噪音,电缆沉放深度可以适当加大,可以减少水面噪音等。

  • 图  1   夏威夷-皇帝海山链的地理位置图

    其中白色实心点代表已经有明确放射性年龄的海山、环礁或岛屿。蓝色灰度变化代表重力异常(引自Torsvik等[13]

    Figure  1.   Hawaiian-Emperor seamount chain

    White dots are the locations of radiometrically dated seamounts, atolls and islands (Revised from Torsvik et al[13])

    图  2   热点固定论和移动论对应的太平洋板块和热点的运动模型(修改自Tarduno[41]

    Figure  2.   The models for hot spot-fixed and hot spot-moving hypotheses (revised from Tarduno[41])

    图  3   50 Ma时太平洋板块边界示意图

    Figure  3.   Sketch map showing plate boundaries surrounding the Pacific plate at 50 Ma

    图  4   太平洋板块的视极移曲线(APWP)(蓝色粗虚线)

    其中红色星号代表地磁极位置[60, 61],星号附近的数字代表对应的年龄(Ma),实线椭圆代表每个极位置95%的置信区间。蓝色圆点和蓝色细虚线为根据热点轨迹得到的太平洋板块的极移曲线[15, 62]。插图表明了极移的不同阶段,引自Sager[56]

    Figure  4.   Apparent polar wander path in the Pacific (APWP)

    The red stars denote pole positions defining the most likely APWP shown by the blue dashed line. Poles are surrounded by 95% confidence ellipses and labeled by age in Ma. Thin dashed lines show predicted polar wander path from plate/hotspots motion models of Duncan and Clague[15] and Wessel et al[62]. Inset sketch map shows interpreted phases of polar wander, revised from Sager[56]

    图  5   ODP197航次站位(1206,光孝海山;1205,推古海山;1204和1203,底特律海山),ODP884站位(底特律海山)以及DSDP433站位(仁德海山))的古纬度值

    蓝色三角形为热退磁结果,紫色三角形为交变退磁结果。433站位为热退和交变退磁结果(修改自Tarduno等[25]

    Figure  5.   Paleolatitude data from ODP Leg 197 (sites 1206, Koko seamount; 1206, Nintoku Seamount; 1204 and 1203, Detroit Seamount), ODP site (884 Detroit Seamount), and DSDP (Site 433, Suiko Seamount)

    Blue triangle, results of thermal demagnetization; Purple, results of alternating field demagnetization; Results from 433 is based on AF and thermal data (Revised from Tarduno et al[25])

    图  6   夏威夷-皇帝海山链地幔柱牵引和反弹机制

    81 Ma时,地幔柱在1 200~1 500 km深度处,地幔上升流受太平洋-库拉洋中脊牵引,之后随着上升流减弱,地幔柱逐渐往回折返,并在47 Ma恢复到它本来位置(修改自Tarduno等[22]

    Figure  6.   Schematic diagram of plume capture and release for the Hawaiian-Emperor chain

    The plume is bent between 1 200 and 1 500 km depth toward the mantle upwelling associated with the Pacific-Kula ridge system at 81 Ma; upwelling abates thereafter, allowing the plume to return to its original position relative to the deep mantle by 47 Ma (Revised based on Tarduno et al[22])

    图  7   夏威夷热点的纬向运动

    古地磁方法得到的皇帝海山链以及夏威夷岛链各海山或岛礁相对于夏威夷热点现今纬度位置(19.4°N)的纬度偏移量[22, 24- 25, 64, 77-79](黑色实心圆)以及经过真极移校正的数据(黄色六角星)(修改自Torsvik等[13]

    Figure  7.   Latitude motion of the Hawaiian hotspot

    Paleomagnetically derived latitudes (blue ovals connected with the blue line) from seamounts along Emperor chain and islands/atolls along the Hawaiian chain plotted with 95% confidence bars. The data are shown as latitude offsets from the present latitude of Hawaii (observed latitude minus latitude of Hawaii, 19.4°N) (Revised from Torsvik et al[13])

    图  8   皇帝海山链形成过程中夏威夷热点和太平洋板块运动向量模型图

    hVp太平洋板块相对于热点的运动速度(红色向量),mVp太平洋板块相对于地幔的运动(假设地幔相对于自转轴固定)(黑色向量)。二者的矢量和mVh代表热点相对于地幔的运动(黄色向量),具有一个很大的西向分量。水平向量(紫色)代表了太平洋板块在没有北向速度分量的情况下表现出来的西向运动。虚线指示了太平洋板块没有北向运动的情况下,热点相对于地幔的运动(引自Sager[56]

    Figure  8.   Sketch of motion vectors indicating Hawaiian hotspot drift during the formation of the Emperor seamounts

    Motion of plate relative to hotspot, hVp (red vector), given by trend of Emperor seamounts. Motions of plate relative to mantle (assumed fixed relative to spin axis), mVp (black vector), is assumed to be same as at present (Hawaiian chain). Sum is motion of hotspot relative to the mantle, mVh (yellow vector), which has a large westward component. Horizontal vector at bottom (purple) shows Pacific plate motion if the plate had no northward component of velocity. Dashed-line vectors show predicted motion of hotspot relative to mantle if Pacific plate motion has no northward component. Different dashed lines correspond to different westward velocities. Background is a shaded relief plot of Hawaiian-Emperor chain bathymetry (Referred from Sager[56])

  • [1]

    Wilson J T. A possible origin of the Hawaiian islands [J]. Canadian Journal of Physics, 1963, 41(6): 863-870. doi: 10.1139/p63-094

    [2]

    Morgan W J. Deep mantle convection plumes and plate motions [J]. AAPG Bulletin, 1972, 56(2): 203-213.

    [3]

    Clague D A, Dalrymple G B. Tectonics, geochronology and origin of the Hawaiian-Emperor volcanic chain[M]//Winterer E L, Huss D M, Decker R W. The Eastern Pacific Ocean and Hawaii. The Geology of North America. Geological Society of America, 1989: 188-217.

    [4]

    Sharp W D, Clague D A. An older, slower Hawaii-Emperor bend[Z]. United States: American Geophysical Union, 2002.

    [5]

    O'Connor J M, Steinberger B, Regelous M, et al. Constraints on past plate and mantle motion from new ages for the Hawaiian-Emperor Seamount Chain [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(10): 4564-4584. doi: 10.1002/ggge.20267

    [6]

    Depaolo D J, Manga M. Deep origin of hotspots: The mantle plume model [J]. Science, 2003, 300(5621): 920-921. doi: 10.1126/science.1083623

    [7]

    Foulger G R, Natland J H. Is "Hotspot" volcanism a consequence of plate tectonics? [J]. Science, 2003, 300(5621): 921-922. doi: 10.1126/science.1083376

    [8]

    Hilde T W C, Uyeda S, Kroenke L. Evolution of the western pacific and its margin [J]. Tectonophysics, 1977, 38(1-2): 145-165. doi: 10.1016/0040-1951(77)90205-0

    [9]

    Hill R I, Campbell I H, Davies G F, et al. Mantle plumes and continental tectonics [J]. Science, 1992, 256(5054): 186-193. doi: 10.1126/science.256.5054.186

    [10]

    Niu Y. Origin of the 43 Ma bend along the Hawaiian-Emperor seamount chain: Problem and solution[M]//Hekinian R, Cheminée J L, Stoffers P. Oceanic Hotspots. Berlin Heidelberg: Springer, 2004: 143-155.

    [11]

    Smith A D. A plate model for Jurassic to Recent intraplate volcanism in the Pacific Ocean basin[C]//Foulger G R, Jurdy D M. Plates, Plumes and Planetary Processes. Geological Society of America, 2007, 430: 471-495.

    [12]

    Stock J. Hotspots come unstuck [J]. Science, 2003, 301(5636): 1059-1060. doi: 10.1126/science.1089049

    [13]

    Torsvik T H, Doubrovine P V, Steinberger B, et al. Pacific plate motion change caused the Hawaiian-Emperor Bend [J]. Nature Communications, 2017, 8: 15660. doi: 10.1038/ncomms15660

    [14]

    Morgan W J. Convection plumes in the lower mantle [J]. Nature, 1971, 230(5288): 42-43. doi: 10.1038/230042a0

    [15]

    Duncan R A, Clague D A. Pacific plate motion recorded by linear volcanic chains[M]//Nairn A E M, Stehli F G, Uyeda S. The Ocean Basins and Margins. Boston, MA: Springer, 1985: 89-121.

    [16]

    Molnar P, Atwater T. Relative motion of hot spots in the mantle [J]. Nature, 1973, 246(5431): 288-291. doi: 10.1038/246288a0

    [17]

    Molnar P, Stock J. Relative motions of hotspots in the Pacific, Atlantic and Indian Oceans since late Cretaceous time [J]. Nature, 1987, 327(6123): 587-591. doi: 10.1038/327587a0

    [18]

    Norton I O. Global hotspot reference frames and plate motion[C]//Richards M A, Gordon R G, van der Hilst R D. The History and Dynamics of Global Plate Motions. Washington, DC: AGU, 2000, 121: 339-357.

    [19]

    Norton I O. Plate motions in the North Pacific: The 43 Ma nonevent [J]. Tectonics, 1995, 14(5): 1080-1094. doi: 10.1029/95TC01256

    [20]

    Butler R F. Paleomagnetism: Magnetic Domains to Geologic Terranes[M]. Boston: Blackwell Scientific Publications, 1992.

    [21]

    Tauxe L. Essentials of Paleomagnetism[M]. Berkeley: University of California Press, 2010.

    [22]

    Tarduno J, Bunge H P, Sleep N, et al. The bent Hawaiian-Emperor hotspot track: Inheriting the mantle wind [J]. Science, 2009, 324(5923): 50-53. doi: 10.1126/science.1161256

    [23]

    Tarduno J A. On the motion of Hawaii and other mantle plumes [J]. Chemical Geology, 2007, 241(3-4): 234-247. doi: 10.1016/j.chemgeo.2007.01.021

    [24]

    Tarduno J A, Cottrell R D. Paleomagnetic evidence for motion of the Hawaiian hotspot during formation of the Emperor seamounts [J]. Earth & Planetary Science Letters, 1997, 153(3-4): 171-180.

    [25]

    Tarduno J A, Duncan R A, Scholl D W, et al. The Emperor Seamounts: Southward motion of the Hawaiian hotspot plume in Earth's mantle [J]. Science, 2003, 301(5636): 1064-1069. doi: 10.1126/science.1086442

    [26]

    Christensen U. Fixed hotspots gone with the wind [J]. Nature, 1998, 391(6669): 739-739. doi: 10.1038/35736

    [27]

    Doubrovine P V, Steinberger B, Torsvik T H. Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans [J]. Journal of Geophysical Research, 2012, 117: B09101. doi: 10.1029/2011JB009072

    [28]

    Duncan R A, Tarduno J A. Motion of the Hawaiian hotspot: a paleomagnetic test [J]. Ocean Drilling Program Scientific Prospectus, 2001, 97: 1-83.

    [29]

    Morgan W J. Hotspot tracks and the opening of the Atlantic and Indian Oceans[M]//Emiliani C. The Oceanic Lithosphere. New York: Wiley, 1981: 443-487.

    [30]

    Müller R D, Royer J Y, Lawver L A. Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks [J]. Geology, 1993, 21(3): 275-278. doi: 10.1130/0091-7613(1993)021<0275:RPMRTT>2.3.CO;2

    [31]

    Patriat P, Achache J. India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates [J]. Nature, 1984, 311(5987): 615-621. doi: 10.1038/311615a0

    [32]

    Lithgow-Bertelloni C, Richards M A. The dynamics of Cenozoic and Mesozoic plate motions [J]. Reviews of Geophysics, 1998, 36(1): 27-78. doi: 10.1029/97RG02282

    [33]

    Hall C E, Gurnis M, Sdrolias M, et al. Catastrophic initiation of subduction following forced convergence across fracture zones [J]. Earth and Planetary Science Letters, 2003, 212(1-2): 15-30. doi: 10.1016/S0012-821X(03)00242-5

    [34]

    Gurnis M, Hall C, Lavier L. Evolving force balance during incipient subduction [J]. Geochemistry, Geophysics, Geosystems, 2004, 5: Q07001. doi: 10.1029/2003GC000681

    [35]

    Sharp W D, Clague D A. 50-Ma initiation of Hawaiian-Emperor bend records major change in Pacific plate motion [J]. Science, 2006, 313(5791): 1281-1284. doi: 10.1126/science.1128489

    [36]

    Stock J M. The Hawaiian-Emperor bend: Older than expected [J]. Science, 2006, 313(5791): 1250-1251. doi: 10.1126/science.1131789

    [37]

    Koivisto E A, Andrews D L, Gordon R G. Tests of fixity of the Indo-Atlantic hot spots relative to Pacific hot spots [J]. Journal of Geophysical Research, 2014, 119(1): 661-675.

    [38]

    Wright N M, Müller R D, Seton M, et al. Revision of Paleogene plate motions in the Pacific and implications for the Hawaiian-Emperor bend [J]. Geology, 2015, 43(5): 455-458. doi: 10.1130/G36303.1

    [39]

    Li S Z, Suo Y H, Li X Y, et al. Microplate tectonics: new insights from micro-blocks in the global oceans, continental margins and deep mantle [J]. Earth-Science Reviews, 2018, 185: 1029-1064. doi: 10.1016/j.earscirev.2018.09.005

    [40]

    Steinberger B, Sutherland R, O'Connell R J. Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow [J]. Nature, 2004, 430(6996): 167-173. doi: 10.1038/nature02660

    [41]

    Tarduno J A. Hot spots unplugged [J]. Scientific American, 2008, 298(1): 88-93. doi: 10.1038/scientificamerican0108-88

    [42]

    Duncan R A. Hotspots in the Southern Oceans — an absolute frame of reference for motion of the Gondwana continents [J]. Tectonophysics, 1981, 74(1-2): 29-42. doi: 10.1016/0040-1951(81)90126-8

    [43]

    Parés J M, Moore T C. New evidence for the Hawaiian hotspot plume motion since the Eocene [J]. Earth and Planetary Science Letters, 2005, 237(3-4): 951-959. doi: 10.1016/j.jpgl.2005.06.012

    [44]

    DiVenere V, Kent D V. Are the Pacific and Indo–Atlantic hotspots fixed? Testing the plate circuit through Antarctica [J]. Earth and Planetary Science Letters, 1999, 170(1-2): 105-117. doi: 10.1016/S0012-821X(99)00096-5

    [45]

    Cande S C, Raymond C A, Stock J, et al. Geophysics of the Pitman Fracture Zone and Pacific-Antarctic Plate Motions During the Cenozoic [J]. Science, 1995, 270(5238): 947-953. doi: 10.1126/science.270.5238.947

    [46]

    Doubrovine P V, Tarduno J A. A revised kinematic model for the relative motion between Pacific oceanic plates and North America since the Late Cretaceous [J]. Journal of Geophysical Research, 2008, 113(B12): B12101. doi: 10.1029/2008JB005585

    [47]

    Steinberger B. Plumes in a convecting mantle: Models and observations for individual hotspots [J]. Journal of Geophysical Research, 2000, 105(B5): 11127-11152. doi: 10.1029/1999JB900398

    [48]

    Steinberger B, Antretter M. Conduit diameter and buoyant rising speed of mantle plumes: Implications for the motion of hot spots and shape of plume conduits [J]. Geochemistry, Geophysics, Geosystems, 2006, 7: Q11018. doi: 10.1029/2006GC001409

    [49]

    Sager W W, Bleil U. Latitudinal shift of Pacific hotspots during the late Cretaceous and early Tertiary [J]. Nature, 1987, 326(6112): 488-490. doi: 10.1038/326488a0

    [50] 徐文耀. 地磁学[M]. 北京: 地震出版社, 2003: 64-118.

    XU Wenyao. Geomagnetism[M]. Beijing: Seismic Press, 2003: 64-118.

    [51] 朱岗崑. 古地磁学: 基础、原理、方法、成果与应用[M]. 北京: 科学出版社, 2005: 101-112.

    ZHU Gangkun. Paleomagnetism: Essential, Principle, Methods, and Application[M]. Beijing: Science Press, 2005: 101-112.

    [52] 黄宝春. 地球古板块位置的古地磁定位方法[M]//丁仲礼. 固体地球科学研究方法. 北京: 科学出版社, 2013: 805-817.

    HUANG Baochun. Paleomagnetic location method for paleoplate in the Earth[M]//DING Zhongli. Geophysical Methods. Beijing: Science Press, 2013: 805-817.

    [53]

    Creer K M, Irving E, Runcorn S K. The direction of the Geomagnetic field in remote epochs in Great Britain [J]. Journal of Geomagnetism and Geoelectricity, 1954, 6(4): 163-168. doi: 10.5636/jgg.6.163

    [54]

    Piper J D A. Palaeomagnetism and the Continental Crust[M]. New York: John Wiley & Sons, 1987.

    [55]

    Torsvik T H, Van der Voo R, Redfield T F. Relative hotspot motions versus True Polar Wander [J]. Earth and Planetary Science Letters, 2002, 202(2): 185-200. doi: 10.1016/S0012-821X(02)00807-5

    [56]

    Sager W W. Divergence between paleomagnetic and hotspot-model–predicted polar wander for the Pacific plate with implications for hotspot fixity[C]//Foulger G R, Jurdy D M. Plates, Plumes and Planetary Processes. Geological Society of America, 2007, 430: 335-357.

    [57]

    Acton G D, Gordon R G. A 65 Ma palaeomagnetic pole for the Pacific plate from the skewness of magnetic anomalies 27r-31 [J]. Geophysical Journal International, 1991, 106(2): 407-420. doi: 10.1111/j.1365-246X.1991.tb03904.x

    [58]

    Acton G D, Gordon R G. Paleomagnetic tests of Pacific plate reconstructions and implications for motion between hotspots [J]. Science, 1994, 263(5151): 1246-1254. doi: 10.1126/science.263.5151.1246

    [59]

    Sager W W, Koppers P A A. Late Cretaceous polar wander of the Pacific plate: Evidence of a rapid true polar wander event [J]. Science, 2000, 287(5452): 455-459. doi: 10.1126/science.287.5452.455

    [60]

    Sager W W. Cretaceous paleomagnetic apparent polar wander path for the Pacific plate calculated from Deep Sea Drilling Project and Ocean Drilling Program basalt cores [J]. Physics of the Earth & Planetary Interiors, 2006, 156(3-4): 329-349.

    [61]

    Beaman M, Sager W W, Acton G D, et al. Improved Late Cretaceous and early Cenozoic Paleomagnetic apparent polar wander path for the Pacific plate [J]. Earth & Planetary Science Letters, 2007, 262(1-2): 1-20.

    [62]

    Wessel P, Harada Y, Kroenke L W. Toward a self-consistent, high-resolution absolute plate motion model for the Pacific [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(3): Q03L12. doi: 10.1029/2005gc001000

    [63]

    Kono M. Paleomagnetism of DSDP Leg 55 Basalts and implications for the tectonics of the Pacific Plate [J]. Initial Reports of the Deep Sea Drilling Project, 1980, 55: 737-752.

    [64]

    Cox A, Gordon R G. Paleolatitudes determined from paleomagnetic data from vertical cores [J]. Reviews of Geophysics, 1984, 22(1): 47-72. doi: 10.1029/RG022i001p00047

    [65]

    Sager W W. Basalt core paleomagnetic data from Ocean Drilling Program Site 883 on Detroit Seamount, northern Emperor Seamount chain, and implications for the paleolatitude of the Hawaiian hotspot [J]. Earth & Planetary Science Letters, 2002, 199(3-4): 347-358.

    [66]

    Sager W W. Paleomagnetism of abbott seamount and implications for the latitudinal drift of the Hawaiian Hot Spot [J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B7): 6271-6284. doi: 10.1029/JB089iB07p06271

    [67]

    Kodama K, Uyeda S, Isezaki N. Paleomagnetism of Suiko Seamount, Emperor Seamount Chain [J]. Geophysical Research Letters, 1978, 5(3): 165-168. doi: 10.1029/GL005i003p00165

    [68]

    Tarduno J A. Absolute inclination values from deep sea sediments: A reexamination of the Cretaceous Pacific record [J]. Geophysical Research Letters, 1990, 17(1): 101-104. doi: 10.1029/GL017i001p00101

    [69]

    Duncan R A, Tarduno J A, Scholl D W. 1. Leg 197 Synthesis: Southward motion and geochemical variability of the Hawaiian hotspot[C]//Proceedings of the Ocean Drilling Program, Scientific Results. 2006, 197: 1-39.

    [70]

    Sager W W, Lamarche A J, Kopp C. Paleomagnetic modeling of seamounts near the Hawaiian–Emperor bend [J]. Tectonophysics, 2005, 405(1-4): 121-140. doi: 10.1016/j.tecto.2005.05.018

    [71]

    Koppers A A P, Yamazaki T, Geldmacher J, et al. Limited latitudinal mantle plume motion for the Louisville hotspot [J]. Nature Geoscience, 2012, 5: 911-917. doi: 10.1038/ngeo1638

    [72]

    Cottrell R D, Tarduno J A. A Late Cretaceous pole for the Pacific plate: implications for apparent and true polar wander and the drift of hotspots [J]. Tectonophysics, 2003, 362(1-4): 321-333. doi: 10.1016/S0040-1951(02)00643-1

    [73]

    Keller R A, Fisk M R, White W M. Isotopic evidence for Late Cretaceous plume–ridge interaction at the Hawaiian hotspot [J]. Nature, 2000, 405(6787): 673-676. doi: 10.1038/35015057

    [74]

    Norton I O. Speculations on Cretaceous tectonic history of the Northwest Pacific and a tectonic origin for the Hawaii hotspot[C]//Foulger G R, Jurdy D M. Plates, Plumes and Planetary Processes. Geological Society of America, 2007, 430: 451-470.

    [75]

    Butterworth N P, Müller R D, Quevedo L, et al. Pacific Plate slab pull and intraplate deformation in the early Cenozoic [J]. Solid Earth, 2014, 5: 757-777. doi: 10.5194/se-5-757-2014

    [76]

    Tarduno J A, Gee J. Large-scale motion between Pacific and Atlantic hotspots [J]. Nature, 1995, 378(6556): 477-480. doi: 10.1038/378477a0

    [77]

    Gordon R G, Cape C D. Cenozoic latitudinal shift of the Hawaiian hotspot and its implications for true polar wander [J]. Earth and Planetary Science Letters, 1981, 55(1): 37-47. doi: 10.1016/0012-821X(81)90084-4

    [78]

    Doubrovine P V, Tarduno J A. Late Cretaceous paleolatitude of the Hawaiian Hot Spot: New paleomagnetic data from Detroit Seamount(ODP Site 883) [J]. Geochemistry, Geophysics, Geosystems, 2004, 5: Q11L04. doi: 10.1029/2004GC000745

    [79]

    Cromwell G, Tauxe L, Staudigel H, et al. Paleointensity estimates from historic and modern Hawaiian lava flows using glassy basalt as a primary source material [J]. Physics of the Earth and Planetary Interiors, 2015, 241: 44-56. doi: 10.1016/j.pepi.2014.12.007

    [80]

    Wilson D S. Revision of Paleogene plate motions in the Pacific and implications for the Hawaiian-Emperor bend: comment [J]. Geology, 2016, 44(4): e384. doi: 10.1130/G37388C.1

    [81]

    Van der Voo R. The reliability of paleomagnetic data [J]. Tectonophysics, 1990, 184(1): 1-9. doi: 10.1016/0040-1951(90)90116-P

  • 期刊类型引用(1)

    1. 张雅茹,张广璐,杨俊,赵彦彦,管红香,刘盛. 南海不同沉积环境黄铁矿的矿物学及原位微区地球化学研究. 古地理学报. 2024(06): 1498-1515+1543-1545 . 百度学术

    其他类型引用(0)

图(8)
计量
  • 文章访问数:  5369
  • HTML全文浏览量:  1344
  • PDF下载量:  184
  • 被引次数: 1
出版历程
  • 收稿日期:  2019-06-15
  • 修回日期:  2019-08-24
  • 网络出版日期:  2019-11-06
  • 刊出日期:  2019-09-30

目录

/

返回文章
返回