Gas hydrate accumulation models of Makran accretionary wedge, northern Indian Ocean
-
摘要: 印度洋北部马克兰增生楔是阿拉伯板块低角度俯冲到欧亚板块之下形成的,平面上具有北部沉积速率高,沉积厚度大,南部逆冲断裂和紧闭褶皱发育,且构造活动具有北部拉张与南部挤压的特征;纵向上具有深部断裂活动强与浅部构造相对稳定的特点。这种复杂的活动大陆边缘具有世界上超低的俯冲角度和良好的水合物成藏条件,因此,平面上水合物矿藏类型多样,其中,下陆坡和增生楔前缘主要受叠瓦状逆冲断层的控制而形成“阶梯式增生楔型”水合物藏,而中陆坡和上陆坡主要受沉积厚度和北部拉张的控制作用而形成“底辟型”和“泥火山型”水合物藏。纵向上马克兰增生楔水合物矿藏具有“二层楼结构”的成藏模式,即深部主要受逆冲断层的控制,而浅部主要受正断层的控制。上述成藏模式可能与阿拉伯板块低角度俯冲有关。Abstract: The Makran accretionary wedge, located in the northern Indian Ocean, is resulted from the subduction of the Arabian plate under the Eurasian plate at a low dip angle. In the northern part of the accretionary wedge, sedimentation rate is high and sediments are thick, while in the southern part, thrust faults and tight anticlines dominate. The tectonics is characterized by extension in north and compression in south. In vertical direction, however, faulting activities are strong in the deep and weak in the shallow part. It is a complicated active continental margin characterized by an ultralow angle subduction plate in the world and thus has good conditions for hydrate accumulation. So far, different types of hydrate accumulations have been found. The hydrate accumulation of multi-stepped accretionary wedges mainly occur in the Lower-Slope and Deformation Front under the control of imbricate thrust faults, while the hydrate accumulation of mud diapirs and mud volcanoes types mainly occur in the Mid-Slope and Upper-Slope, which are jointly controlled by sediment thickness and the tectonic tension in the north. Vertically, the hydrate accumulations are characterized by so called "Double floor structure". It means that deep accumulations are mainly controlled by thrust faults, while shallow ones are mainly under the control of normal faults. The above-mentioned hydrate accumulation models may owe their origin to the low angle subduction of the Arabian Plate towards the Eurasian Plate.
-
-
图 4 垂直第六脊的3条地震剖面及解释剖面(测线位置见图 2)(据文献[13])
箭头1:3层BSR;箭头2:第六脊滑塌;箭头3:振幅增强体(亮点);箭头4:第六脊下面的气烟囱
Figure 4. Seismic profiles across the sixth ridge (see Figure 2 for location of the three profiles) (after reference [13])
Arrow 1: triple BSRs; Arrow 2: collapsed frontal slope of the Sixth Ridge; Arrow 3: high amplitude reflections (bright spots) in Unit Ⅲ; Arrow 4:chimney-like structures in the subsurface beneath the Sixth Ridge
表 1 巴基斯坦马克兰增生楔羽状流站位特征(据文献[15])
Table 1 The features of flame stations in Makran accretionary wedge (after reference [15])
站位 经纬度 水深/m ROV观察结果 备注 1 24°53.49′N、63°01.47′E 552 存在白色和桔黄色菌席,白色菌席之下为黑色硫化物。在一个较小的区域(30~50m2)发现十几个渗漏点,气泡从海底渗漏。 羽状流高100~150m 2 24°50.80′N、63°01.44′E 1025 菌席、管状蠕虫、气泡。菌席分布广,密度高,颜色多样,从白色、粉红色、亮黄色均有。碳酸盐岩结壳 滑塌顶,获得水合物。羽状流高170m 3 24°37.27′N、63°02.62′E 1552 大型活体棕色蛤蜊、几个大型螃蟹表明最近在渗漏。ROV故障,否则会有更多发现 无羽状流 4 24°17.91′N、62°50.41′E 1946 蛤蜊、虾、菌席局部,钙质管、流体喷口 第一脊,羽状流高450m 6 24°34.97′N、62°56.30′E 1600 发现了蛤蜊、菌席、碳酸盐岩结壳 羽状流高900m 7 24°38.64′N、62°44.26′E 1632 管状蠕虫、海绵、鱼、螃蟹、高密度棕色贻贝(可用网兜取样)、2个气泡羽状流(高度50cm不等)、死亡的蛤蜊、碳酸盐岩结壳。 羽状流高度850m 11 24°44.52′N、62°58.64′E 1465 碳酸盐岩结壳上覆盖大量贻贝,大量白色螃蟹覆盖贻贝,观察到气泡和蛤蜊。 羽状流高100~150m 15 24°48.41′N、63°59.65′E 733 蛤蜊、虾、圆形菌席很软,边为白色,中间为黄色,钙质管、流体喷口。 羽状流高100m -
[1] 王健, 邱文弦, 赵俐红.天然气水合物发育的构造背景分析[J].地质科技情报, 2010, 29(2): 100-106. doi: 10.3969/j.issn.1000-7849.2010.02.018 WANG Jian, QIU Wenxian, ZHAO Lihong. Tectonic settings analysis of gas hydrate deposits development[J]. Geological Science and Technology Information, 2010, 29(2): 100-106. doi: 10.3969/j.issn.1000-7849.2010.02.018
[2] 张光学, 祝有海, 梁金强, 等.构造控制型天然气水合物矿藏及其特征[J].现代地质, 2006, 20(4): 605-612. doi: 10.3969/j.issn.1000-8527.2006.04.012 ZHANG Guangxue, ZHU Youhai, LIANG Jinqiang, et al. Tectonic controls on gas hydrate deposits and their characteristics[J]. Geoscience, 2006, 20(4): 605-612. doi: 10.3969/j.issn.1000-8527.2006.04.012
[3] 张光学, 祝有海, 徐华宁.非活动大陆边缘的天然气水合物及其成藏过程述评[J].地质论评, 2003, 49(2): 181-186. doi: 10.3321/j.issn:0371-5736.2003.02.010 ZHANG Guangxue, ZHU Youhai, XU Huaning. Gas hydrate on the passive continental margin and its pool-formation process[J]. Geological Review, 2003, 49(2): 181-186. doi: 10.3321/j.issn:0371-5736.2003.02.010
[4] Grando G, McClay K. Morphotectonics domains and structural styles in the Makran accretionary prism, offshore Iran[J]. Sedimentary Geology, 2007, 196(1-4): 157-179. doi: 10.1016/j.sedgeo.2006.05.030
[5] Kopp C, Fruehn J, Flueh E R, et al. Structure of the Makran subduction zone from wide-angle and reflection seismic data[J]. Tectonophysics, 2000, 329(1-4): 171-191. doi: 10.1016/S0040-1951(00)00195-5
[6] White R S, Louden K E. The Makran continental margin: structure of a thickly sedimented convergent plate boundary[M]//Watkins J S, Drake C L. Studies in Continental Margin Geology. Tulsa, Okla: American Association of Petroleum Geologists, 1983: 499-518.
[7] Flueh E R, Kukowski N, Reichert C. RV sonne, cruise report SO123 'MAMUT' (Makran Murray Traverse)[R]. GEOMAR Report. 1997, 62: 291.
[8] Kukowski N, Schillhorn T, Huhn K, et al. Morphotectonics and mechanics of the central Makran accretionary wedge off Pakistan[J]. Marine Geology, 2001, 173(1-4): 1-19. doi: 10.1016/S0025-3227(00)00167-5
[9] Ellouz-Zimmermann N, Lallemant S J, Castilla R, et al. Offshore frontal part of the Makran accretionary prism: The Chamak Survey (Pakistan)[M]//Lacombe O, Roure F, Lavé J, et al. Thrust Belts and Foreland Basins. Berlin: Springer, 2007: 351-366.
[10] Hussain A, Khan M R, Ahmad N, et al. Mud-diapirism induced structuration and implications for the definition and mapping of hydrocarbon traps in Makran accretionary prism, Pakistan[C]//AAPG/SEG International Conference & Exhibition, Melbourne. Melbourne, Australia: SEG, 2015: 13-16.
[11] Smith G L. The structure, fluid distribution and earthquake potential of the Makran subduction zone, Pakistan[D]. Southampton, Great Britain: University of Southampton, 2013.
[12] Smith G, McNeill L, Henstock T J, et al. The structure and fault activity of the Makran accretionary prism[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B7): B07407. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2012JB009312
[13] Ding F, Spiess V, Fekete N, et al. Interaction between accretionary thrust faulting and slope sedimentation at the frontal Makran accretionary prism and its implications for hydrocarbon fluid seepage[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B8): B08106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2008JB006246
[14] Shoar B H, Javaherian A, Farajkhah N K, et al. Reflectivity template, a quantitative intercept-gradient AVO analysis to study gas hydrate resources-a case study of Iranian deep sea sediments[J]. Marine and Petroleum Geology, 2014, 51: 184-196. doi: 10.1016/j.marpetgeo.2013.12.007
[15] Bohrmann G, Bahr A, Brinkmann F, et al. Cold seeps of the Makran subduction zone (Continental Margin of Pakistan): R/V meteor cruise report M74/3: M74, Leg3, Fujairah-Male[R]. Fachbereich Geowissenschaften, Universitat Bremen, 2008.
[16] Von Rad U, Berner U, Delisle G, et al. Gas and fluid venting at the Makran accretionary wedge off Pakistan[J]. Geo-Marine Letters, 2000, 20(1): 10-19. doi: 10.1007/s003670000033
[17] 龚建明, 廖晶, 孙晶, 等.巴基斯坦马克兰增生楔天然气水合物的主控因素[J].海洋地质前沿, 2016, 32(12): 10-15. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201612002 GONG Jianming, LIAO Jing, SUN Jing, et al. Factors controlling gas hydrate accumulation in Makran accretionary wedge off Pakistan[J]. Marine Geology Frontiers, 2016, 32(12): 10-15. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201612002
[18] Baba K, Yamada Y. BSRs and associated reflections as an indicator of gas hydrate and free gas accumulation: An example of accretionary prism and forearc basin system along the Nankai trough, off central Japan[J]. Resource Geology, 2004, 54(1): 11-24. doi: 10.1111-j.1751-3928.2004.tb00183.x/
[19] Römer M, Sahling H, Pape T, et al. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan)[J]. Journal of Geophysical Research: Oceans, 2012, 117(C10): C10015. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2011JC007424
[20] Römer M, Sahling H, Spieβ V, et al. The role of gas bubble emissions at deep-water cold seep systems: An example from the Makran continental margin, offshore Pakistan[C]//Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011). Edinburgh, Scotland, 2011: 17-21.
[21] Smith G L, McNeill L C, Henstock T J, et al. Fluid generation and distribution in the highest sediment input accretionary margin, the Makran[J]. Earth and Planetary Science Letters, 2014, 403: 131-143. doi: 10.1016/j.epsl.2014.06.030
[22] Milkov A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates[J]. Marine Geology, 2000, 167(1-2): 29-42. doi: 10.1016/S0025-3227(00)00022-0
[23] Milkov A V, Sassen R. Economic geology of offshore gas hydrate accumulations and provinces[J]. Marine and Petroleum Geology, 2002, 19(1): 1-11. doi: 10.1016/S0264-8172(01)00047-2
[24] 沙志彬, 王宏斌, 张光学, 等.底辟构造与天然气水合物的成矿关系[J].地学前缘, 2005, 12(3): 283-288. doi: 10.3321/j.issn:1005-2321.2005.03.032 SHA Zhibin, WANG Hongbin, ZHANG Guangxue, et al. The relationships between diapir structure and gas hydrate mineralization[J]. Earth Science Frontiers, 2005, 12(3): 283-288. doi: 10.3321/j.issn:1005-2321.2005.03.032
[25] Schlüter H U, Prexl A, Gaedicke C, et al. The Makran accretionary wedge: sediment thicknesses and ages and the origin of mud volcanoes[J]. Marine Geology, 2002, 185(3-4): 219-232. doi: 10.1016/S0025-3227(02)00192-5
[26] Wiedicke M, Neben S, Spiess V. Mud volcanoes at the front of the Makran accretionary complex, Pakistan[J]. Marine Geology, 2001, 172(1-2): 57-73. doi: 10.1016/S0025-3227(00)00127-4
[27] Delisle G. The mud volcanoes of Pakistan[J]. Environmental Geology, 2004, 46(8): 1024-1029. doi: 10.1007/s00254-004-1089-x
[28] Ellouz-Zimmermann N, Lallemant S J, Castilla R, et al. Offshore frontal part of the Makran accretionary prism: the Chamak survey (Pakistan)[M]//Lacombe O, Roure F, Lavé J, et al. Thrust Belts and Foreland Basins. Berlin: Springer, 2017: 349-364.
-
期刊类型引用(4)
1. 热西提·亚力坤,单玄龙,郝国丽,李康. 珠江口盆地西江主洼泥-流体底辟及其发育条件. 海洋地质前沿. 2023(07): 58-69 . 百度学术
2. 罗静兰,李弛,雷川,曹江骏,宋昆鹏. 碎屑岩储集层成岩作用研究进展与热点问题讨论. 古地理学报. 2020(06): 1021-1040 . 百度学术
3. XIE Yangbing,WU Tuoyu,SUN Jin,ZHANG Hanyu,WANG Jiliang,GAO Jinwei,CHEN Chuanxu. Sediment Compaction and Pore Pressure Prediction in Deepwater Basin of the South China Sea: Estimation from ODP and IODP Drilling Well Data. Journal of Ocean University of China. 2018(01): 25-34 . 必应学术
4. 谢杨冰,吴时国. 南海深水海盆沉积物压实作用及影响因素. 海洋地质与第四纪地质. 2017(03): 37-46 . 本站查看
其他类型引用(2)