-
锆石(ZrSiO4)作为自然界中常见的副矿物,广泛存在于沉积岩、岩浆岩和变质岩中。由于富含U、Th,低普通Pb,且U-Pb同位素体系封闭温度高[1],锆石常被用于指示构造-岩浆事件或高级变质事件的峰值年龄。同时,锆石具有抗风化、抗磨蚀和抗热蚀变等特征,因此即使经历多期沉积旋回,锆石的矿物学及地球化学组成依旧保存了源区信息[2]。所以,碎屑锆石年代学常常被用于物源示踪研究。由于不同源区的构造-岩浆-沉积演化历史不同,它们的锆石年龄组成存在明显差异。通过对比各个潜在源区和沉积区的碎屑锆石U-Pb年代学,可以在不同时间尺度上示踪各个源区的贡献及相对比例[3-5],并进一步重建源区古地理或区域构造-沉积演化历史[2,6]。因此,虽然锆石极小(10-5~10-4m),但它却能够指示大范围的地质信息,如印度-欧亚板块的碰撞[7]、长江(1012m2)的诞生[8]和台湾岛(1010m2)的沉积演化[9]等。然而,近年来的研究发现碎屑锆石年代学运用存在一些方法问题,如具有统计意义的锆石年龄谱所需的最小数据量[10,11],源区锆石产率对碎屑锆石年代学判别物源造成的偏差[12,13],水动力分选对碎屑锆石年龄谱的影响[14,15],以及锆石年龄谱对比的定量化方法及分析偏差[16,17]。这些问题都值得今后进一步关注。
本文报道了中国东南部山溪性中小河流的碎屑锆石年代学特征,中国东南部出露了两类完全不同的岩性:大陆东南部流域的基岩以显生宙岩浆岩为主要特征,而台湾山溪性小流域的基岩主要为新生代(变质-)沉积岩。因此,通过对比这两类河流的碎屑锆石年龄组成特征,可以探究两者碎屑锆石年代学的控制因素,进而为东部海区砂质沉积物的物源示踪提供重要参考。
-
大陆东南部最老的基底为前寒武纪的武夷山层,含有古元古代杂岩[18,19]。但是,东南部基底的主体是新元古代岩体,主要分布于西华夏板块[20]。随着后期构造-岩浆活动的改造作用,大陆东南部普遍覆盖有古生代和中生代的岩浆岩[21]。其中,东南沿岸地区主要出露晚中生代花岗岩;且向内陆,岩浆岩年龄逐渐变老,出露早中生代和古生代的岩浆岩[22,23],大致呈现东北—西南的带状分布(图 1a)。
图 1 中国东南部地质概况及研究样品分布
Figure 1. Geological background of southeastern China and distribution of sample locations
新生代东亚大陆边缘的构造演化导致台湾岛自东向西发育三个大地构造单元:(1)弧前盆地-火山岛弧,包括海岸山脉;(2)增生楔,包括中央山脉和恒春半岛;(3)褶皱-逆冲带,包括雪山山脉、西部麓山带和海岸平原(图 1b)[24]。台湾地层呈现大致南-北向的条带状分布,形成时代存在空间变化规律。海岸平原主要为第四纪碎屑沉积物,西部麓山带以中新世—更新世砂岩和页岩为主,雪山山脉出露始新世—渐新世板岩和变质砂岩,中央山脉西部出露中新世板岩和浊积岩,中央山脉东部由中生代大南澳变质杂岩组成,海岸山脉主要为晚新生代火山碎屑岩[25]。
-
本研究着重关注四条大陆中小型河流和两条台湾岛山溪性河流(图 1,表 1)。
表 1 研究流域基本水文特征
Table 1. Hydrological characteristics of study river basins
大陆东南部河流可以分为两类:一类发育于沿岸地区,河流长度(<400km)和流域面积((1~2)×104km2)普遍偏小,主要位于东华夏板块;另一类覆盖范围更广,河流长度(>500km)和流域面积((5~6)×104km2)较大,且流经西华夏板块。总体上,大陆东南部山溪性中小河流输沙量较少,普遍小于6Mt/a(表 1)。其中,瓯江、闽江和九龙江注入东海,而北江在注入珠江主流后进入南海。
台湾山溪性河流有151条之多,且大多数发源于中央山脉。浊水溪位于台湾西部,是台湾最长的河流,流域面积约为3×103km2,注入台湾海峡;兰阳溪为台湾东北部河流,长约73km,流域面积约为103km2,向东注入太平洋。虽然浊水溪和兰阳溪的流域面积比闽江低一个数量级,但其输沙量却明显高于闽江,指示出台湾极高的剥蚀速率[27]。
-
本研究于2013年5月在兰阳溪和浊水溪流域共采集7个河漫滩沉积物样品,编号为LY1—3和ZS1—4(表 2和图 1b)。
表 2 浊水溪和兰阳溪沉积物样品位置
Table 2. Location of sediment samples in the Zhuoshui and Lanyang Rivers
河流 编号 纬度(N) 经度(E) 浊水溪 ZS1 23°47.558′ 120°54.810′ ZS2 23°47.224′ 120°38.771′ ZS3 23°48.508′ 120°27.962′ ZS4 23°50.056′ 120°17.343′ 兰阳溪 LY1 24°29.121′ 121°25.403′ LY2 24°37.555′ 121°32.748′ LY3 24°43.010′ 121°46.813′ 锆石的挑选和制靶步骤为:每个样品进行重液分选和磁选后,挑选出千粒以上的锆石;在双目镜下随机选取约200粒锆石,固定于环氧树脂靶并抛光暴露核心。随后,对靶样拍摄阴极发光(CL)图像(Mono CL3+连接扫描电镜),用以观察锆石结构及挑选合适测年点。U-Pb年龄测定在合肥工业大学资源与环境工程学院的LA-ICPMS实验室完成。本LA-ICPMS系统包括GeoLasProArF-Excimer的激光源和Agilent 7500a的ICPMS两部分。样品测试采用32μm的束斑直径,其中LY3由于颗粒较小将束斑直径调为24μm。NIST SRM610被用于校正仪器质量歧视和激光引起的元素分馏,U-Pb年龄的校正和监测通过反复测量外标91500锆石和内标Plesovice锆石来实现。年龄数据利用ICPMSDataCal 9.2软件进行处理[31]。为了让碎屑锆石年龄数据更具有统计意义,本研究采取相对宽松的年龄筛选策略,舍弃不谐和度大于20%的年龄点[17]。并且,对年龄小于1000Ma的锆石选取206Pb/238U年龄,对年龄大于1000Ma的锆石选取207Pb/206Pb年龄[32]。
-
为了与台湾河流锆石U-Pb年龄进行对比,本研究还搜集了大陆东南部四条中小河流的碎屑锆石年龄数据,包括:瓯江、北江[33]、九龙江和闽江[34,35],共计963个年龄点(已筛除不谐和度大于20%的数据)。具体样品站位见图 1a。
-
针对中国东南部6条河流的碎屑锆石年龄数据,本研究利用DensityPlotter软件[16]绘制了锆石年龄的核密度估计(KDE)图解(图 2)。
图 2 中国东南部中小河流的碎屑锆石U-Pb年龄KDE图解
Figure 2. KDE plots for zircon U-Pb ages of small- and medium-sized rivers in southeastern China.
可以看出,大陆东南沿岸的小型河流((1~2)×104km2)如九龙江锆石年龄峰值十分简单,仅存在~151Ma的主要年龄峰值以及~242Ma的次级峰值。与之类似,瓯江也仅存在两个年龄峰值,主要峰值为~129Ma,较九龙江主峰更为年轻;次要峰值则更为古老,为~1850Ma的古元古代峰值。
大陆东南部的中型河流((5~6)×104km2)则相对不同,如北江的主要峰值为~158Ma,3个次级峰值包括:~233、~442和~934Ma。闽江锆石年龄峰值相较于其他大陆中小河流更为复杂。主要峰值位于早中生代和早古生代,分别为~219Ma和~423Ma。并且,相较于其他河流,晚中生代峰值较弱。此外,闽江也存在~1863Ma的次级峰,与瓯江类似。
对比而言,虽然台湾小河流的流域面积要小于大陆东南部河流一个数量级,但它们的碎屑锆石年龄谱却更为复杂。兰阳溪以~133Ma为主要年龄峰值,次级峰值包括~430Ma的古生代峰值和~234Ma的早中生代峰值。浊水溪的碎屑锆石年龄组成在各研究河流中最为复杂,共包含6个主要年龄峰值,分别是:~133、~227、~415、~790、~1925和~2497Ma。相对于大陆东南部河流和兰阳溪而言,浊水溪沉积物含有更多的前寒武纪锆石,具有明显的新元古代峰值和古元古代峰值。
-
总体上,中国东南部山溪性中小河流的碎屑锆石U-Pb年龄组成差异明显。大陆东南沿岸的小型河流碎屑锆石年龄组成较为简单,以晚中生代峰值为主;而中型河流出现多个锆石年龄组,包括古生代或前寒武纪峰值。台湾山溪性河流虽然流域面积极小,但碎屑锆石年龄组成更复杂。台湾和大陆东南部中小河流碎屑锆石年龄组成的差异可能与流域内的地层性质密切相关。下面分别将两类河流的基岩性质与河流沉积物的碎屑锆石年龄组成进行对比,探究河流碎屑锆石年代学的控制因素。
-
为了便于对比不同的锆石U-Pb年龄谱,本研究将河流碎屑锆石年龄划分为8组,分别为:喜马拉雅期(65~0Ma)、燕山期(200~65Ma)、印支-海西期(360~200Ma)、加里东期(540~360Ma)、震旦-晋宁期(1000~540Ma)、四堡期(1800~1000Ma)、吕梁期(2500~1800Ma)和太古代基底(>2500Ma)。然后,依据各个年龄组的相对比例,绘制各个端元的U-Pb年龄饼状图。
由于前人曾系统调查过华南的花岗岩分布范围[26],因此我们将各期次花岗岩面积的相对比例绘制饼状图并作为源岩端元(图 3)。华南地区以燕山期花岗岩为主,且包含一定比例的印支-海西期和加里东期花岗岩,而前寒武纪花岗岩出露较少。对应地,燕山期也是大陆东南部中小河流的主要锆石年龄组,反映流域主要基岩对河流碎屑锆石来源的控制。
然而,各河流的碎屑锆石年龄组成与华南花岗岩的面积比例存在显著差异,这可以从两方面进行解释。一方面,中小河流只能反映局部特征而无法体现大区域的基岩性质分布。比如,虽然华南地区较少出露前寒武纪基底,但由于瓯江上游流经该古元古代基底,因此其含有较高比例的古元古代锆石[33]。另一方面,华南岩浆岩体中常可以发现继承性成因的古老锆石[18]。因此,虽然华夏板块内部出露的最老基岩为晚古元古代的八都杂岩[18,19],但在各条河流的沉积物中皆存在一定比例的太古代锆石(图 3)。
此外,由于河流能够采集流域内的各个地层,因此沉积物中的碎屑锆石蕴含着流域地质演化的信息[36,37]。九龙江和瓯江具有极高比例的燕山期锆石,对应着古太平洋板块的俯冲作用及中国东南部的玄武质底辟作用[22]。并且,印支期锆石在九龙江和闽江中占有较高比例,指示着泛特提斯造山域的陆-陆碰撞过程[23]。特别地,闽江沉积物中还有明显的加里东期年龄峰值,与扬子板块和华北板块间的陆内碰撞密切相关[38,39]。仅有瓯江含有较高比例的晚古元古代锆石,该时期对应着东华夏板块的克拉通化,并且与Columbia超大陆的聚合存在联系[18]。由此可见,大陆东南部河流的碎屑锆石U-Pb年代学主要受控于流域内的构造-岩浆活动演化。
-
我们搜集了雪山山脉和西部麓山带不同时期沉积岩的碎屑锆石年龄数据,并与河流沉积物进行对比(图 4)。
台湾以新生代(变质-)沉积岩为主,但不同时期沉积岩的碎屑锆石年龄组成存在明显差异[40]。始新世—渐新世岩层中以显生宙锆石为主,并且燕山期锆石具有最高比例,其次为加里东期。中新世岩层中具有极高比例的前寒武纪锆石,且吕梁期所占比例最高(图 4)。与之对应地,兰阳溪沉积物的碎屑锆石年龄组成与始新世—渐新世地层接近,而浊水溪沉积物的碎屑锆石年龄组成则与中新世地层较为相似(图 4)。由于雪山山脉始新世—渐新世地层是兰阳溪流域的主要出露地层,而西部麓山带的中新世地层是浊水溪流域的常见地层之一(图 1),因此基岩和河流沉积物的相似性也揭示着对应的“源-汇”联系。
相较于沉积岩剖面,河流沉积物能更全面地反映流域地质演化历史。因此,兰阳溪和浊水溪在碎屑锆石年龄组成上的差异揭示出两个流域的沉积岩具有不同的“源-汇”过程。浊水溪流域沉积岩的碎屑锆石年龄峰值比兰阳溪更复杂,且具有更高比例的前寒武纪锆石(图 4),反映出浊水溪流域沉积岩的源区更为多样化。事实上,台湾新生代的构造-沉积演化历史十分复杂。在始新世—渐新世,古台湾地区的沉积物主要来自于邻近华夏板块的中小河流[9]。然而,早中新世以来,由于青藏高原隆升,大型东流水系建立[8],扬子板块和华北板块的大型河流将携带大量沉积物穿过当时暴露的大陆架,抵达位于外陆架的古海岸线;随后,古沿岸流将这些沉积物向南输送至古台湾地区[9,41]。晚中新世以来,由于菲律宾板块和欧亚板块之间发生弧-陆碰撞,导致不同时期的沉积层序受到挤压变形,并最终隆升形成现今的台湾岛[42]。
因此,台湾的构造-沉积演化历史决定了台湾沉积岩及河流沉积物具有复杂的碎屑锆石U-Pb年龄组成。
-
为了厘定中国东南部海区的物源端元,重矿物[43,44]、黏土矿物[45,46]、元素指标[47]及Sr-Nd同位素[48,49]等多种手段都曾被应用于长江、浙闽河流以及台湾河流。然而,碎屑锆石年代学作为精确的物源判别手段之一,在中国东部大陆边缘的沉积物源分析中运用并不广泛。
现代东海内陆架的沉积物主要来自沿岸流输送的长江源物质[50],而浙闽河流供应的沉积物大多沉积在河口近岸[51],对内陆架贡献较小。台湾海峡的粗粒沉积物主要物源为台湾的山溪性小河流[52]。因此,利用碎屑锆石年代学示踪现代东海沉积物的来源意义不大。然而,在末次冰期,海平面降低,古长江主要流经暴露的东海中-外陆架并最终将沉积物输送至冲绳海槽[53]。在这种陆架暴露条件下[54],古长江对东海内陆架及台湾海峡的影响明显减弱,因此该地区的沉积物来源可能是浙闽河流和台湾西部河流的组合。并且,沉积区与各端元的相对距离将直接影响着浙闽河流和台湾河流沉积物的贡献比例。正因如此,确定这些河流碎屑锆石年龄组成的独特性质具有实际意义。
如前所述,大陆东南部中小河流和台湾山溪性小河流的碎屑锆石年代学具有不同的控制因素。前者主要与流域基岩所经历的构造-岩浆活动对应,后者与流域沉积岩的构造-沉积演化历史密切相关。这种差异导致中国东南部中小河流碎屑锆石年代学存在不同特征。基于此,中国东南部河流大致可分为三类端元:东南沿岸小河流(如九龙江和瓯江)、东南部中型河流(如闽江)以及台湾西部河流(如浊水溪)。第一类河流主要流经东华夏板块,受到东南沿岸中生代岩浆岩的显著贡献,因此碎屑锆石年龄峰值以燕山期为主(图 3);第二类河流流域面积更大,涵盖了华夏板块的东部和西部,流域内出露早古生代岩浆岩,加里东期峰值更为突出(图 3);由于台湾沉积岩具有复杂的构造-沉积演化历史,第三类河流的碎屑锆石年龄峰值更复杂,以前寒武纪锆石比例高、晋宁期/吕梁期峰值明显为特征(图 4)。中国东南部三类河流端元的确立,为示踪末次冰期阶段东海内陆架和台湾海峡的粗粒沉积物来源提供可能。
-
本研究比较中国大陆东南部中小河流和台湾山溪性河流的碎屑锆石U-Pb年龄组成,揭示出山溪性中小河流碎屑锆石年代学的控制因素,及其对东部海区沉积物源示踪的指示。
(1) 大陆东南部流域基岩所经历的构造-岩浆活动演化基本控制了中小河流碎屑锆石年代学特征,而台湾山溪性河流的碎屑锆石年代学与流域沉积岩的构造-沉积演化历史密切相关。
(2) 末次冰期阶段,东海内陆架和台湾海峡的沉积物可能存在三类物源端元:东南沿岸的小河流以极高的燕山期锆石峰值为特征;东南部的中型河流富含加里东期锆石;台湾西部河流以较高比例的前寒武纪锆石以及明显的晋宁期和吕梁期峰值为特征。物源端元特征的确立为示踪低海面时期东南部海区砂质沉积物来源提供重要借鉴。
The comparison of detrital zircon geochronology between mountainous rivers in Eastern China and its implications for marine sediment provenance
More Information-
摘要: 碎屑锆石年代学常被用于示踪物源、重建源区古地理以及揭示区域构造-沉积演化历史。分析和收集了台湾山溪性河流及大陆东南部中小河流的碎屑锆石U-Pb年龄,探究了山溪性中小河流碎屑锆石年代学的主要控制因素,及对东部海区沉积物源的示踪意义。河流碎屑锆石年龄组成与流域基岩性质比较研究揭示,大陆东南部中小河流碎屑锆石年代学与流域基岩所经历的构造-岩浆活动对应,而台湾山溪性小河流的碎屑锆石年代学与流域沉积岩的构造-沉积演化历史密切相关。中国东南部山溪性中小河流的碎屑锆石年龄组成揭示出三类不同的物源端元:(1)东南沿岸的小河流具有极高的燕山期锆石峰值;(2)东南部中等流域规模的河流以明显的加里东期锆石峰值为特征;(3)台湾西部山溪小河具有较高比例的前寒武纪锆石以及明显的晋宁期和吕梁期峰值年龄。这些物源端元特征的确立为今后示踪末次冰期阶段东海内陆架和台湾海峡的粗粒沉积物来源提供重要参考。Abstract: The detrital zircon geochronology is commonly applied to trace the sediment provenance, reconstruct the paleogeography, and reveal the tectono-sedimentary evolution history. Although zircon is an extremly tiny mineral (10-5~10-4m), it may provide geological information of such a large spatial scale (> 1010m2) as the India-Asia collision, the birth of the Yangtze River and the tecotono-sedimentary evolution of Taiwan Island. The aim of this study is to reveal the characteristics and controlling factors of the detrital zircon geochronology of mountainous rivers by comparing zircon U-Pb ages of river sands between two kinds of river basins drainning through different lithology (sedimentary rocks and igneous rocks) in southeastern China.In this contribution, we measured the detrital zircon U-Pb ages of the river sands from the Zhuoshui and Lanyang Rivers of Taiwan, and collected zircon age data of four small mountianous rivers in southeastern mainland from literatures. It is found that there is a huge discrepancy in the detrital zircon geochronology of small mountainous rivers in southeastern China. The zircon age populations of the Jiulong and Ou Rivers are very simple, with a dominant peak in late Mesozoic age. As the basin area becomes larger, the North and Min Rivers show more zircon age groups, including Mesozoic, Paleozoic and Precambrain peaks. In comparison, although the basin areas of Taiwanese mountainous rivers are extremly small ((1~3)×103 km2), the zircon age distributions are very complex. Especially, the Zhuoshui River owns a high proportion of Precambrain zircons.In order to reveal the controlling factors of the detrital zircon geochronology, the zircon U-Pb age distributions of river sands in southeastern China are compared with the bedrock characteristics in related river basins. It shows that the detrital zircon geochronology of river sands in southeastern mainland corresponds well to regional tectono-igneous activities. By contrast, the detrital zircon geochronology of river sands in Taiwan is closely related to the tectono-sedimentary evolution of this lsland.In addition, based on the characteristics of the detrital zircon geochronology of river sands, the medium- and samll- sized mountainous rivers in southeastern China can be divided into three end-members. The first is the small rivers along the southeastern coast, which have an intense Yanshanian age peak. The second is the medium-sized rivers in southeastern mainland with an obvious Caledonian age peak. As to the third, the western rivers in Taiwan own not only a high proportion of Precambrain zircons, but also obvious Jinningian and Lüliangian age peaks. To sum up, characterizing these end-members can provide important instructions for tracing the provenance of coarse sediments deposited in the Taiwan Strait and the inner shelf of the East China Sea during the last glacial period.
-
图 1 中国东南部地质概况及研究样品分布
大陆东南部花岗岩分布(a)改自文献[26], 台湾构造单元(b)改自文献[24]。(a)中,江绍断裂(JSF)和师宗-弥勒-罗平-新沂-罗甸断裂(SMLXLF)为华夏板块和扬子板块的分界线,而政和-大埔断裂(ZDF)将华夏板块划分为东、西两部分
Figure 1. Geological background of southeastern China and distribution of sample locations
The distribution of granite in southeastern mainland (a) is modified from [26], and the tectonic units of Taiwan (b) are modified from [24]. In (a), the Jiangshao Fault (JSF) and the Shizong-Mile-Luoping-Xinyi-Luodian Fault (SMLXLF) are the boundaries between the Yangtze Block and the Cathaysia Block, and the Zhenghe-Dapu Fault (ZDF) divides the Cathaysia Block into two parts
图 2 中国东南部中小河流的碎屑锆石U-Pb年龄KDE图解
瓯江和北江的锆石年龄数据来自文献[33],九龙江和闽江的数据来自文献[34,35],图中数字代表峰值年龄
Figure 2. KDE plots for zircon U-Pb ages of small- and medium-sized rivers in southeastern China.
Age data in Ou and North Rivers are sourced from[33] , age data in Jiulong and Min Rivers from[34,35]. The numbers in plots mean corresponding peak ages
表 1 研究流域基本水文特征
Table 1. Hydrological characteristics of study river basins
表 2 浊水溪和兰阳溪沉积物样品位置
Table 2. Location of sediment samples in the Zhuoshui and Lanyang Rivers
河流 编号 纬度(N) 经度(E) 浊水溪 ZS1 23°47.558′ 120°54.810′ ZS2 23°47.224′ 120°38.771′ ZS3 23°48.508′ 120°27.962′ ZS4 23°50.056′ 120°17.343′ 兰阳溪 LY1 24°29.121′ 121°25.403′ LY2 24°37.555′ 121°32.748′ LY3 24°43.010′ 121°46.813′ -
[1] Lee J K, Williams I S, Ellis D J. Pb, U and Th diffusion in natural zircon[J]. Nature, 1997, 390(6656): 159-162. doi: 10.1038/36554 [2] Fedo C M, Sircombe K N, Rainbird R H. Detrital zircon analysis of the sedimentary record[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 277-303. doi: 10.2113/0530277 [3] Alizai A, Carter A, Clift P D, et al. Sediment provenance, reworking and transport processes in the Indus River by U-Pb dating of detrital zircon grains[J]. Global and Planetary Change, 2011, 76(1-2): 33-55. doi: 10.1016/j.gloplacha.2010.11.008 [4] Amidon W H, Burbank D W, Gehrels G E. Construction of detrital mineral populations: insights from mixing of U-Pb zircon ages in Himalayan rivers[J]. Basin Research, 2005, 17(4): 463-485. doi: 10.1111/j.1365-2117.2005.00279.x [5] Cawood P A, Nemchin A A, Freeman M, et al. Linking source and sedimentary basin: detrital zircon record of sediment flux along a modern river system and implications for provenance studies[J]. Earth and Planetary Science Letters, 2003, 210(1-2): 259-268. doi: 10.1016/S0012-821X(03)00122-5 [6] Gehrels G. Detrital zircon U-Pb geochronology applied to tectonics[J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1): 127-149. doi: 10.1146/annurev-earth-050212-124012 [7] Hu X M, Garzanti E, Moore T, et al. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59±1 Ma)[J]. Geology, 2015, 43(10): 859-862. doi: 10.1130/G36872.1 [8] Zheng H, Clift P D, Wang P, et al. Pre-Miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 7556-7561. doi: 10.1073/pnas.1216241110 [9] Deng K, Yang S Y, Li C, et al. Detrital zircon geochronology of river sands from Taiwan: Implications for sedimentary provenance of Taiwan and its source link with the east China mainland[J]. Earth-Science Reviews, 2017, 164: 31-47. doi: 10.1016/j.earscirev.2016.10.015 [10] Andersen T. Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation[J]. Chemical Geology, 2005, 216(3-4): 249-270. doi: 10.1016/j.chemgeo.2004.11.013 [11] Vermeesch P. How many grains are needed for a provenance study?[J]. Earth and Planetary Science Letters, 2004, 224(3-4): 441-451. doi: 10.1016/j.epsl.2004.05.037 [12] Moecher D P, Samson S D. Differential zircon fertility of source terranes and natural bias in the detrital zircon record: Implications for sedimentary provenance analysis[J]. Earth and Planetary Science Letters, 2006, 247(3-4): 252-266. doi: 10.1016/j.epsl.2006.04.035 [13] Malusà M G, Resentini A, Garzanti E. Hydraulic sorting and mineral fertility bias in detrital geochronology[J]. Gondwana Research, 2016, 31: 1-19. doi: 10.1016/j.gr.2015.09.002 [14] Lawrence R L, Cox R, Mapes R W, et al. Hydrodynamic fractionation of zircon age populations[J]. Geological Society of America Bulletin, 2011, 123(1-2): 295-305. doi: 10.1130/B30151.1 [15] Yang S Y, Zhang F, Wang Z B. Grain size distribution and age population of detrital zircons from the Changjiang (Yangtze) River system, China[J]. Chemical Geology, 2012, 296-297: 26-38. doi: 10.1016/j.chemgeo.2011.12.016 [16] Vermeesch P. On the visualisation of detrital age distributions[J]. Chemical Geology, 2012, 312-313: 190-194. doi: 10.1016/j.chemgeo.2012.04.021 [17] Gehrels G. Detrital zircon U-Pb geochronology: current methods and new opportunities[M]//Busby C, Azor A, eds. Tectonics of Sedimentary Basins: Recent Advances. Chichester, West Sussex: Blackwell Publishing Ltd, 2011: 45-62. [18] Yu J H, Wang L, O'Reilly S Y, et al. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China[J]. Precambrian Research, 2009, 174(3-4): 347-363. doi: 10.1016/j.precamres.2009.08.009 [19] Yu J H, O'Reilly S Y, Zhou M F, et al. U-Pb geochronology and Hf-Nd isotopic geochemistry of the Badu Complex, Southeastern China: Implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block[J]. Precambrian Research, 2012, 222-223: 424-449.https://www.researchgate.net/publication/241091272_U-Pb_geochronology_and_Hf-Nd_isotopic_geochemistry_of_the_Badu_Complex_Southeastern_China_Implications_for_the_Precambrian_crustal_evolution_and_paleogeography_of_the_Cathaysia_Block [20] 舒良树.华南构造演化的基本特征[J].地质通报, 2012, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003 SHU Liangshu. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 2012, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003 [21] Li Z, Qiu J S, Zhou J C. Geochronology, geochemistry, and Nd-Hf isotopes of early Palaeozoic-early Mesozoic I-type granites from the Hufang composite pluton, Fujian, South China: crust-mantle interactions and tectonic implications[J]. International Geology Review, 2012, 54(1): 15-32. doi: 10.1080/00206814.2010.496542 [22] Zhou X M, Li W X. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 2000, 326(3-4): 269-287. doi: 10.1016/S0040-1951(00)00120-7 [23] Zhou X M, Sun T, Shen W Z, et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes, 2006, 29(1): 26-33. doi: 10.18814/epiiugs/2006/v29i1/004 [24] Huang C Y, Yen Y, Zhao Q H, et al. Cenozoic stratigraphy of Taiwan: Window into rifting, stratigraphy and paleoceanography of South China Sea[J]. Chinese Science Bulletin, 2012, 57(24): 3130-3149. doi: 10.1007/s11434-012-5349-y [25] He C. The Outline of Taiwan Geology: Geological Map Instruction of Taiwan[M]. Taiwan: The Central Geological Survey of the Ministry of Economic Affairs (Taiwan), 1986. [26] 孙涛.新编华南花岗岩分布图及其说明[J].地质通报, 2006, 25(3): 332-335. doi: 10.3969/j.issn.1671-2552.2006.03.002 SUN Tao. A new map showing the distribution of granites in South China and its explanatory notes[J]. Geological Bulletin of China, 2006, 25(3): 332-335. doi: 10.3969/j.issn.1671-2552.2006.03.002 [27] Dadson S J, Hovius N, Chen H G, et al. Links between erosion, runoff variability and seismicity in the Taiwan orogen[J]. Nature, 2003, 426(6967): 648-651. doi: 10.1038/nature02150 [28] Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean——A Global Synthesis[M]. Cambridge: Cambridge University Press, 2011. [29] 中华人民共和国水利部.中国河流泥沙公报-2015[M].北京:中国水利水电出版社, 2016. China's Ministry of Water Resources. The Bulletin of River Sediment Discharge in China, 2015[M]. Beijing: China Water & Power Press, 2016. [30] Kao S J, Milliman J D. Water and sediment discharge from small mountainous rivers, taiwan: the roles of lithology, episodic events, and Human activities[J]. Journal of Geology, 2008, 116(5): 431-448. doi: 10.1086/590921 [31] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4 [32] Compston W, Williams I S, Kirschvink J L, et al. Zircon U-Pb ages for the early cambrian time-scale[J]. Journal of the Geological Society, 1992, 149(2): 171-184. doi: 10.1144/gsjgs.149.2.0171 [33] Xu X S, O'Reilly S Y, Griffin W L, et al. The crust of Cathaysia: age, assembly and reworking of two terranes[J]. Precambrian Research, 2007, 158(1-2): 51-78. doi: 10.1016/j.precamres.2007.04.010 [34] Xu Y H, Sun Q Q, Yi L, et al. Detrital Zircons U-Pb age and Hf isotope from the western side of the Taiwan Strait: implications for sediment provenance and crustal evolution of the northeast cathaysia block[J]. Terrestrial Atmospheric and Oceanic Sciences, 2014, 25(4): 505-535. doi: 10.3319/TAO.2014.02.18.01(TT) [35] Xu Y H, Wang C Y, Zhao T P. Using detrital zircons from river sands to constrain major tectono-thermal events of the Cathaysia Block, SE China[J]. Journal of Asian Earth Sciences, 2016, 124: 1-13. doi: 10.1016/j.jseaes.2016.04.012 [36] He M Y, Zheng H B, Clift P D. Zircon U-Pb geochronology and Hf isotope data from the Yangtze River sands: Implications for major magmatic events and crustal evolution in Central China[J]. Chemical Geology, 2013, 360-361: 186-203. doi: 10.1016/j.chemgeo.2013.10.020 [37] Rino S, Komiya T, Windley B F, et al. Major episodic increases of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the Early Precambrian[J]. Physics of the Earth and Planetary Interiors, 2004, 146(1-2): 369-394. doi: 10.1016/j.pepi.2003.09.024 [38] Li Z X, Li X H, Wartho J A, et al. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions[J]. Geological Society of America Bulletin, 2010, 122(5-6): 772-793. doi: 10.1130/B30021.1 [39] Feng S J, Zhao K D, Ling H F, et al. Geochronology, elemental and Nd-Hf isotopic geochemistry of Devonian A-type granites in central Jiangxi, South China: Constraints on petrogenesis and post-collisional extension of the Wuyi-Yunkai orogeny[J]. Lithos, 2014, 206-207: 1-18. doi: 10.1016/j.lithos.2014.07.007 [40] Lan Q, Yan Y, Huang C Y, et al. Topographic architecture and drainage reorganization in Southeast China: Zircon U-Pb chronology and Hf isotope evidence from Taiwan[J]. Gondwana Research, 2016, 36: 376-389. doi: 10.1016/j.gr.2015.07.008 [41] Deng K, Yang S Y, Bi L. Reply to comment by Yonghang Xu on "Detrital zircon geochronology of river sands from Taiwan: Implications for sedimentary provenance of Taiwan and its source link with the east China mainland"[J]. Earth-Science Reviews, 2017, 168: 235-239. doi: 10.1016/j.earscirev.2017.03.009 [42] Clift P D, Schouten H, Draut A E. A general model of arc-continent collision and subduction polarity reversal from Taiwan and the Irish Caledonides[J]. Geological Society, London, Special Publications, 2003, 219(1): 81-98. doi: 10.1144/GSL.SP.2003.219.01.04 [43] 邓凯, 杨守业, 王中波, 等.台湾山溪性小河流碎屑重矿物组成及其示踪意义[J].沉积学报, 2016, 34(3): 531-542.http://d.old.wanfangdata.com.cn/Periodical/cjxb201603011 DENG Kai, YANG Shouye, WANG Zhongbo, et al. Detrital heavy mineral assemblages in the river sediments from taiwan and its implications for sediment provenance[J]. Acta Sedimentologica Sinica, 2016, 34(3): 531-542.http://d.old.wanfangdata.com.cn/Periodical/cjxb201603011 [44] Yang S Y, Wang Z B, Guo Y, et al. Heavy mineral compositions of the Changjiang (Yangtze River) sediments and their provenance-tracing implication[J]. Journal of Asian Earth Sciences, 2009, 35(1): 56-65. doi: 10.1016/j.jseaes.2008.12.002 [45] He M Y, Zheng H B, Huang X T, et al. Yangtze River sediments from source to sink traced with clay mineralogy[J]. Journal of Asian Earth Sciences, 2013, 69: 60-69. doi: 10.1016/j.jseaes.2012.10.001 [46] 梁小龙, 杨守业, 印萍, 等.黄海与东海周边河流及泥质区沉积物黏土矿物的分布特征和控制因素[J].海洋地质与第四纪地质, 2015, 35(6): 1-15.http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201506001 LIANG Xiaolong, YANG Shouye, YIN Ping, et al. Distribution of clay mineral assemblages in the rivers entering yellow sea and east china sea and the muddy shelve deposits and control factors[J]. Marine Geology & Quaternary Geology, 2015, 35(6): 1-15.http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201506001 [47] Bi L, Yang S Y, Li C, et al. Geochemistry of river-borne clays entering the East China Sea indicates two contrasting types of weathering and sediment transport processes[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 3034-3052. doi: 10.1002/2015GC005867 [48] Bi L, Yang S Y, Zhao Y, et al. Provenance study of the Holocene sediments in the Changjiang (Yangtze River) estuary and inner shelf of the East China sea[J]. Quaternary International, 2017, 441: 147-161. doi: 10.1016/j.quaint.2016.12.004 [49] Dou Y G, Yang S Y, Shi X F, et al. Provenance weathering and erosion records in southern Okinawa Trough sediments since 28 ka: Geochemical and Sr-Nd-Pb isotopic evidences[J]. Chemical Geology, 2016, 425: 93-109. doi: 10.1016/j.chemgeo.2016.01.029 [50] Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17-18): 2141-2156. doi: 10.1016/j.csr.2006.07.013 [51] Xu K H, Li A C, Liu J P, et al. Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: A synthesis of the Yangtze dispersal system[J]. Marine Geology, 2012, 291-294: 176-191. doi: 10.1016/j.margeo.2011.06.003 [52] Xu K H, Milliman J D, Li A C, et al. Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea[J]. Continental Shelf Research, 2009, 29(18): 2240-2256. doi: 10.1016/j.csr.2009.08.017 [53] Yang S, Bi L, Li C, et al. Major sinks of the Changjiang (Yangtze River)-derived sediments in the East China Sea during the late Quaternary[J]. Geological Society, London, Special Publications, 2015, 429: SP429.6.https://www.researchgate.net/publication/276145501_Major_sinks_of_the_Changjiang_Yangtze_River-derived_sediments_in_the_East_China_Sea_during_the_late_Quaternary [54] Saito Y, Katayama H, Ikehara K, et al. Transgressive and highstand systems tracts and post-glacial transgression, the East China Sea[J]. Sedimentary Geology, 1998, 122(1-4): 217-232. doi: 10.1016/S0037-0738(98)00107-9 -