留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南海北部深海浅层沉积物中甲烷生物地球化学过程数值模拟研究

吴雪停 刘丽华 Matthias Haeckel 吴能友

吴雪停, 刘丽华, Matthias Haeckel, 吴能友. 南海北部深海浅层沉积物中甲烷生物地球化学过程数值模拟研究[J]. 海洋地质与第四纪地质, 2016, 36(3): 81-90. doi: 10.16562/j.cnki.0256-1492.2016.03.008
引用本文: 吴雪停, 刘丽华, Matthias Haeckel, 吴能友. 南海北部深海浅层沉积物中甲烷生物地球化学过程数值模拟研究[J]. 海洋地质与第四纪地质, 2016, 36(3): 81-90. doi: 10.16562/j.cnki.0256-1492.2016.03.008
WU Xueting, LIU Lihua, Matthias Haeckel, WU Nengyou. SIMULATION OF THE BIOGEOCHEMICAL PROCESSES IN METHANE-BEARING SURFACE SEDIMENTS OF HAIYANG 4 AREA, NORTHERN SLOPE OF SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2016, 36(3): 81-90. doi: 10.16562/j.cnki.0256-1492.2016.03.008
Citation: WU Xueting, LIU Lihua, Matthias Haeckel, WU Nengyou. SIMULATION OF THE BIOGEOCHEMICAL PROCESSES IN METHANE-BEARING SURFACE SEDIMENTS OF HAIYANG 4 AREA, NORTHERN SLOPE OF SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2016, 36(3): 81-90. doi: 10.16562/j.cnki.0256-1492.2016.03.008

南海北部深海浅层沉积物中甲烷生物地球化学过程数值模拟研究


doi: 10.16562/j.cnki.0256-1492.2016.03.008
详细信息
    作者简介:

    吴雪停(1989-),女,硕士生,主要从事海洋沉积物早期成岩作用研究,E-mail:wuxt@ms.giec.ac.cn

  • 基金项目:

    国家自然科学基金面上项目(41376076);广东省基金自由申请项目(2015A030313718);中国科学院对外合作重点项目(GJHZ1404)

  • 中图分类号: P744.4

SIMULATION OF THE BIOGEOCHEMICAL PROCESSES IN METHANE-BEARING SURFACE SEDIMENTS OF HAIYANG 4 AREA, NORTHERN SLOPE OF SOUTH CHINA SEA

More Information
  • 摘要: 富甲烷浅层海相沉积物中的生物地球化学过程已引起了国内外学者的广泛关注。研究采用数值模拟的方法对"海洋四号区"浅层沉积物中甲烷生物地球化学过程进行定量研究。依据研究区域实际地质资料,使用Mathematica建立起一维反应运移稳态模型。模拟结果认为研究区深层沉积物内赋存有甲烷源,释放的甲烷气以气泡的形式运移至沉积物表层,并造成气泡淋滤现象。气泡淋滤使孔隙水中SO42-等溶质浓度在海底以下0~2.8 m的范围内保持不变。甲烷气泡在浓度梯度作用下向孔隙水中溶解,溶解通量为160 mmol·m-2·a-1,溶解甲烷在微生物作用下被SO42-氧化,氧化速率为140 mmol·m-2·a-1。甲烷通量与氧化速率均远小于水合物脊等甲烷渗漏活跃地区,SMTZ埋藏也相对较深,故推测甲烷源埋藏较深或规模较小,也有可能是良好的圈闭条件阻止了甲烷逸出。作为AOM过程的重要自生矿物,本地区碳酸盐和硫化物矿物沉淀速率都比较低(分别为35 mmol·m-2·a-1和70 mmol·m-2·a-1),且碳酸盐的沉淀受到了硫化物矿物的影响。
  • [1] Jorgensen B B, Revsbech N P. Oxygen uptake, bacterial distribution, and carbon-nitrogen-sulfur cycling in sediments from the Baltic Sea-North Sea transition[J]. Ophelia, 1989. 31(1):29-49.
    [2] Arndt S, Jφrgensen B B, LaRowe D E, et al. Quantifying the degradation of organic matter in marine sediments:A review and synthesis[J]. Earth-Science Reviews, 2013, 123:53-86.
    [3] Reeburgh W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2):486-513.
    [4] Luff R, Wallmann K, Grandel S, et al. Numerical modeling of benthic processes in the deep Arabian Sea[J]. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 2000, 47(14):3039-3072.
    [5] Hinrichs K U, Hayes J M, Sylva S P, et al. Methane-consuming archaebacteria in marine sediments[J]. Nature, 1999, 398(6730):802-805.
    [6] Bach W, Paull C K, Ussler W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate[J]. Geology of Ore Deposits, 1996, 24(7):655-658.
    [7] Luff R, Wallmann K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin:Numerical modeling and mass balances[J]. Geochimica et Cosmochimica Acta, 2003, 67(18):3403-3421.
    [8] Feng D, Chen D F, Peckmann J, et al. Authigenic carbonates from methane seeps of the northern Congo fan:Microbial formation mechanism[J]. Marine and Petroleum Geology, 2010, 27(4):748-756.
    [9] Karaca D, Hensen C,Wallmann K. Numerical modeling of Ca-enrichment on authigenic carbonate formation at mud volcanoes:A case study off Costa Rica[J]. Geochimica et Cosmochimica Acta, 2008, 72(12):A450-A450.
    [10] Luff R, Greinert J, Wallmann K, et al. Simulation of long-term feedbacks from authigenic carbonate crust formation at cold vent sites[J]. Chemical Geology, 2005, 216(1-2):157-174.
    [11] Luff R, Wallmann K, Aloisi G. Numerical modeling of carbonate crust formation at cold vent sites:significance for fluid and methane budgets and chemosynthetic biological communities[J]. Earth and Planetary Science Letters, 2004, 221(1-4):337-353.
    [12] Haeckel M, Boudreau B P, Wallmann K. Bubble-induced porewater mixing:A 3-D model for deep porewater irrigation[J]. Geochimica et Cosmochimica Acta, 2007, 71(21):5135-5154.
    [13] 管红香,陈多福,宋之光. 冷泉渗漏区海底微生物作用及生物标志化合物[J]. 海洋地质与第四纪地质, 2007,27(5):75-83.

    [GUAN Hongxiang, CHEN Duofu, SONG Zhiguang. Biomarkers and bacterial processes in the sediments of gas seep site[J]. Marine Geology and Quaternary Geology, 2007, 27(5):75-83.]
    [14] Han X, Suess E, Liebetrau V, et al. Past methane release events and environmental conditions at the upper continental slope of the South China Sea:constraints by seep carbonates[J]. International Journal of Earth Sciences, 2014, 103(7):1873-1887.
    [15] Tong H P, Feng D, Cheng H, et al. Authigenic carbonates from seeps on the northern continental slope of the South China Sea:New insights into fluid sources and geochronology[J]. Marine and Petroleum Geology, 2013, 43:260-271.
    [16] Liu L, Wu N. Simulation of advective methane flux and AOM in Shenhu area, the northern South China Sea[J]. Environmental Earth Sciences, 2014, 71(2):697-707.
    [17] 黄永祥, Suess E, 吴能友,等. 南海北部陆坡甲烷和天然气水合物地质-中德合作SO-177航次成果专报[M]. 北京:地质出版社, 2008.[HUANG Yongxiang, Suess E, WU Nengyou, et al.Mehtane and Gas Hydrate Geology of the Northern South China Sea:Sino-German Cooperative SO-177 Cruise Report[M]. Beijing:Geological Publishing House, 2008.]
    [18] 龚跃华, 吴时国,张光学,等.南海东沙海域天然气水合物与地质构造的关系[J]. 海洋地质与第四纪地质, 2008, 28(1):99-104.

    [GONG Yuehua, WU Shiguo,ZHANG Guangxue, et al. Relation between gas hydrate and geologic structures in Dongsha islands sea area of South China Sea[J]. Marine and Petroleum Geology,2008, 28(1):99-104]
    [19] 陆红锋,陈芳,刘坚,等. 南海北部神狐海区的自生碳酸盐岩烟囱-海底富烃流体活动的记录[J]. 地质论评, 2006, 52(3):352-357.

    [LU Hongfeng, CHEN Fang, LIU Jian, et al. Characteristics of authigenic carbonate chimneys in Shenhu Area, Northern South China Sea:Recorders of hydrocarbon-enriched fluid activity[J].Geological Review, 2006, 52(3):352-357.]
    [20] 陆红锋,刘坚,陈芳,等. 南海台西南区碳酸盐岩矿物学和稳定-天然气水合物存在的主要证据之一[J]. 地学前沿, 2005, 12(3):268-276.

    [LU Hongfeng, LIU Jian, CHEN Fang,et al.Mineralogy and stable isotopic composition of authigenic carbonates in bottom sediments in the offshore area of southwest Taiwan, South China Sea:Evidence for gas hydrates occurrence[J]. Earth Science Frontiers, 2005, 12(3):268-276.]
    [21] 陈胜红,贺振华,何家雄,等. 南海东北部边缘台西南盆地泥火山特征及其与油气运聚关系[J]. 天然气地球科学, 2009, 20(6):872-878.

    [CHEN Shenghogn, HE Zhenhua,HE Jiaxiong,et al.The characters of the mud volcanoes in the North-east marginal of the South China Sea and the relationship with the accumulation and migration of oil and gas[J]. Natural Gas Geoscience,2009, 20(6):872-878.]
    [22] 邬黛黛,吴能友,张美. 东沙海域SMI与甲烷通量的关系及对水合物的指示[J]. 地球科学-中国地质大学学报, 2013, 38(6):1309-1320.

    [WU Daidai, WU Nengyou, ZHANG Mei, et al. Relationship of sulfate-methane interface(SMI), methane flux and the underlying gas hydrate in Dongsha Area, Northern South China Sea[J].Earth Science-Journal of China University of Geosciences, 2013, 38(6):1309-1320.]
    [23] Fossing H, Ferdelman T G, Berg P. Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (South-East Atlantic off Namibia)[J]. Geochimica et Cosmochimica Acta, 2000, 64(5):897-910.
    [24] 苏新,陈芳,陆红锋,等. 南海北部深海甲烷冷泉自生碳酸盐岩显微结构特征与流体活动关系初探[J]. 现代地质, 2008, 22(3):376-381.

    [SU Xin, CHEN Fang, LU Hongfeng, et al.Micro-textures of methane seep carbonates from the Northern South China Sea in correlation with fluid flow[J]. Geoscience, 2008, 22(3):376-381.]
    [25] 于晓果,韩喜球,李宏亮,等. 南海东沙东北部甲烷缺氧氧化作用的生物标志化合物及其碳同位素组成[J]. 海洋学报, 2010, 30(3):77-84.

    [YU Xiaoguo, HAN Xiqiu, LI Hongliang, et al. Biomarkers and carbon isotope composition of anaerobic oxidation of methane in sediments and carbonates of northeastern part of Dongsha, South China Sea[J]. Acta Oceanologica Sinica, 2008, 30(3):77-84.]
    [26] Luo M, Dale A W, Wallmann K, et al. Estimating the time of pockmark formation in the SW Xisha Uplift (South China Sea) using reaction-transport modeling[J]. Marine Geology, 2015, 364:21-31.
    [27] Suess E. F S Sonne Fahrtbericht/Cruise Report SO177 SiGer 2004, Sino-German Cooperative Project:South China Sea Continental Margin:Geological Methane Budget and Environmental Effects of Methane Emissions and Gashydrates[M]. IFM-GEOMAR Report, 2005.
    [28] Wang P P W, Blum P. Proceedings of the Ocean Drilling Program:Initial Reports 184[M]. Texas A&M, College Station, USA, 2000.
    [29] Chuang P-C, Dale A W, Wallmann K, et al. Relating sulfate and methane dynamics to geology:Accretionary prism offshore SW Taiwan[J]. Geochemistry Geophysics Geosystems, 2013, 14(7):2523-2545.
    [30] Boudreau B P. Diagenetic Models and Their Implementation[M]. Springer Berlin.1997.
    [31] Duan Z H, Moller N, Greenberg J, et al. The prediction of methane solubility in antural waters to high ionic strength from 0 to 250℃ and from 0 to 1600 bar[J]. Geochimica et Cosmochimica Acta, 1992, 56(4):1451-1460.
    [32] Haeckel M, Suess E, Wallmann K, et al. Rising methane gas bubbles form massive hydrate layers at the seafloor[J]. Geochimica et Cosmochimica Acta, 2004, 68(21):4335-4345.
    [33] Blair N E, Aller R C. Anaerobic methane oxidation on the Amazon Shelf[J]. Geochimica et Cosmochimica Acta, 1995, 59(21):4564-4564.
    [34] Boetius A, Ravenschlag K, Schubert, C J. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407:623-626.
    [35] Millero F J. Thermodynamics of the carbon-dioxide system in the oceans[J]. Geochimica et Cosmochimica Acta, 1995, 59(4):661-677.
    [36] Kristensen E, Penha-Lopes G, Delefosse M, et al. What is bioturbation? The need for a precise definition for fauna in aquatic sciences[J]. Marine Ecology Progress Series, 2012, 446:285-302.
    [37] Schulz H D, Dahmke A, Schinzel U, et al. Early diagenetic processes,fluxes,and reaction-rates in sediments of the South-Atlantic[J]. Geochimica et Cosmochimica Acta, 1994, 58(9):2041-2060.
    [38] Niewohner C, Hensen C, Kasten S, et al. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia[J]. Geochimica Et Cosmochimica Acta, 1998, 62(3):455-464.
    [39] Anderson A L, Abegg F, Hawkins J A, et al. Bubble populations and acoustic interaction with the gassy floor of Eckernforde Bay[J]. Continental Shelf Research, 1998, 18(14-15):1807-1838.
    [40] Paull C K, Dallimore S R, Caress D W, et al. Active mud volcanoes on the continental slope of the Canadian Beaufort Sea[J]. Geochemistry Geophysics Geosystems, 2015, 16(9):3160-3181.
    [41] Boudreau B P, Algar C, Johnson B D, et al. Bubble growth and rise in soft sediments[J]. Geology, 2005, 33(6):517-520.
    [42] Albert D B, Martens C S, Alperin M J. Biogeochemical processes controlling methane in gassy coastal sediments-Part 2:groundwater flow control of acoustic turbidity in Eckernforde Bay Sediments[J]. Continental Shelf Research, 1998, 18(14-15):1771-1793.
  • [1] 王佳贤, 刘昌岭, 宁伏龙, 纪云开.  CO2-CH4置换水合物开采方法及其强化技术研究进展 . 海洋地质与第四纪地质, 2023, 43(1): 190-204. doi: 10.16562/j.cnki.0256-1492.2022032101
    [2] 毛佩筱, 吴能友, 万义钊, 陈强, 胡高伟.  多分支井射孔程度和布设位置对倾斜泥质水合物储层开采产能的影响 . 海洋地质与第四纪地质, 2022, 42(6): 207-217. doi: 10.16562/j.cnki.0256-1492.2022011501
    [3] 李法坤, 戴黎明, 杜晓东, 蔡国富, 李三忠, 董昊, 王宇.  构造-沉积耦合过程的数值模拟:以南海北部阳江凹陷为例 . 海洋地质与第四纪地质, 2021, 41(5): 139-150. doi: 10.16562/j.cnki.0256-1492.2021040601
    [4] 孙鲁一, 张广旭, 王秀娟, 靳佳澎, 何敏, 朱振宇.  南海神狐海域天然气水合物饱和度的数值模拟分析 . 海洋地质与第四纪地质, 2021, 41(2): 210-221. doi: 10.16562/j.cnki.0256-1492.2020050501
    [5] 肖国林, 王明健, 杨长清, 庞玉茂.  东海南部中生界烃类生成、运聚与成藏数值模拟 . 海洋地质与第四纪地质, 2019, 39(6): 138-149. doi: 10.16562/j.cnki.0256-1492.2019070304
    [6] 马芳芳, 楼达, 戴黎明, 李三忠, 董昊, 陶建丽, 李法坤, 王亮亮, 刘泽.  俯冲板片熔融柱的数值模拟:上覆板块破坏及动力地形效应 . 海洋地质与第四纪地质, 2019, 39(5): 186-196. doi: 10.16562/j.cnki.0256-1492.2019040102
    [7] 陶建丽, 楼达, 戴黎明, 李三忠, 董昊, 马芳芳, 兰浩圆, 李法坤, 王亮亮, 刘泽.  中国东部大陆边缘中生代晚期增生过程的数值模拟:以那丹哈达为例 . 海洋地质与第四纪地质, 2019, 39(5): 174-185. doi: 10.16562/j.cnki.0256-1492.2019040101
    [8] 李灿苹, 勾丽敏, 尤加春, 欧触灵.  冷泉活动区气泡羽状流数值模型研究 . 海洋地质与第四纪地质, 2017, 37(5): 141-150. doi: 10.16562/j.cnki.0256-1492.2017.05.014
    [9] 邬黛黛, 杨飞, 黄霞, 潘梦迪, 孙甜甜, 刘丽华, 吴能友.  南海东沙海域冷泉渗漏区沉积物稀土元素地球化学特征 . 海洋地质与第四纪地质, 2017, 37(5): 59-69. doi: 10.16562/j.cnki.0256-1492.2017.05.006
    [10] 刘昌岭, 李彦龙, 孙建业, 吴能友.  天然气水合物试采:从实验模拟到场地实施 . 海洋地质与第四纪地质, 2017, 37(5): 12-26. doi: 10.16562/j.cnki.0256-1492.2017.05.002
    [11] 刘泽, 戴黎明, 李三忠, 马芳芳, 索艳慧, 郭玲莉, 陶建丽, 杨传胜, 张嘉琪.  东海陆架盆地南部中生代成盆过程的数值模拟 . 海洋地质与第四纪地质, 2017, 37(4): 167-180. doi: 10.16562/j.cnki.0256-1492.2017.04.011
    [12] 胡梦颖, 李三忠, 戴黎明, 索艳慧, 郭玲莉, 刘泽, 马芳芳, 陶建丽.  西湖凹陷中北部反转构造动力学机制的数值模拟 . 海洋地质与第四纪地质, 2017, 37(4): 151-166. doi: 10.16562/j.cnki.0256-1492.2017.04.010
    [13] 王永明, 李三忠, 李玺瑶, 戴黎明.  华北克拉通破坏动力学机制:数值模拟的启示 . 海洋地质与第四纪地质, 2017, 37(4): 137-150. doi: 10.16562/j.cnki.0256-1492.2017.04.009
    [14] 张辉, 杨睿, 匡增桂, 黄丽, 阎贫.  海底沉积物中天然气水合物形成过程数值模拟:以深部流体向上供给甲烷为背景 . 海洋地质与第四纪地质, 2017, 37(1): 107-116. doi: 10.16562/j.cnki.0256-1492.2017.01.013
    [15] 董冬冬, 孙运宝, 吴时国.  珠江口盆地深水区地层超压演化的数值模拟——以ODP1148站位为例 . 海洋地质与第四纪地质, 2015, 35(5): 165-172. doi: 10.16562/j.cnki.0256-1492.2015.05.019
    [16] 李清, 王家生, 蔡峰, 梁杰, 胡高伟, 孙治雷, 邵和宾.  自生碳酸盐岩与底栖有孔虫碳同位素特征对多幕次甲烷事件的耦合响应——以IODP 311航次1328和1329站位为例 . 海洋地质与第四纪地质, 2015, 35(5): 37-46. doi: 10.16562/j.cnki.0256-1492.2015.05.005
    [17] 钱进, 王秀娟, 董冬冬, 吴时国.  裂隙充填型天然气水合物的地震各向异性数值模拟 . 海洋地质与第四纪地质, 2015, 35(4): 149-154. doi: 10.16562/j.cnki.0256-1492.2015.04.016
    [18] 乔璐璐, 史经昊, 高飞, 印萍, 李建超.  我国陆架泥质区沉积动力数值模拟研究进展 . 海洋地质与第四纪地质, 2014, 34(3): 155-166. doi: 10.3724/SP.J.1140.2014.03155
    [19] 季有俊, 杨作升, 王厚杰, 毕乃双, 芦静.  最大海侵时期古渤海潮流沉积动力环境特征及其与现今对比 . 海洋地质与第四纪地质, 2011, 31(3): 31-39. doi: 10.3724/SP.J.1140.2011.03031
    [20] 韩喜彬, 史经昊, 李家彪, 李广雪.  新仙女木期古黄海潮流场的数值模拟 . 海洋地质与第四纪地质, 2009, 29(1): 13-23. doi: 10.3724/SP.J.1140.2009.01013
  • 加载中
计量
  • 文章访问数:  2200
  • HTML全文浏览量:  275
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-24
  • 修回日期:  2016-03-24

南海北部深海浅层沉积物中甲烷生物地球化学过程数值模拟研究

doi: 10.16562/j.cnki.0256-1492.2016.03.008
    作者简介:

    吴雪停(1989-),女,硕士生,主要从事海洋沉积物早期成岩作用研究,E-mail:wuxt@ms.giec.ac.cn

基金项目:

国家自然科学基金面上项目(41376076);广东省基金自由申请项目(2015A030313718);中国科学院对外合作重点项目(GJHZ1404)

  • 中图分类号: P744.4

摘要: 富甲烷浅层海相沉积物中的生物地球化学过程已引起了国内外学者的广泛关注。研究采用数值模拟的方法对"海洋四号区"浅层沉积物中甲烷生物地球化学过程进行定量研究。依据研究区域实际地质资料,使用Mathematica建立起一维反应运移稳态模型。模拟结果认为研究区深层沉积物内赋存有甲烷源,释放的甲烷气以气泡的形式运移至沉积物表层,并造成气泡淋滤现象。气泡淋滤使孔隙水中SO42-等溶质浓度在海底以下0~2.8 m的范围内保持不变。甲烷气泡在浓度梯度作用下向孔隙水中溶解,溶解通量为160 mmol·m-2·a-1,溶解甲烷在微生物作用下被SO42-氧化,氧化速率为140 mmol·m-2·a-1。甲烷通量与氧化速率均远小于水合物脊等甲烷渗漏活跃地区,SMTZ埋藏也相对较深,故推测甲烷源埋藏较深或规模较小,也有可能是良好的圈闭条件阻止了甲烷逸出。作为AOM过程的重要自生矿物,本地区碳酸盐和硫化物矿物沉淀速率都比较低(分别为35 mmol·m-2·a-1和70 mmol·m-2·a-1),且碳酸盐的沉淀受到了硫化物矿物的影响。

English Abstract

参考文献 (42)

目录

    /

    返回文章
    返回